1
|
Lundy P, Barkley A, Rahman AKMF, Arynchyna-Smith A, Thrower J, Stewart A, Dziugan K, Lam S, Hall K, Hauptman J, Shrestha K, Staulcup S, Hankinson TC, Best B, Kim I, Yea J, Weber-Levine C, Jackson EM, Park C, Sexton D, Thompson EM, Slingerland AL, Papadakis J, Pricola Fehnel K, Wisor-Martinez S, Bauer DF, Akbari SHA, Rocque BG. Pediatric CSF diversion procedures for treatment of hydrocephalus during the COVID-19 pandemic. J Neurosurg Pediatr 2024:1-7. [PMID: 39393095 DOI: 10.3171/2024.7.peds24249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/29/2024] [Indexed: 10/13/2024]
Abstract
OBJECTIVE Because there is not a link between COVID-19 and pediatric hydrocephalus, the COVID-19 pandemic should not have altered the incidence of pediatric hydrocephalus or the rate of CSF diversion procedures or shunt failure. Therefore, hydrocephalus-related surgical volume should have remained constant. The goal of this study was to evaluate the rates of hydrocephalus surgeries in the COVID-19 era compared with the baseline pre-COVID-19 era. METHODS Ten institutions collected information about all hydrocephalus-related surgeries performed between March 2018 and February 2022. The period after March 1, 2020, was considered the COVID-19 era; the period prior to this date was considered the baseline pre-COVID era. Four COVID surge periods were defined using the New York Times COVID-19 database. Total case volumes were compared between the COVID era and baseline, both overall and for each surge period. Sex, race, ethnicity, insurance status, Area Deprivation Index (ADI), and rural-urban commuter area were collected for each surgery. Proportions of patients were then compared overall and for each surge based on these variables. RESULTS Of 8056 procedures, 54% were in male patients (n = 4375), 65% in White patients (n = 5247), 18% in Hispanic patients (n = 1423), and 54% in patients with public insurance (n = 4371). There was no change in the number of surgeries per site per month in the COVID era compared with baseline (16.7 vs 17.9, p = 0.113). However, there was a significant decrease in the first surge period (April 2020; 11.5 vs 17.7, p = 0.034). Male sex (p < 0.0039) and Black race (p < 0.001) were found to be associated with a significantly higher proportion of hydrocephalus procedures during the COVID-19 era. Some surge periods showed different proportions of privately insured patient and ADI levels. However, these relationships were inconsistent between surges. CONCLUSIONS Overall average monthly case numbers were not significantly different between the pre-COVID and COVID eras. There was a significant decrease in hydrocephalus surgery during the first COVID surge. More hydrocephalus surgeries were performed in children of male sex and Black race proportionally during the COVID period overall, but not during individual surges.
Collapse
|
2
|
Johnston MJ, Lee JJY, Hu B, Nikolic A, Hasheminasabgorji E, Baguette A, Paik S, Chen H, Kumar S, Chen CCL, Jessa S, Balin P, Fong V, Zwaig M, Michealraj KA, Chen X, Zhang Y, Varadharajan S, Billon P, Juretic N, Daniels C, Rao AN, Giannini C, Thompson EM, Garami M, Hauser P, Pocza T, Ra YS, Cho BK, Kim SK, Wang KC, Lee JY, Grajkowska W, Perek-Polnik M, Agnihotri S, Mack S, Ellezam B, Weil A, Rich J, Bourque G, Chan JA, Yong VW, Lupien M, Ragoussis J, Kleinman C, Majewski J, Blanchette M, Jabado N, Taylor MD, Gallo M. TULIPs decorate the three-dimensional genome of PFA ependymoma. Cell 2024; 187:4926-4945.e22. [PMID: 38986619 DOI: 10.1016/j.cell.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/26/2022] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Posterior fossa group A (PFA) ependymoma is a lethal brain cancer diagnosed in infants and young children. The lack of driver events in the PFA linear genome led us to search its 3D genome for characteristic features. Here, we reconstructed 3D genomes from diverse childhood tumor types and uncovered a global topology in PFA that is highly reminiscent of stem and progenitor cells in a variety of human tissues. A remarkable feature exclusively present in PFA are type B ultra long-range interactions in PFAs (TULIPs), regions separated by great distances along the linear genome that interact with each other in the 3D nuclear space with surprising strength. TULIPs occur in all PFA samples and recur at predictable genomic coordinates, and their formation is induced by expression of EZHIP. The universality of TULIPs across PFA samples suggests a conservation of molecular principles that could be exploited therapeutically.
