1
|
Bhattacharya S, Santucci F, Jankovic M, Huang T, Basu J, Tan P, Schena E, Lu N. Cardiac Time Intervals under Motion Using Bimodal Chest E-Tattoos and Multistage Processing. IEEE Trans Biomed Eng 2024; PP:1-12. [PMID: 39255080 DOI: 10.1109/tbme.2024.3454067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
GOAL We present a thin, soft, and chest conformable bimodal sensor, known as the chest e-tattoo, coupled with an advanced signal processing framework to accurately identify various cardiac events, and thereby extract cardiac time intervals even during body motion. METHODS We built a wireless electronic tattoo that features synchronous electrocardiography (ECG) and seismocardiography (SCG). The SCG measures chest vibrations due to heartbeat, providing information on cardiovascular health that is complementary to the ECG. However, the efficacy of the SCG is compromised by motion-induced artifacts. The slim and stretchy design of the e-tattoo allows it to be strategically placed near the xiphoid process, facilitating high-quality monitoring of the ECG and SCG for increased signal quality. Nine participants were measured during walking and cycling. We propose a multistage signal processing framework, integrating an adaptive Normalized Least Mean Squares (NLMS) filter, ensemble averaging, and Empirical Mode Decomposition (EMD), together named the FAD framework, to accurately extract cardiac time intervals (CTIs).
Collapse
|
2
|
Schena E, Mattioli E, Peres C, Zanotti L, Morselli P, Iozzo P, Guzzardi MA, Bernardini C, Forni M, Nesci S, Caprio M, Cecchetti C, Pagotto U, Gabusi E, Cattini L, Lisignoli G, Blalock W, Gambineri A, Lattanzi G. Mineralocorticoid Receptor Antagonism Prevents Type 2 Familial Partial Lipodystrophy Brown Adipocyte Dysfunction. Cells 2023; 12:2586. [PMID: 37998321 PMCID: PMC10670260 DOI: 10.3390/cells12222586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Type-2 Familial Partial Lipodystrophy (FPLD2), a rare lipodystrophy caused by LMNA mutations, is characterized by a loss of subcutaneous fat from the trunk and limbs and excess accumulation of adipose tissue in the neck and face. Several studies have reported that the mineralocorticoid receptor (MR) plays an essential role in adipose tissue differentiation and functionality. We previously showed that brown preadipocytes isolated from a FPLD2 patient's neck aberrantly differentiate towards the white lineage. As this condition may be related to MR activation, we suspected altered MR dynamics in FPLD2. Despite cytoplasmic MR localization in control brown adipocytes, retention of MR was observed in FPLD2 brown adipocyte nuclei. Moreover, overexpression of wild-type or mutated prelamin A caused GFP-MR recruitment to the nuclear envelope in HEK293 cells, while drug-induced prelamin A co-localized with endogenous MR in human preadipocytes. Based on in silico analysis and in situ protein ligation assays, we could suggest an interaction between prelamin A and MR, which appears to be inhibited by mineralocorticoid receptor antagonism. Importantly, the MR antagonist spironolactone redirected FPLD2 preadipocyte differentiation towards the brown lineage, avoiding the formation of enlarged and dysmorphic lipid droplets. Finally, beneficial effects on brown adipose tissue activity were observed in an FPLD2 patient undergoing spironolactone treatment. These findings identify MR as a new lamin A interactor and a new player in lamin A-linked lipodystrophies.
Collapse
|
3
|
Hartinger R, Lederer EM, Schena E, Lattanzi G, Djabali K. Impact of Combined Baricitinib and FTI Treatment on Adipogenesis in Hutchinson-Gilford Progeria Syndrome and Other Lipodystrophic Laminopathies. Cells 2023; 12:1350. [PMID: 37408186 DOI: 10.3390/cells12101350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 07/07/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease that causes premature aging symptoms, such as vascular diseases, lipodystrophy, loss of bone mineral density, and alopecia. HGPS is mostly linked to a heterozygous and de novo mutation in the LMNA gene (c.1824 C > T; p.G608G), resulting in the production of a truncated prelamin A protein called "progerin". Progerin accumulation causes nuclear dysfunction, premature senescence, and apoptosis. Here, we examined the effects of baricitinib (Bar), an FDA-approved JAK/STAT inhibitor, and a combination of Bar and lonafarnib (FTI) treatment on adipogenesis using skin-derived precursors (SKPs). We analyzed the effect of these treatments on the differentiation potential of SKPs isolated from pre-established human primary fibroblast cultures. Compared to mock-treated HGPS SKPs, Bar and Bar + FTI treatments improved the differentiation of HGPS SKPs into adipocytes and lipid droplet formation. Similarly, Bar and Bar + FTI treatments improved the differentiation of SKPs derived from patients with two other lipodystrophic diseases: familial partial lipodystrophy type 2 (FPLD2) and mandibuloacral dysplasia type B (MADB). Overall, the results show that Bar treatment improves adipogenesis and lipid droplet formation in HGPS, FPLD2, and MADB, indicating that Bar + FTI treatment might further ameliorate HGPS pathologies compared to lonafarnib treatment alone.