Collapse
|
3
|
Lee EH, Han M, Wright J, Kuwabara M, Mevorach J, Fu G, Choudhury O, Ratan U, Zhang M, Wagner MW, Goetti R, Toescu S, Perreault S, Dogan H, Altinmakas E, Mohammadzadeh M, Szymanski KA, Campen CJ, Lai H, Eghbal A, Radmanesh A, Mankad K, Aquilina K, Said M, Vossough A, Oztekin O, Ertl-Wagner B, Poussaint T, Thompson EM, Ho CY, Jaju A, Curran J, Ramaswamy V, Cheshier SH, Grant GA, Wong SS, Moseley ME, Lober RM, Wilms M, Forkert ND, Vitanza NA, Miller JH, Prolo LM, Yeom KW. An international study presenting a federated learning AI platform for pediatric brain tumors. Nat Commun 2024; 15:7615. [PMID: 39223133 PMCID: PMC11368946 DOI: 10.1038/s41467-024-51172-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
While multiple factors impact disease, artificial intelligence (AI) studies in medicine often use small, non-diverse patient cohorts due to data sharing and privacy issues. Federated learning (FL) has emerged as a solution, enabling training across hospitals without direct data sharing. Here, we present FL-PedBrain, an FL platform for pediatric posterior fossa brain tumors, and evaluate its performance on a diverse, realistic, multi-center cohort. Pediatric brain tumors were targeted due to the scarcity of such datasets, even in tertiary care hospitals. Our platform orchestrates federated training for joint tumor classification and segmentation across 19 international sites. FL-PedBrain exhibits less than a 1.5% decrease in classification and a 3% reduction in segmentation performance compared to centralized data training. FL boosts segmentation performance by 20 to 30% on three external, out-of-network sites. Finally, we explore the sources of data heterogeneity and examine FL robustness in real-world scenarios with data imbalances.
Collapse
|
4
|
Regal JA, Guerra García ME, Jain V, Chandramohan V, Ashley DM, Gregory SG, Thompson EM, López GY, Reitman ZJ. Publisher Correction: Ganglioglioma deep transcriptomics reveals primitive neuroectoderm neural precursor‑like population. Acta Neuropathol Commun 2024; 12:107. [PMID: 38937835 PMCID: PMC11209961 DOI: 10.1186/s40478-024-01788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
|
5
|
Plessy C, Mansfield MJ, Bliznina A, Masunaga A, West C, Tan Y, Liu AW, Grašič J, Del Río Pisula MS, Sánchez-Serna G, Fabrega-Torrus M, Ferrández-Roldán A, Roncalli V, Navratilova P, Thompson EM, Onuma T, Nishida H, Cañestro C, Luscombe NM. Extreme genome scrambling in marine planktonic Oikopleura dioica cryptic species. Genome Res 2024; 34:426-440. [PMID: 38621828 PMCID: PMC11067885 DOI: 10.1101/gr.278295.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
Genome structural variations within species are rare. How selective constraints preserve gene order and chromosome structure is a central question in evolutionary biology that remains unsolved. Our sequencing of several genomes of the appendicularian tunicate Oikopleura dioica around the globe reveals extreme genome scrambling caused by thousands of chromosomal rearrangements, although showing no obvious morphological differences between these animals. The breakpoint accumulation rate is an order of magnitude higher than in ascidian tunicates, nematodes, Drosophila, or mammals. Chromosome arms and sex-specific regions appear to be the primary unit of macrosynteny conservation. At the microsyntenic level, scrambling did not preserve operon structures, suggesting an absence of selective pressure to maintain them. The uncoupling of the genome scrambling with morphological conservation in O. dioica suggests the presence of previously unnoticed cryptic species and provides a new biological system that challenges our previous vision of speciation in which similar animals always share similar genome structures.