Collapse
|
4
|
Capanni C, Schena E, Di Giampietro ML, Montecucco A, Mattioli E, Lattanzi G. The role of prelamin A post-translational maturation in stress response and 53BP1 recruitment. Front Cell Dev Biol 2022; 10:1018102. [PMID: 36467410 PMCID: PMC9709412 DOI: 10.3389/fcell.2022.1018102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2023] Open
Abstract
Lamin A is a main constituent of the nuclear lamina and contributes to nuclear shaping, mechano-signaling transduction and gene regulation, thus affecting major cellular processes such as cell cycle progression and entry into senescence, cellular differentiation and stress response. The role of lamin A in stress response is particularly intriguing, yet not fully elucidated, and involves prelamin A post-translational processing. Here, we propose prelamin A as the tool that allows lamin A plasticity during oxidative stress response and permits timely 53BP1 recruitment to DNA damage foci. We show that while PCNA ubiquitination, p21 decrease and H2AX phosphorylation occur soon after stress induction in the absence of prelamin A, accumulation of non-farnesylated prelamin A follows and triggers recruitment of 53BP1 to lamin A/C complexes. Then, the following prelamin A processing steps causing transient accumulation of farnesylated prelamin A and maturation to lamin A reduce lamin A affinity for 53BP1 and favor its release and localization to DNA damage sites. Consistent with these observations, accumulation of prelamin A forms in cells under basal conditions impairs histone H2AX phosphorylation, PCNA ubiquitination and p21 degradation, thus affecting the early stages of stress response. As a whole, our results are consistent with a physiological function of prelamin A modulation during stress response aimed at timely recruitment/release of 53BP1 and other molecules required for DNA damage repair. In this context, it becomes more obvious how farnesylated prelamin A accumulation to toxic levels alters timing of DNA damage signaling and 53BP1 recruitment, thus contributing to cellular senescence and accelerated organismal aging as observed in progeroid laminopathies.
Collapse
|
5
|
Zaltieri M, Presti DL, Bravi M, Caponero MA, Sterzi S, Schena E, Massaroni C. Assessment of a Multi-Sensor FBG-based Wearable System in Sitting Postures Recognition and Respiratory Rate Evaluation of Office Workers. IEEE Trans Biomed Eng 2022; 70:1673-1682. [PMID: 37079397 DOI: 10.1109/tbme.2022.3225065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to prolonged incorrect sitting posture, upper body musculoskeletal disorders (UBMDs) are largely widespread among sedentary workers. Monitoring employees' sitting behaviors could be of great help in minimizing UBMDs' occurrence. In addition, being primarily influenced by psycho-physical stress conditions, respiratory rate (RR) would be a further useful parameter to delineate the workers' state of health. Wearable systems have emerged as a viable option for sitting posture and RR monitoring since enable continuous data collecting with no posture disturbances. Nevertheless, the main limits are poor fit, cumbersomeness, and movement restriction resulting in discomfort for the user. In addition, only few wearable solutions can track both these parameters contextually. To address these problems, in this study a flexible wearable system composed of seven modular sensing elements based on fiber Bragg grating (FBG) technology and designed to be worn on the back has been proposed to recognize the most common sitting postures (i.e., kyphotic, upright and lordotic) and estimate RR. The assessment was performed on ten volunteers showing good performances in postures recognition via Naïve Bayes classificator (accuracy >96.9%) and agreement with the benchmark in RR estimation (MAPE ranging between 0.74% and 3.83%, MODs close to zero, and LOAs between 0.76 bpm and 3.63 bpm). The method was then successfully tested on three additional subjects under different breathing conditions. The wearable system could offer great support for a better understanding of the workers' posture attitudes and contribute to gathering RR information to depict an overall picture of the users' state of health.
Collapse
|
6
|
Squarzoni S, Schena E, Sabatelli P, Mattioli E, Capanni C, Cenni V, D'Apice MR, Andrenacci D, Sarli G, Pellegrino V, Festa A, Baruffaldi F, Storci G, Bonafè M, Barboni C, Sanapo M, Zaghini A, Lattanzi G. Interleukin-6 neutralization ameliorates symptoms in prematurely aged mice. Aging Cell 2021; 20:e13285. [PMID: 33393189 PMCID: PMC7811841 DOI: 10.1111/acel.13285] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/23/2020] [Accepted: 11/14/2020] [Indexed: 12/17/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) causes premature aging in children, with adipose tissue, skin and bone deterioration, and cardiovascular impairment. In HGPS cells and mouse models, high levels of interleukin-6, an inflammatory cytokine linked to aging processes, have been detected. Here, we show that inhibition of interleukin-6 activity by tocilizumab, a neutralizing antibody raised against interleukin-6 receptors, counteracts progeroid features in both HGPS fibroblasts and LmnaG609G / G609G progeroid mice. Tocilizumab treatment limits the accumulation of progerin, the toxic protein produced in HGPS cells, rescues nuclear envelope and chromatin abnormalities, and attenuates the hyperactivated DNA damage response. In vivo administration of tocilizumab reduces aortic lesions and adipose tissue dystrophy, delays the onset of lipodystrophy and kyphosis, avoids motor impairment, and preserves a good quality of life in progeroid mice. This work identifies tocilizumab as a valuable tool in HGPS therapy and, speculatively, in the treatment of a variety of aging-related disorders.
Collapse
|
7
|
Miccinilli S, Schena E, Massaroni C, Bravi M, Campiglia F, Santacaterina F, Foti C, Bressi F, Sterzi S. Use of wearable systems for the detection of chest-abdominal wall movement aimed at respiratory monitoring in sport: a scoping review on available data. J BIOL REG HOMEOS AG 2020; 34:87-96. Technology in Medicine. [PMID: 33386038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There is a significant request for wearable systems for vital signs and athletic performance monitoring during sport practice, both in professional and non-professional fields. Respiratory rate is a rather neglected parameter in this field, but several studies show that it is a strong marker of physical exertion. The aim of the present scoping review is to evaluate the number and kind of existing studies on wearable technologies for the analysis of the chest wall movement for respiratory monitoring in sport and fitness. The review included studies investigating the use of contact-based wearable techniques for the detection of chest wall movement for respiratory monitoring during professional or amateur sport, during fitness and physical activity. The search was conducted on PubMed/Medline, Scopus and Google Scholar electronic databases using keywords. Data extracted were entered into a Microsoft Excel spreadsheet by the leading author and then double-checked by the second author. A total of 25 descriptive studies met the inclusion criteria. Few studies on small number of athletes were found, technologies were often evaluated without a reference system, data on participants are sometimes missing. To date, we are not able to draw conclusions on which is the best and most reliable device to use during sport practice.
Collapse
|
8
|
Cenni V, Capanni C, Mattioli E, Schena E, Squarzoni S, Bacalini MG, Garagnani P, Salvioli S, Franceschi C, Lattanzi G. Lamin A involvement in ageing processes. Ageing Res Rev 2020; 62:101073. [PMID: 32446955 DOI: 10.1016/j.arr.2020.101073] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/05/2020] [Accepted: 04/11/2020] [Indexed: 12/29/2022]
Abstract
Lamin A, a main constituent of the nuclear lamina, is the major splicing product of the LMNA gene, which also encodes lamin C, lamin A delta 10 and lamin C2. Involvement of lamin A in the ageing process became clear after the discovery that a group of progeroid syndromes, currently referred to as progeroid laminopathies, are caused by mutations in LMNA gene. Progeroid laminopathies include Hutchinson-Gilford Progeria, Mandibuloacral Dysplasia, Atypical Progeria and atypical-Werner syndrome, disabling and life-threatening diseases with accelerated ageing, bone resorption, lipodystrophy, skin abnormalities and cardiovascular disorders. Defects in lamin A post-translational maturation occur in progeroid syndromes and accumulated prelamin A affects ageing-related processes, such as mTOR signaling, epigenetic modifications, stress response, inflammation, microRNA activation and mechanosignaling. In this review, we briefly describe the role of these pathways in physiological ageing and go in deep into lamin A-dependent mechanisms that accelerate the ageing process. Finally, we propose that lamin A acts as a sensor of cell intrinsic and environmental stress through transient prelamin A accumulation, which triggers stress response mechanisms. Exacerbation of lamin A sensor activity due to stably elevated prelamin A levels contributes to the onset of a permanent stress response condition, which triggers accelerated ageing.
Collapse
|
9
|
Cappelletti C, Tramacere I, Cavalcante P, Schena E, Politano L, Carboni N, Gambineri A, D’Amico A, Ruggiero L, Ricci G, Siciliano G, Boriani G, Mongini TE, Vercelli L, Biagini E, Ziacchi M, D’Apice MR, Lattanzi G, Mantegazza R, Maggi L, Bernasconi P. Cytokine Profile in Striated Muscle Laminopathies: New Promising Biomarkers for Disease Prediction. Cells 2020; 9:cells9061532. [PMID: 32585971 PMCID: PMC7348753 DOI: 10.3390/cells9061532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 12/28/2022] Open
Abstract
Laminopathies are a wide and heterogeneous group of rare human diseases caused by mutations of the LMNA gene or related nuclear envelope genes. The variety of clinical phenotypes and the wide spectrum of histopathological changes among patients carrying an identical mutation in the LMNA gene make the prognostic process rather difficult, and classical genetic screens appear to have limited predictive value for disease development. The aim of this study was to evaluate whether a comprehensive profile of circulating cytokines may be a useful tool to differentiate and stratify disease subgroups, support clinical follow-ups and contribute to new therapeutic approaches. Serum levels of 51 pro- and anti-inflammatory molecules, including cytokines, chemokines and growth factors, were quantified by a Luminex multiple immune-assay in 53 patients with muscular laminopathy (Musc-LMNA), 10 with non-muscular laminopathy, 22 with other muscular disorders and in 35 healthy controls. Interleukin-17 (IL-17), granulocyte colony-stimulating factor (G-CSF) and transforming growth factor beta (TGF-β2) levels significantly discriminated Musc-LMNA from controls; interleukin-1β (IL-1β), interleukin-4 (IL-4) and interleukin-8 (IL-8) were differentially expressed in Musc-LMNA patients compared to those with non-muscular laminopathies, whereas IL-17 was significantly higher in Musc-LMNA patients with muscular and cardiac involvement. These findings support the hypothesis of a key role of the immune system in Musc-LMNA and emphasize the potential use of cytokines as biomarkers for these disorders.
Collapse
|
10
|
Saccomandi P, Marescaux J, Di Matteo FM, Quero G, Gassino R, Lapergola A, Barberio M, Schena E, Perrone G, Vallan A, Costamagna G. Laser ablation in biliary tree: analysis of the intraductal and superficial thermal effects during the treatment. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:162-165. [PMID: 31945869 DOI: 10.1109/embc.2019.8856313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The treatment of choice for the unresectable cholangiocarcinoma is based on biliary decompression procedures. Despite stent placement is the standard of care, it is related to well-known complications. Hence, alternative techniques were proposed. Ideally, they should guarantee an adequate intraductal disobstruction, without injuring the surrounding tissues.This pre-clinical study aims to investigate the thermal effects of the laser ablation (LA) in the biliary tree, in terms of intraductal and surrounding tissue temperature achieved with different laser settings. The common bile ducts (in their upper and lower portions) of two pigs were ablated for 6 minutes with a diode laser at 3 W and 5 W. A custom-made laser applicator was used to obtain a circumferential ablation within the ducts. The intraductal temperature (Tid) was monitored by means of a fiber Bragg grating (FBG) sensor, while an infrared thermal camera monitored the T distribution in the surrounding tissues (Tsup). A maximum T difference of 65 °C and 57 °C was evidenced between the two power settings for the Tid measured in the upper and lower ducts, respectively. The mean difference between Tid and the averaged Tsup values was evaluated. At 5 W, a difference of 37±3 °C and 44±10 °C were obtained for the upper and lower ducts, respectively. At 3 W, a T difference of 2±1 °C was obtained for the upper biliary duct, while a difference of 8±1 °C was documented for the lower duct. Based on the results obtained in this preliminary study, the possibility to equip the laser probe with temperature sensor can improve the control and the safety of the procedure; this solution will guarantee the monitoring of the treatment while preserving the lumen and the surrounding structures.