Collapse
|
6
|
Barkley A, Butler E, Park C, Friedman A, Landi D, Ashley DM, Bigner D, Bernstock JD, Friedman GK, Johnston JM, Thompson EM. The safety and accuracy of intratumoral catheter placement to infuse viral immunotherapies in children with malignant brain tumors: a multi-institutional study. J Neurosurg Pediatr 2024; 33:359-366. [PMID: 38215438 PMCID: PMC10810678 DOI: 10.3171/2023.12.peds23404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
OBJECTIVE Relatively little is known about the safety and accuracy of catheter placement for oncolytic viral therapy in children with malignant brain tumors. Accordingly, this study combines data from two phase I clinical trials that employed viral immunotherapy across two institutions to describe the adverse event profile, safety, and accuracy associated with the stereotactic placement and subsequent removal of intratumoral catheters. METHODS Children with progressive/recurrent supratentorial malignant tumors were enrolled in two clinical trials (NCT03043391 and NCT02457845) and treated with either the recombinant polio:rhinovirus (lerapolturev) or the genetically modified oncolytic herpesvirus (G207). Age, sex, race, tumor diagnosis, and tumor location were analyzed. Events related to the catheter placement or removal were categorized. A catheter that was either pulled back or could not be used was defined as "misplaced." Neuronavigation software was used to analyze the accuracy of catheter placement for NCT03043391. Descriptive statistics were performed. RESULTS Nineteen patients were treated across the two completed trials with a total of 49 catheters. The mean ± SD (range) age was 14.1 ± 3.6 (7-19) years. All tumors were grade 3 or 4 gliomas. Nonlobar catheter tip placement included the corpus callosum, thalamus, insula, and cingulate gyrus. Six of 19 patients (31.6%) had minor hemorrhage noted on CT; however, no patients were symptomatic and/or required intervention related to these findings. One of 19 patients had a delayed CSF leak after catheter removal that required oversewing of the surgical site. No patients developed infection or a neurological deficit. In 7 patients with accuracy data, the mean ± SD distance of the planned trajectory (PT) to the catheter tip was 1.57 ± 1.6 mm, the mean angle of the PT to the catheter was 2.43° ± 2.1°, and the greatest distance of PT to the catheter in the parallel plane was 1.54 ± 1.5 mm. Three of 49 (6.1%) catheters were considered misplaced. CONCLUSIONS Although instances of minor hemorrhage were encountered, they were clinically asymptomatic. One of 49 catheters required intervention for a CSF leak. Congruent with previous studies in the literature, the stereotactic placement of catheters in these pediatric tumor patients was accurate with approximately 95% of catheters having been adequately placed.
Collapse
|
7
|
Bürgi P, Thompson EM, Allstadt KE, Murray KD, Mason HB, Ahdi SK, Katzenstein D. The influence of anthropogenic regulation and evaporite dissolution on earthquake-triggered ground failure. Nat Commun 2024; 15:2114. [PMID: 38459018 PMCID: PMC10923926 DOI: 10.1038/s41467-024-46335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/23/2024] [Indexed: 03/10/2024] Open
Abstract
Remote sensing observations of Searles Lake following the 2019 moment magnitude 7.1 Ridgecrest, California, earthquake reveal an area where surface ejecta is arranged in a repeating hexagonal pattern that is collocated with a solution-mining operation. By analyzing geologic and geotechnical data, here we show that the hexagonal surface ejecta is likely not a result of liquefaction. Instead, we propose dissolution cavity collapse (DCC) as an alternative driving mechanism. We support this theory with pre-event Interferometric Synthetic Aperture Radar data, which reveals differential subsidence patterns and the creation of subsurface void space. We also find that DCC is likely triggered at a lower shaking threshold than classical liquefaction. This and other unknown mechanisms can masquerade as liquefaction, introducing bias into liquefaction prediction models that rely on liquefaction inventories. This paper also highlights the opportunities and drawbacks of using remote sensing data to disentangle the complex factors that influence earthquake-triggered ground failure.
Collapse
|
8
|
Venkatraman V, Harward SC, Bhasin S, Calderon K, Atkins SL, Liu B, Lee HJ, Chow SC, Fuchs HE, Thompson EM. Ratios of head circumference to ventricular size vary over time and predict eventual need for CSF diversion in intraventricular hemorrhage of prematurity. Childs Nerv Syst 2024; 40:673-684. [PMID: 37812266 PMCID: PMC10922544 DOI: 10.1007/s00381-023-06176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE Intraventricular hemorrhage (IVH) of prematurity can lead to hydrocephalus, sometimes necessitating permanent cerebrospinal fluid (CSF) diversion. We sought to characterize the relationship between head circumference (HC) and ventricular size in IVH over time to evaluate the clinical utility of serial HC measurements as a metric in determining the need for CSF diversion. METHODS We included preterm infants with IVH born between January 2000 and May 2020. Three measures of ventricular size were obtained: ventricular index (VI), Evan's ratio (ER), and frontal occipital head ratio (FOHR). The Pearson correlations (r) between the initial (at birth) paired measurements of HC and ventricular size were reported. Multivariable longitudinal regression models were fit to examine the HC:ventricle size ratio, adjusting for the age of the infant, IVH grade (I/II vs. III/IV), need for CSF diversion, and sex. RESULTS A total of 639 patients with an average gestational age of 27.5 weeks were included. IVH grade I/II and grade III/IV patients had a positive correlation between initial HC and VI (r = 0.47, p < 0.001 and r = 0.48, p < 0.001, respectively). In our longitudinal models, patients with a low-grade IVH (I/II) had an HC:VI ratio 0.52 higher than those with a high-grade IVH (p-value < 0.001). Patients with low-grade IVH had an HC:ER ratio 12.94 higher than those with high-grade IVH (p-value < 0.001). Patients with low-grade IVH had a HC:FOHR ratio 12.91 higher than those with high-grade IVH (p-value < 0.001). Infants who did not require CSF diversion had an HC:VI ratio 0.47 higher than those who eventually did (p < 0.001). Infants without CSF diversion had an HC:ER ratio 16.53 higher than those who received CSF diversion (p < 0.001). Infants without CSF diversion had an HC:FOHR ratio 15.45 higher than those who received CSF diversion (95% CI (11.34, 19.56), p < 0.001). CONCLUSIONS There is a significant difference in the ratio of HC:VI, HC:ER, and HC:FOHR size between patients with high-grade IVH and low-grade IVH. Likewise, there is a significant difference in HC:VI, HC:ER, and HC:FOHR between those who did and did not have CSF diversion. The routine assessments of both head circumference and ventricle size by ultrasound are important clinical tools in infants with IVH of prematurity.