Collapse
|
11
|
Zaghini A, Sarli G, Barboni C, Sanapo M, Pellegrino V, Diana A, Linta N, Rambaldi J, D'Apice MR, Murdocca M, Baleani M, Baruffaldi F, Fognani R, Mecca R, Festa A, Papparella S, Paciello O, Prisco F, Capanni C, Loi M, Schena E, Lattanzi G, Squarzoni S. Long term breeding of the Lmna G609G progeric mouse: Characterization of homozygous and heterozygous models. Exp Gerontol 2019; 130:110784. [PMID: 31794853 DOI: 10.1016/j.exger.2019.110784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/26/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022]
Abstract
The transgenic LmnaG609G progeric mouse represents an outstanding animal model for studying the human Hutchinson-Gilford Progeria Syndrome (HGPS) caused by a mutation in the LMNA gene, coding for the nuclear envelope protein Lamin A/C, and, as an important, more general scope, for studying the complex process governing physiological aging in humans. Here we give a comprehensive description of the peculiarities related to the breeding of LmnaG609G mice over a prolonged period of time, and of many features observed in a large colony for a 2-years period. We describe the breeding and housing conditions underlining the possible interference of the genetic background on the phenotype expression. This information represents a useful tool when planning and interpreting studies on the LmnaG609G mouse model, complementing any specific data already reported in the literature about this model since its production. It is also particularly relevant for the heterozygous mouse, which mirrors the genotype of the human pathology however requires an extended time to manifest symptoms and to be carefully studied.
Collapse
|
12
|
Massaroni C, Giurazza F, Tesei M, Schena E, Corvino F, Meneo M, Corletti L, Niola R, Setola R. A Touchless system for image visualization during surgery: preliminary experience in clinical settings. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:5794-5797. [PMID: 30441652 DOI: 10.1109/embc.2018.8513631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Today clinicians may access large medical datasets, but very few systems have been designed to allow a practical and efficient exploration of data directly in critical medical environments such as operating rooms (OR). This work aims to assess during tests in laboratory and clinical settings a Surgery Touchless System (STS). This system allows clinicians to interact with medical images by using two different approaches: a gesture recognition and a voice recognition based system. These two methods are based on the use of a Microsoft Kinect and of a selective microphone, respectively. The STS allows navigating in a specifically designed interface, to perform several tasks, among others, to manipulate biomedical images. In this article, we assessed both the recognitions approaches in laboratory with 5 users. In addition, the STS was tested using only the voice-based recognition approach in clinical settings. The assessment was performed during three procedures by two interventionalradiologists. The five volunteers and the 2 radiologists filled two questionnaires to assess the system. The system usability was positively evaluated in laboratory tests. From clinical trials emerged that the STS was considered safe and useful by both the radiologists: they used the system an averaged number of times of 10 and 15 for patients, and found the system useful. These promising results allow considering this system useful for providing information not otherwise accessible and limiting the impact of human error during the operation. Future work will be focused on the use of the STS on a high number and different types of procedure.
Collapse
|
13
|
Molinaro N, Massaroni C, Lo Presti D, Saccomandi P, Di Tomaso G, Zollo L, Perego P, Andreoni G, Schena E. Wearable textile based on silver plated knitted sensor for respiratory rate monitoring. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:2865-2868. [PMID: 30440999 DOI: 10.1109/embc.2018.8512958] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Wearable systems are gaining broad acceptance for monitoring physiological parameters in several medical applications. Among a number of approaches, smart textiles have attracted interest because they are comfortable and do not impair patients' movements. In this article, we aim at developing a smart textile for respiratory monitoring based on a piezoresistive sensing element. Firstly, the calibration curve of the system and its hysteresis have been investigated. Then, the proposed system has been assessed on 6 healthy subjects. The volunteers were invited to wear the system to monitor their breathing rate. The results of the calibration show a good mean sensitivity (i.e., approximately 0.11V·%-1); although the hysteresis is not negligible, the system can follow the cycles also at high rates (up to 36 cycle·min-1). The feasibility assessment on 6 volunteers (two trials for each one) shows that the proposed system can estimate with good accuracy the breathing rate. Indeed, the results obtained by the proposed system were compared with the ones collected with a spirometer, used as reference. Considering all the experiments, a mean percentage error was approximately 2%. In conclusion, the proposed system has several valuable features (e.g., the sensing element is lightweight, the sensitivity is high, and it is possible to develop comfortable smart textile); in addition, the promising performances considering both metrological properties and assessment on volunteers foster future tests focused on: i) the possibility of developing and system embedding several sensing elements, and ii) to develop a wireless acquisition system, to allow comfortable and long-term acquisition in both patients and during sport activities.
Collapse
|
14
|
Iacoponi S, Massaroni C, Lo Presti D, Saccomandi P, Caponero MA, DrAmato R, Schena E. Polymer-coated fiber optic probe for the monitoring of breathing pattern and respiratory rate. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:1616-1619. [PMID: 30440702 DOI: 10.1109/embc.2018.8512566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In recent years, no-invasive and small size systems are meeting the demand of the new healthcare system, in which the vital signs monitoring is gaining in importance. In this context, Fiber Bragg grating (FBG) sensors are becoming very popular and FBG-based systems could be used for monitoring vital signs. At the same time, FBG could be able to sense chemical parameters by the polymer functionalization. The aim of our study was investigating the ability of a polymer-coated FBG-based probe for monitoring breathing patterns and respiratory rates. We tested the proposed FBG-based probe on 9 healthy volunteers during spirometry, the most common pulmonary function test. Results showed the high accuracy of the proposed probe to detect respiratory rate. The comparison between the respiratory rates estimated by the probe with the ones by the spirometer showed the absolute value of the percentage errors lower than 2.07% (in the 78% of cases <.91%). Lastly, a Bland Altman analysis was performed to compare the instantaneous respiratory rate values gathered by the spirometer and the FBG probe showing the feasibility of breath-by-breath monitoring by the proposed probe. Results showed a bias of 0.06± 2.90 $\mathrm{breaths}\square {\mathrm {min}}^{-1}$. Additionally, our system was able to follow the breathing activities and monitoring the breathing patterns.
Collapse
|
15
|
Bernasconi P, Carboni N, Ricci G, Siciliano G, Politano L, Maggi L, Mongini T, Vercelli L, Rodolico C, Biagini E, Boriani G, Ruggiero L, Santoro L, Schena E, Prencipe S, Evangelisti C, Pegoraro E, Morandi L, Columbaro M, Lanzuolo C, Sabatelli P, Cavalcante P, Cappelletti C, Bonne G, Muchir A, Lattanzi G. Elevated TGF β2 serum levels in Emery-Dreifuss Muscular Dystrophy: Implications for myocyte and tenocyte differentiation and fibrogenic processes. Nucleus 2019; 9:292-304. [PMID: 29693488 PMCID: PMC5973167 DOI: 10.1080/19491034.2018.1467722] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Among rare diseases caused by mutations in LMNA gene, Emery-Dreifuss Muscular Dystrophy type 2 and Limb-Girdle muscular Dystrophy 1B are characterized by muscle weakness and wasting, joint contractures, cardiomyopathy with conduction system disorders. Circulating biomarkers for these pathologies have not been identified. Here, we analyzed the secretome of a cohort of patients affected by these muscular laminopathies in the attempt to identify a common signature. Multiplex cytokine assay showed that transforming growth factor beta 2 (TGF β2) and interleukin 17 serum levels are consistently elevated in the vast majority of examined patients, while interleukin 6 and basic fibroblast growth factor are altered in subgroups of patients. Levels of TGF β2 are also increased in fibroblast and myoblast cultures established from patient biopsies as well as in serum from mice bearing the H222P Lmna mutation causing Emery-Dreifuss Muscular Dystrophy in humans. Both patient serum and fibroblast conditioned media activated a TGF β2-dependent fibrogenic program in normal human myoblasts and tenocytes and inhibited myoblast differentiation. Consistent with these results, a TGF β2 neutralizing antibody avoided fibrogenic marker activation and myogenesis impairment. Cell intrinsic TGF β2-dependent mechanisms were also determined in laminopathic cells, where TGF β2 activated AKT/mTOR phosphorylation. These data show that TGF β2 contributes to the pathogenesis of Emery-Dreifuss Muscular Dystrophy type 2 and Limb-Girdle muscular Dystrophy 1B and can be considered a potential biomarker of those diseases. Further, the evidence of TGF β2 pathogenetic effects in tenocytes provides the first mechanistic insight into occurrence of joint contractures in muscular laminopathies.
Collapse
|
16
|
Pellegrini C, Columbaro M, Schena E, Prencipe S, Andrenacci D, Iozzo P, Angela Guzzardi M, Capanni C, Mattioli E, Loi M, Araujo-Vilar D, Squarzoni S, Cinti S, Morselli P, Giorgetti A, Zanotti L, Gambineri A, Lattanzi G. Altered adipocyte differentiation and unbalanced autophagy in type 2 Familial Partial Lipodystrophy: an in vitro and in vivo study of adipose tissue browning. Exp Mol Med 2019; 51:1-17. [PMID: 31375660 PMCID: PMC6802660 DOI: 10.1038/s12276-019-0289-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/04/2019] [Accepted: 04/16/2019] [Indexed: 01/29/2023] Open
Abstract
Type-2 Familial Partial Lipodystrophy is caused by LMNA mutations. Patients gradually lose subcutaneous fat from the limbs, while they accumulate adipose tissue in the face and neck. Several studies have demonstrated that autophagy is involved in the regulation of adipocyte differentiation and the maintenance of the balance between white and brown adipose tissue. We identified deregulation of autophagy in laminopathic preadipocytes before induction of differentiation. Moreover, in differentiating white adipocyte precursors, we observed impairment of large lipid droplet formation, altered regulation of adipose tissue genes, and expression of the brown adipose tissue marker UCP1. Conversely, in lipodystrophic brown adipocyte precursors induced to differentiate, we noticed activation of autophagy, formation of enlarged lipid droplets typical of white adipocytes, and dysregulation of brown adipose tissue genes. In agreement with these in vitro results indicating conversion of FPLD2 brown preadipocytes toward the white lineage, adipose tissue from FPLD2 patient neck, an area of brown adipogenesis, showed a white phenotype reminiscent of its brown origin. Moreover, in vivo morpho-functional evaluation of fat depots in the neck area of three FPLD2 patients by PET/CT analysis with cold stimulation showed the absence of brown adipose tissue activity. These findings highlight a new pathogenetic mechanism leading to improper fat distribution in lamin A-linked lipodystrophies and show that both impaired white adipocyte turnover and failure of adipose tissue browning contribute to disease. An abnormal distribution of fatty tissues associated with certain tissue disorders is driven by disrupted fat cell differentiation. Type 2 familial partial lipodystrophy (FPLD2) is a genetic condition that results in fat being lost from the limbs and accumulating in the face and neck. Giovanna Lattanzi at the National Research Council of Italy in Bologna and co-workers found that fat cell (adipocyte) precursors did not clearly differentiate into either of the two main fatty tissue types, brown or white, in FPLD2 patients. White adipocyte precursors exhibited impaired lipid formation and abnormal levels of brown tissue markers. Conversely, brown adipocyte precursors showed high lipid levels and increased autophagy, a natural process involving degradation and recycling of cellular components. The neck is normally where brown fat accumulates, but FPLD2 patients had adipocytes there displaying white fat characteristics.