Collapse
|
9
|
Thompson EM, Kang KD, Stevenson K, Zhang H, Gromeier M, Ashley D, Brown M, Friedman GK. Elucidating cellular response to treatment with viral immunotherapies in pediatric high-grade glioma and medulloblastoma. Transl Oncol 2024; 40:101875. [PMID: 38183802 PMCID: PMC10809117 DOI: 10.1016/j.tranon.2024.101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024] Open
Abstract
HSV G207, a double-stranded, DNA virus, and the polio:rhinovirus chimera, PVSRIPO, a single positive-strand RNA virus, are viral immunotherapies being used to treat pediatric malignant brain tumors in clinical trials. The purpose of this work is to elucidate general response patterns and putative biomarkers of response. Multiple pediatric high-grade glioma and medulloblastoma cell lines were treated with various multiplicities of infection of G207 or PVSRIPO. There was a significant inverse correlation between expression of one HSV cellular receptor, CD111, and the lethal dose of 50% of cells (LD50) of cells treated with G207 (r = -0.985, P<0.001) but no correlation between PVSRIPO cellular receptor expression (CD155) and LD50. RNA sequencing of control cells and cells treated for 8 and 24 h revealed that there were few shared differentially expressed (DE) genes between cells treated with PVSRIPO and G207: GCLM, LANCL2, and RBM3 were enriched whilst ADAMTS1 and VEGFA were depleted. Likewise, there were few shared DE genes enriched between medulloblastoma and high-grade glioma cell lines treated with G207: GPSM2, CHECK2, SEPTIN2, EIF4G2, GCLM, GDAP1, LANCL2, and PWP1. Treatment with G207 and PVSRIPO appear to cause disparate gene enrichment and depletion suggesting disparate molecular mechanisms in malignant pediatric brain tumors.
Collapse
|
10
|
Taucher J, Lechtenbörger AK, Bouquet JM, Spisla C, Boxhammer T, Minutolo F, Bach LT, Lohbeck KT, Sswat M, Dörner I, Ismar-Rebitz SMH, Thompson EM, Riebesell U. The appendicularian Oikopleura dioica can enhance carbon export in a high CO 2 ocean. GLOBAL CHANGE BIOLOGY 2024; 30:e17020. [PMID: 37947122 DOI: 10.1111/gcb.17020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 11/12/2023]
Abstract
Gelatinous zooplankton are increasingly recognized to play a key role in the ocean's biological carbon pump. Appendicularians, a class of pelagic tunicates, are among the most abundant gelatinous plankton in the ocean, but it is an open question how their contribution to carbon export might change in the future. Here, we conducted an experiment with large volume in situ mesocosms (~55-60 m3 and 21 m depth) to investigate how ocean acidification (OA) extreme events affect food web structure and carbon export in a natural plankton community, particularly focusing on the keystone species Oikopleura dioica, a globally abundant appendicularian. We found a profound influence of O. dioica on vertical carbon fluxes, particularly during a short but intense bloom period in the high CO2 treatment, during which carbon export was 42%-64% higher than under ambient conditions. This elevated flux was mostly driven by an almost twofold increase in O. dioica biomass under high CO2 . This rapid population increase was linked to enhanced fecundity (+20%) that likely resulted from physiological benefits of low pH conditions. The resulting competitive advantage of O. dioica resulted in enhanced grazing on phytoplankton and transfer of this consumed biomass into sinking particles. Using a simple carbon flux model for O. dioica, we estimate that high CO2 doubled the carbon flux of discarded mucous houses and fecal pellets, accounting for up to 39% of total carbon export from the ecosystem during the bloom. Considering the wide geographic distribution of O. dioica, our findings suggest that appendicularians may become an increasingly important vector of carbon export with ongoing OA.