Collapse
|
17
|
Landro MD, Saccomandi P, Barberio M, Schena E, Marescaux MJ, Diana M. Hyperspectral imaging for thermal effect monitoring in in vivo liver during laser ablation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2019:1851-1854. [PMID: 31946258 DOI: 10.1109/embc.2019.8856487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thermal ablation is a minimally invasive technique used to induce a controlled necrosis of malignant cells by increasing the temperature in localized areas. This procedure needs an accurate and real-time monitoring of thermal effects to evaluate and control treatment outcome. In this work, a hyperspectral imaging (HSI) technique is proposed as a new and non-invasive method to monitor ablative therapy. HSI provides images of the target object in several spectral bands, hence the reflectance/absorbance spectrum for each pixel. This paper presents a preliminary and original HSI-based analysis of the thermal state in the in vivo porcine liver undergoing laser ablation. In order to compare the spectral response between treated and untreated areas of the organ, proper Regions of Interest (ROIs) were chosen on the hyperspectral images; for each ROI, the absorbance variation for the selected wavelengths (i.e., 630, 760, and 960nm, for deoxyhemoglobin, methemoglobin, and water respectively) was assessed. Results obtained during and after laser ablation show that the absorbance of the methemoglobin peaks increases up to 40% in the burned region with respect to the non-ablated one. Conversely, the relative change of deoxyhemoglobin and water peaks is less marked. Based on these results, absorbance threshold values were retrieved and used to visualize the ablation zone on the images. This preliminary analysis suggests that a combination of the absorbance information is essential to achieve a more accurate identification of the ablation region. The results encourage further studies on the correlation between thermal effects and the spectral response of biological tissues undergoing thermal ablation, for final clinical use.
Collapse
|
18
|
Jiang Z, Cinti C, Taranta M, Mattioli E, Schena E, Singh S, Khurana R, Lattanzi G, Tsinoremas NF, Capobianco E. Network assessment of demethylation treatment in melanoma: Differential transcriptome-methylome and antigen profile signatures. PLoS One 2018; 13:e0206686. [PMID: 30485296 PMCID: PMC6261551 DOI: 10.1371/journal.pone.0206686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023] Open
Abstract
Background In melanoma, like in other cancers, both genetic alterations and epigenetic underlie the metastatic process. These effects are usually measured by changes in both methylome and transcriptome profiles, whose cross-correlation remains uncertain. We aimed to assess at systems scale the significance of epigenetic treatment in melanoma cells with different metastatic potential. Methods and findings Treatment by DAC demethylation with 5-Aza-2’-deoxycytidine of two melanoma cell lines endowed with different metastatic potential, SKMEL-2 and HS294T, was performed and high-throughput coupled RNA-Seq and RRBS-Seq experiments delivered differential profiles (DiP) of both transcriptomes and methylomes. Methylation levels measured at both TSS and gene body were studied to inspect correlated patterns with wide-spectrum transcript abundance levels quantified in both protein coding and non-coding RNA (ncRNA) regions. The DiP were then mapped onto standard bio-annotation sources (pathways, biological processes) and network configurations were obtained. The prioritized associations for target identification purposes were expected to elucidate the reprogramming dynamics induced by the epigenetic therapy. The interactomic connectivity maps of each cell line were formed to support the analysis of epigenetically re-activated genes. i.e. those supposedly silenced by melanoma. In particular, modular protein interaction networks (PIN) were used, evidencing a limited number of shared annotations, with an example being MAPK13 (cascade of cellular responses evoked by extracellular stimuli). This gene is also a target associated to the PANDAR ncRNA, therapeutically relevant because of its aberrant expression observed in various cancers. Overall, the non-metastatic SKMEL-2 map reveals post-treatment re-activation of a richer pathway landscape, involving cadherins and integrins as signatures of cell adhesion and proliferation. Relatively more lncRNAs were also annotated, indicating more complex regulation patterns in view of target identification. Finally, the antigen maps matched to DiP display other differential signatures with respect to the metastatic potential of the cell lines. In particular, as demethylated melanomas show connected targets that grow with the increased metastatic potential, also the potential target actionability seems to depend to some degree on the metastatic state. However, caution is required when assessing the direct influence of re-activated genes over the identified targets. In light of the stronger treatment effects observed in non-metastatic conditions, some limitations likely refer to in silico data integration tools and resources available for the analysis of tumor antigens. Conclusion Demethylation treatment strongly affects early melanoma progression by re-activating many genes. This evidence suggests that the efficacy of this type of therapeutic intervention is potentially high at the pre-metastatic stages. The biomarkers that can be assessed through antigens seem informative depending on the metastatic conditions, and networks help to elucidate the assessment of possible targets actionability.