Collapse
|
11
|
Feng H, Thompson EM. Functional specialization of Aurora kinase homologs during oogenic meiosis in the tunicate Oikopleura dioica. Front Cell Dev Biol 2023; 11:1323378. [PMID: 38130951 PMCID: PMC10733467 DOI: 10.3389/fcell.2023.1323378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
A single Aurora kinase found in non-vertebrate deuterostomes is assumed to represent the ancestor of vertebrate Auroras A/B/C. However, the tunicate Oikopleura dioica, a member of the sister group to vertebrates, possesses two Aurora kinases (Aurora1 and Aurora2) that are expressed in proliferative cells and reproductive organs. Previously, we have shown that Aurora kinases relocate from organizing centers to meiotic nuclei and were enriched on centromeric regions as meiosis proceeds to metaphase I. Here, we assessed their respective functions in oogenic meiosis using dsRNA interferences. We found that Aurora1 (Aur1) was involved in meiotic spindle organization and chromosome congression, probably through the regulation of microtubule dynamics, whereas Aurora2 (Aur2) was crucial for chromosome condensation and meiotic spindle assembly. In vitro kinase assays showed that Aur1 and Aur2 had comparable levels of kinase activities. Using yeast two-hybrid library screening, we identified a few novel interaction proteins for Aur1, including c-Jun-amino-terminal kinase-interacting protein 4, cohesin loader Scc2, and mitochondrial carrier homolog 2, suggesting that Aur1 may have an altered interaction network and participate in the regulation of microtubule motors and cohesin complexes in O. dioica.
Collapse
|
12
|
Oskarsdotter K, Nordgård CT, Apelgren P, Säljö K, Solbu AA, Eliasson E, Sämfors S, Sætrang HEM, Asdahl LC, Thompson EM, Troedsson C, Simonsson S, Strand BL, Gatenholm P, Kölby L. Injectable In Situ Crosslinking Hydrogel for Autologous Fat Grafting. Gels 2023; 9:813. [PMID: 37888386 PMCID: PMC10606883 DOI: 10.3390/gels9100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Autologous fat grafting is hampered by unpredictable outcomes due to high tissue resorption. Hydrogels based on enzymatically pretreated tunicate nanocellulose (ETC) and alginate (ALG) are biocompatible, safe, and present physiochemical properties capable of promoting cell survival. Here, we compared in situ and ex situ crosslinking of ETC/ALG hydrogels combined with lipoaspirate human adipose tissue (LAT) to generate an injectable formulation capable of retaining dimensional stability in vivo. We performed in situ crosslinking using two different approaches; inducing Ca2+ release from CaCO3 microparticles (CMPs) and physiologically available Ca2+ in vivo. Additionally, we generated ex situ-crosslinked, 3D-bioprinted hydrogel-fat grafts. We found that in vitro optimization generated a CMP-crosslinking system with comparable stiffness to ex situ-crosslinked gels. Comparison of outcomes following in vivo injection of each respective crosslinked hydrogel revealed that after 30 days, in situ crosslinking generated fat grafts with less shape retention than 3D-bioprinted constructs that had undergone ex situ crosslinking. However, CMP addition improved fat-cell distribution and cell survival relative to grafts dependent on physiological Ca2+ alone. These findings suggested that in situ crosslinking using CMP might promote the dimensional stability of injectable fat-hydrogel grafts, although 3D bioprinting with ex situ crosslinking more effectively ensured proper shape stability in vivo.
Collapse
|
13
|
Thompson EM, Landi D, Brown MC, Friedman HS, McLendon R, Herndon JE, Buckley E, Bolognesi DP, Lipp E, Schroeder K, Becher OJ, Friedman AH, McKay Z, Walter A, Threatt S, Jaggers D, Desjardins A, Gromeier M, Bigner DD, Ashley DM. Recombinant polio-rhinovirus immunotherapy for recurrent paediatric high-grade glioma: a phase 1b trial. THE LANCET. CHILD & ADOLESCENT HEALTH 2023; 7:471-478. [PMID: 37004712 PMCID: PMC11104482 DOI: 10.1016/s2352-4642(23)00031-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Outcomes of recurrent paediatric high-grade glioma are poor, with a median overall survival of less than 6 months. Viral immunotherapy, such as the polio-rhinovirus chimera lerapolturev, is a novel approach for treatment of recurrent paediatric high-grade glioma and has shown promise in adults with recurrent glioblastoma. The poliovirus receptor CD155 is ubiquitously expressed in malignant paediatric brain tumours and is a treatment target in paediatric high-grade glioma. We aimed to assess the safety of lerapolturev when administered as a single dose intracerebrally by convection enhanced delivery in children and young people with recurrent WHO grade 3 or grade 4 glioma, and to assess overall survival in these patients. METHODS This phase 1b trial was done at the Duke University Medical Center (Durham, NC, USA). Patients aged 4-21 years with recurrent high-grade malignant glioma (anaplastic astrocytoma, glioblastoma, anaplastic oligoastrocytoma, anaplastic oligodendroglioma, or anaplastic pleomorphic xanthoastrocytoma) or anaplastic ependymoma, atypical teratoid rhabdoid tumour, or medulloblastoma with infusible disease were eligible for this study. A catheter was tunnelled beneath the scalp for a distance of at least 5 cm to aid in prevention of infection. The next day, lerapolturev at a dose of 5 × 107 median tissue culture infectious dose in 3 mL infusate loaded in a syringe was administered via a pump at a rate of 0·5 mL per h as a one-time dose. The infusion time was approximately 6·5 h to compensate for volume of the tubing. The primary endpoint was the proportion of patients with unacceptable toxic effects during the 14-day period after lerapolturev treatment. The study is registered with ClinicalTrials.gov, NCT03043391. FINDINGS Between Dec 5, 2017, and May 12, 2021, 12 patients (11 unique patients) were enrolled in the trial. Eight patients were treated with lerapolturev. The median patient age was 16·5 years (IQR 11·0-18·0), five (63%) of eight patients were male and three (38%) were female, and six (75%) of eight patients were White and two (25%) were Black or African American. The median number of previous chemotherapeutic regimens was 3·50 (IQR 1·25-5·00). Six of eight patients had 26 treatment-related adverse events attributable to lerapolturev. There were no irreversible (ie, persisted longer than 2 weeks) treatment-related grade 4 adverse events or deaths. Treatment-related grade 3 adverse events included headaches in two patients and seizure in one patient. Four patients received low-dose bevacizumab on-study for treatment-related peritumoural inflammation or oedema, diagnosed by both clinical symptoms plus fluid-attenuated inversion recovery MRI. The median overall survival was 4·1 months (95% CI 1·2-10·1). One patient remains alive after 22 months. INTERPRETATION Convection enhanced delivery of lerapolturev is safe enough in the treatment of recurrent paediatric high-grade glioma to proceed to the next phase of trial. FUNDING Solving Kids Cancer, B+ Foundation, Musella Foundation, and National Institutes of Health.
Collapse
|
14
|
Regal JA, Guerra García ME, Jain V, Chandramohan V, Ashley DM, Gregory SG, Thompson EM, López GY, Reitman ZJ. Ganglioglioma deep transcriptomics reveals primitive neuroectoderm neural precursor-like population. Acta Neuropathol Commun 2023; 11:50. [PMID: 36966348 PMCID: PMC10039537 DOI: 10.1186/s40478-023-01548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/06/2023] [Indexed: 03/27/2023] Open
Abstract
Gangliogliomas are brain tumors composed of neuron-like and macroglia-like components that occur in children and young adults. Gangliogliomas are often characterized by a rare population of immature astrocyte-appearing cells expressing CD34, a marker expressed in the neuroectoderm (neural precursor cells) during embryogenesis. New insights are needed to refine tumor classification and to identify therapeutic approaches. We evaluated five gangliogliomas with single nucleus RNA-seq, cellular indexing of transcriptomes and epitopes by sequencing, and/or spatially-resolved RNA-seq. We uncovered a population of CD34+ neoplastic cells with mixed neuroectodermal, immature astrocyte, and neuronal markers. Gene regulatory network interrogation in these neuroectoderm-like cells revealed control of transcriptional programming by TCF7L2/MEIS1-PAX6 and SOX2, similar to that found during neuroectodermal/neural development. Developmental trajectory analyses place neuroectoderm-like tumor cells as precursor cells that give rise to neuron-like and macroglia-like neoplastic cells. Spatially-resolved transcriptomics revealed a neuroectoderm-like tumor cell niche with relative lack of vascular and immune cells. We used these high resolution results to deconvolute clinically-annotated transcriptomic data, confirming that CD34+ cell-associated gene programs associate with gangliogliomas compared to other glial brain tumors. Together, these deep transcriptomic approaches characterized a ganglioglioma cellular hierarchy-confirming CD34+ neuroectoderm-like tumor precursor cells, controlling transcription programs, cell signaling, and associated immune cell states. These findings may guide tumor classification, diagnosis, prognostication, and therapeutic investigations.