Collapse
|
19
|
Carassiti M, Quarta R, Mattei A, Tesei M, Saccomandi P, Massaroni C, Setola R, Schena E. Ex vivo animal-model assessment of a non-invasive system for loss of resistance detection during epidural blockade. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2017:759-762. [PMID: 29059983 DOI: 10.1109/embc.2017.8036935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
During recent decades epidural analgesia has gained widespread recognition in many applications. In this complex procedure, anaesthetist uses a specific needle to inject anesthetic into the epidural space. It is crucial the appropriate insertion of the needle through inhomogeneous tissues placed between the skin and the epidural space to minimize anesthetic-related complications (e.g., nausea, headache, and dural puncture). Usually, anaesthetists perform the procedure without any supporting tools, and stop pushing the syringe when they sense a loss of resistance (LOR). This phenomenon is caused by the physical properties of the epidural space: the needle breaks the ligamentum flavum and reaches the epidural space, in this stage the anaesthetist perceives a LOR because the epidural space is much softer than the ligamentum flavum. To support the clinician in this maneuver we designed a non-invasive system able to detect the LOR by measuring the pressure exerted on the syringe plunger to push the needle up to the epidural space. In a previous work we described the system and its assessment during in vitro tests. This work aims at assessing the feasibility of the system for LOR detection on a more realistic model (ex vivo pig model). The system was assessed by analyzing: its ability to hold a constant value (saturation condition) during the insertion of the needle, and its ability to detect the entrance within the epidural space by a decrease of the system's output. Lastly, the anaesthetist was asked to assess how the ex vivo procedure mimics a clinical scenario. The system reached the saturation condition during the needle insertion; this feature is critical to avoid false positive during the procedure. However, it was not easy to detect the entrance within the epidural space due to its small volume in the animal model. Lastly, the practitioner found real the model, and performed the procedures in a conventional manner because the system did not influence his actions.
Collapse
|
20
|
Gargiuli C, Schena E, Mattioli E, Columbaro M, D'Apice MR, Novelli G, Greggi T, Lattanzi G. Lamins and bone disorders: current understanding and perspectives. Oncotarget 2018; 9:22817-22831. [PMID: 29854317 PMCID: PMC5978267 DOI: 10.18632/oncotarget.25071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/22/2018] [Indexed: 12/31/2022] Open
Abstract
Lamin A/C is a major constituent of the nuclear lamina implicated in a number of genetic diseases, collectively known as laminopathies. The most severe forms of laminopathies feature, among other symptoms, congenital scoliosis, osteoporosis, osteolysis or delayed cranial ossification. Importantly, specific bone districts are typically affected in laminopathies. Spine is severely affected in LMNA-linked congenital muscular dystrophy. Mandible, terminal phalanges and clavicles undergo osteolytic processes in progeroid laminopathies and Restrictive Dermopathy, a lethal developmental laminopathy. This specificity suggests that lamin A/C regulates fine mechanisms of bone turnover, as supported by data showing that lamin A/C mutations activate non-canonical pathways of osteoclastogenesis, as the one dependent on TGF beta 2. Here, we review current knowledge on laminopathies affecting bone and LMNA involvement in bone turnover and highlight lamin-dependent mechanisms causing bone disorders. This knowledge can be exploited to identify new therapeutic approaches not only for laminopathies, but also for other rare diseases featuring bone abnormalities.
Collapse
|
21
|
Cappelli S, Saccomandi P, Massaroni C, Polimadei A, Silvestri S, Caponero MA, Frauenfelder G, Schena E. Magnetic Resonance-compatible needle-like probe based on Bragg grating technology for measuring temperature during Laser Ablation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2015:1287-90. [PMID: 26736503 DOI: 10.1109/embc.2015.7318603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Temperature monitoring in tissue undergone Laser Ablation (LA) may be particularly beneficial to optimize treatment outcome. Among many techniques, fiber Bragg grating (FBG) sensors show valuable characteristics for temperature monitoring in this medical scenario: good sensitivity and accuracy, and immunity from electromagnetic interferences. Their main drawback is the sensitivity to strain, which can entail measurement error for respiratory and patient movements. The aims of this work are the design, the manufacturing and the characterization of a needle-like probe which houses 4 FBGs. Three FBGs have sensitive length of 1 mm and are used as temperature sensors; one FBG with length of 10 mm is used as reference and to sense eventual strain. The optical fiber housing the FBGs was encapsulated within a needle routinely used in clinical practice to perform MRI-guided biopsy. Two materials were used for the encapsulation: i) thermal paste for the 3 FBGs used for temperature monitoring, to maximize the thermal exchange with the needle; ii) epoxy resin for the reference FBG, to improve its sensitivity to strain. The static calibration of the needle-like probe was performed to estimate the thermal sensitivity of each FBG; the step response was investigated to estimate the response time. FBGs 1 mm long have thermal sensitivity of 0.01 nm·°C(-1), whereas the reference FBG presents 0.02 nm·°C(-1). For all FBGs, the response time was in the order of 100 ms. Lastly, experiments were performed on ex vivo swine liver undergoing LA to i) evaluate the possible presence of measurement artifact, due to the direct absorption of laser light by the needle and ii) assess the feasibility of the probe in a quasi clinical scenario.
Collapse
|
22
|
Saccomandi P, Di Matteo FM, Schena E, Quero G, Massaroni C, Giurazza F, Costamagna G, Silvestri S. Tapered fiber optic applicator for laser ablation: Theoretical and experimental assessment of thermal effects on ex vivo model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:4529-4532. [PMID: 29060904 DOI: 10.1109/embc.2017.8037863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Laser Ablation (LA) is a minimally invasive technique for tumor removal. The laser light is guided into the target tissue by a fiber optic applicator; thus the physical features of the applicator tip strongly influence size and shape of the tissue lesion. This study aims to verify the geometry of the lesion achieved by a tapered-tip applicator, and to investigate the percentage of thermally damaged cells induced by the tapered-tip fiber optic applicator. A theoretical model was implemented to simulate: i) the distribution of laser light fluence rate in the tissue through Monte Carlo method, ii) the induced temperature distribution, by means of the Bio Heat Equation, iii) the tissue injury, by Arrhenius integral. The results obtained by the implementation of the theoretical model were experimentally assessed. Ex vivo porcine liver underwent LA with tapered-tip applicator, at different laser settings (laser power of 1 W and 1.7 W, deposited energy equal to 330 J and 500 J, respectively). Almost spherical volume lesions were produced. The thermal damage was assessed by measuring the diameter of the circular-shaped lesion. The comparison between experimental results and theoretical prediction shows that the thermal damage discriminated by visual inspection always corresponds to a percentage of damaged cells of 96%. A tapered-tip applicator allows obtaining localized and reproducible damage close to spherical shape, whose diameter is related to the laser settings, and the simple theoretical model described is suitable to predict the effects, in terms of thermal damage, on ex vivo liver. Further trials should be addressed to adapt the model also on in vivo tissue, aiming to develop a tool useful to support the physician in clinical application of LA.
Collapse
|
23
|
Massaroni C, Schena E, Silvestri S. Temperature influence on the response at low airflow of a variable orifice flowmeter. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:881-884. [PMID: 29060013 DOI: 10.1109/embc.2017.8036965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In mechanical ventilation, in particular when neonates are ventilated, it is crucial to accurately control the amount of the gas delivered to the patients. Mechanical ventilators are equipped with one of more flowmeters. The signal of the flowmeter is used as feedback to control the amount of gas delivered to the patients. Therefore, the accuracy of the flowmeter plays a crucial role in the accurate adjustment of the gas amount delivered by the ventilator. Among several solutions, variable area orifice meters (VAOMs) have several valuable features (e.g., good accuracy, and adequate frequency response), moreover they have the main advantage, with respect to orifice meters, related to the linearity of the response. Despite of their spread in this field, there are not studies focused on the analysis of the air temperature influence on VAOMs response. This study focuses on this topic by investigating the gas temperature influence on the response of a commercial VAOM. Experiments have been performed at low airflow (up to 1.5 L·min-1) and at four different temperatures (i.e., from 22°C to 38°C) covering the range of interest in the field of artificial ventilation. Results show that the response of the VAOM under test is sensitive to temperature: at constant airflow the higher the temperature the higher the sensor output. This analysis may be useful to add correction to sensor output in order to reject the influence of temperature, so to minimize the measurement error due to this factor.
Collapse
|
24
|
Lo Presti D, Massaroni C, Saccomandi P, Caponero MA, Formica D, Schena E. A wearable textile for respiratory monitoring: Feasibility assessment and analysis of sensors position on system response. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:4423-4426. [PMID: 29060878 DOI: 10.1109/embc.2017.8037837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The interest on wearable textiles to monitor vital signs is growing in the research field and clinical scenario related to the increasing demands of long-term monitoring. Despite several smart textile-based solutions have been proposed for assessing the respiratory status, only a limited number of devices allow the respiratory monitoring in a harsh environment or in different positions of the human body. In this paper, we investigated the performances of a smart textile for respiratory rate monitoring characterized by 12 fiber optic sensors (i.e., fiber Bragg grating) placed on specific landmarks for compartmental analysis of the chest wall movements during quiet breathing. We focused on the analysis of the influence of sensor position on both peak-to-peak amplitude of sensors output and accuracy of respiratory rate measurements. This analysis was performed on two participants, who wore the textile in two positions (i.e., standing and supine). Bland-Altman analysis on respiratory rate showed promising results (better than 0.3 breaths per minute). Referring to the peak-to-peak output amplitude, the abdomen compartment showed the highest excursions in both the enrolled participants and positions. Our findings open up new approaches to design and develop smart textile for respiratory rate monitoring.
Collapse
|
25
|
Saccomandi P, Schena E, Caponero MA, Gassino R, Hernandez J, Perrone G, Vallan A, Diana M, Costamagna G, Marescaux J. Novel carbon fiber probe for temperature monitoring during thermal therapies. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:873-876. [PMID: 29060011 DOI: 10.1109/embc.2017.8036963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thermal treatments are a valid clinical option in the management of several solid tumors. The difficulties to perform an accurate prediction improve the selectivity of the treatment effects represent the main hurdles in the spread of these techniques. Among other solutions, thermometric techniques are gaining acceptance in monitoring the effects of thermal treatments because they provide a clear end-point to obtain the complete removal of cancer without damaging the surrounding healthy tissue. This paper proposes a custom needle-like probe made of carbon fibers to embed seven fiber Bragg grating (FBG) sensors. This tool aims at a multiple points monitoring the tissue temperature during the thermal procedures, streamlining the FBG sensors insertion within the organ. After the description of the probe manufacturing, we reported the calibration of the seven sensors embedded within the probe, their step response, and the feasibility assessment of the probe for temperature monitoring during laser ablation on animal model (both in vivo and ex vivo). Results show that the proposed probe is easily maneuverable by the clinician, the sensors have a linear response with the temperature and a short step response; moreover, the probe allows measuring the temperature in seven points of the tissue; finally, it can be used during CTand MR-guided procedures without causing any artifact to the images. Thanks to these features the probe may be an useful solution to improve the safety and the outcomes of minimally invasive thermal ablation procedures, so to spread these procedures in the clinical field.
Collapse
|