Collapse
|
15
|
Arocho-Quinones EV, Lew SM, Handler MH, Tovar-Spinoza Z, Smyth MD, Bollo RJ, Donahue D, Perry MS, Levy M, Gonda D, Mangano FT, Kennedy BC, Storm PB, Price AV, Couture DE, Oluigbo C, Duhaime AC, Barnett GH, Muh CR, Sather MD, Fallah A, Wang AC, Bhatia S, Eastwood D, Tarima S, Graber S, Huckins S, Hafez D, Rumalla K, Bailey L, Shandley S, Roach A, Alexander E, Jenkins W, Tsering D, Price G, Meola A, Evanoff W, Thompson EM, Brandmeir N. Magnetic resonance imaging-guided stereotactic laser ablation therapy for the treatment of pediatric epilepsy: a retrospective multiinstitutional study. J Neurosurg Pediatr 2023:1-14. [PMID: 36883640 PMCID: PMC10193482 DOI: 10.3171/2022.12.peds22282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/30/2022] [Indexed: 03/09/2023]
Abstract
OBJECTIVE The authors of this study evaluated the safety and efficacy of stereotactic laser ablation (SLA) for the treatment of drug-resistant epilepsy (DRE) in children. METHODS Seventeen North American centers were enrolled in the study. Data for pediatric patients with DRE who had been treated with SLA between 2008 and 2018 were retrospectively reviewed. RESULTS A total of 225 patients, mean age 12.8 ± 5.8 years, were identified. Target-of-interest (TOI) locations included extratemporal (44.4%), temporal neocortical (8.4%), mesiotemporal (23.1%), hypothalamic (14.2%), and callosal (9.8%). Visualase and NeuroBlate SLA systems were used in 199 and 26 cases, respectively. Procedure goals included ablation (149 cases), disconnection (63), or both (13). The mean follow-up was 27 ± 20.4 months. Improvement in targeted seizure type (TST) was seen in 179 (84.0%) patients. Engel classification was reported for 167 (74.2%) patients; excluding the palliative cases, 74 (49.7%), 35 (23.5%), 10 (6.7%), and 30 (20.1%) patients had Engel class I, II, III, and IV outcomes, respectively. For patients with a follow-up ≥ 12 months, 25 (51.0%), 18 (36.7%), 3 (6.1%), and 3 (6.1%) had Engel class I, II, III, and IV outcomes, respectively. Patients with a history of pre-SLA surgery related to the TOI, a pathology of malformation of cortical development, and 2+ trajectories per TOI were more likely to experience no improvement in seizure frequency and/or to have an unfavorable outcome. A greater number of smaller thermal lesions was associated with greater improvement in TST. Thirty (13.3%) patients experienced 51 short-term complications including malpositioned catheter (3 cases), intracranial hemorrhage (2), transient neurological deficit (19), permanent neurological deficit (3), symptomatic perilesional edema (6), hydrocephalus (1), CSF leakage (1), wound infection (2), unplanned ICU stay (5), and unplanned 30-day readmission (9). The relative incidence of complications was higher in the hypothalamic target location. Target volume, number of laser trajectories, number or size of thermal lesions, or use of perioperative steroids did not have a significant effect on short-term complications. CONCLUSIONS SLA appears to be an effective and well-tolerated treatment option for children with DRE. Large-volume prospective studies are needed to better understand the indications for treatment and demonstrate the long-term efficacy of SLA in this population.
Collapse
|
16
|
Jones JK, Zhang H, Lyne AM, Cavalli FMG, Hassen WE, Stevenson K, Kornahrens R, Yang Y, Li S, Dell S, Reitman ZJ, Herndon JE, Hoj J, Pendergast AM, Thompson EM. ABL1 and ABL2 promote medulloblastoma leptomeningeal dissemination. Neurooncol Adv 2023; 5:vdad095. [PMID: 37781087 PMCID: PMC10540884 DOI: 10.1093/noajnl/vdad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Background Medulloblastoma is the most common malignant pediatric brain tumor, and leptomeningeal dissemination (LMD) of medulloblastoma both portends a poorer prognosis at diagnosis and is incurable at recurrence. The biological mechanisms underlying LMD are unclear. The Abelson (ABL) tyrosine kinase family members, ABL1 and ABL2, have been implicated in cancer cell migration, invasion, adhesion, metastasis, and chemotherapy resistance, and are upstream mediators of the oncogene c-MYC in fibroblasts and lung cancer cells. However, their role in medulloblastoma has not yet been explored. The purpose of this work was to elucidate the role of ABL1/2 in medulloblastoma LMD. Methods ABL1 and ABL2 mRNA expression of patient specimens was analyzed. shRNA knockdowns of ABL1/2 and pharmacologic inhibition of ABL1/2 were used for in vitro and in vivo analyses of medulloblastoma LMD. RNA sequencing of ABL1/2 genetic knockdown versus scrambled control medulloblastoma was completed. Results ABL1/2 mRNA is highly expressed in human medulloblastoma and pharmacologic inhibition of ABL kinases resulted in cytotoxicity. Knockdown of ABL1/2 resulted in decreased adhesion of medulloblastoma cells to the extracellular matrix protein, vitronectin (P = .0013), and significantly decreased tumor burden in a mouse model of medulloblastoma LMD with improved overall survival (P = .0044). Furthermore, both pharmacologic inhibition of ABL1/2 and ABL1/2 knockdown resulted in decreased expression of c-MYC, identifying a putative signaling pathway, and genes/pathways related to oncogenesis and neurodevelopment were differentially expressed between ABL1/2 knockdown and control medulloblastoma cells. Conclusions ABL1 and ABL2 have potential roles in medulloblastoma LMD upstream of c-MYC expression.
Collapse
|
17
|
Hendrikse LD, Haldipur P, Saulnier O, Millman J, Sjoboen AH, Erickson AW, Ong W, Gordon V, Coudière-Morrison L, Mercier AL, Shokouhian M, Suárez RA, Ly M, Borlase S, Scott DS, Vladoiu MC, Farooq H, Sirbu O, Nakashima T, Nambu S, Funakoshi Y, Bahcheli A, Diaz-Mejia JJ, Golser J, Bach K, Phuong-Bao T, Skowron P, Wang EY, Kumar SA, Balin P, Visvanathan A, Lee JJY, Ayoub R, Chen X, Chen X, Mungall KL, Luu B, Bérubé P, Wang YC, Pfister SM, Kim SK, Delattre O, Bourdeaut F, Doz F, Masliah-Planchon J, Grajkowska WA, Loukides J, Dirks P, Fèvre-Montange M, Jouvet A, French PJ, Kros JM, Zitterbart K, Bailey SD, Eberhart CG, Rao AAN, Giannini C, Olson JM, Garami M, Hauser P, Phillips JJ, Ra YS, de Torres C, Mora J, Li KKW, Ng HK, Poon WS, Pollack IF, López-Aguilar E, Gillespie GY, Van Meter TE, Shofuda T, Vibhakar R, Thompson RC, Cooper MK, Rubin JB, Kumabe T, Jung S, Lach B, Iolascon A, Ferrucci V, de Antonellis P, Zollo M, Cinalli G, Robinson S, Stearns DS, Van Meir EG, Porrati P, Finocchiaro G, Massimino M, Carlotti CG, Faria CC, Roussel MF, Boop F, Chan JA, Aldinger KA, Razavi F, Silvestri E, McLendon RE, Thompson EM, Ansari M, Garre ML, Chico F, Eguía P, Pérezpeña M, Morrissy AS, Cavalli FMG, Wu X, Daniels C, Rich JN, Jones SJM, Moore RA, Marra MA, Huang X, Reimand J, Sorensen PH, Wechsler-Reya RJ, Weiss WA, Pugh TJ, Garzia L, Kleinman CL, Stein LD, Jabado N, Malkin D, Ayrault O, Golden JA, Ellison DW, Doble B, Ramaswamy V, Werbowetski-Ogilvie TE, Suzuki H, Millen KJ, Taylor MD. Author Correction: Failure of human rhombic lip differentiation underlies medulloblastoma formation. Nature 2022; 612:E12. [PMID: 36446943 PMCID: PMC10729707 DOI: 10.1038/s41586-022-05578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Shalita C, Hanzlik E, Kaplan S, Thompson EM. Immunotherapy for the treatment of pediatric brain tumors: a narrative review. Transl Pediatr 2022; 11:2040-2056. [PMID: 36643672 PMCID: PMC9834947 DOI: 10.21037/tp-22-86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND AND OBJECTIVE The goal of this narrative review is to report and summarize the completed pediatric immunotherapy clinical trials for primary CNS tumors. Pediatric central nervous system (CNS) tumors are the most common cause of pediatric solid cancer in children aged 0 to 14 years and the leading cause of cancer mortality. Survival rates for some pediatric brain tumors have improved, however, there remains a large portion of pediatric brain tumors with poor survival outcomes despite advances in treatment. Cancer immunotherapy is a growing field that has shown promise in the treatment of pediatric brain tumors that have historically shown a poor response to treatment. This narrative review provides a summary and discussion of the published literature focused on treating pediatric brain tumors with immunotherapy. METHODS MEDLINE via PubMed, Embase and Scopus via Elsevier were searched. The search utilized a combination of keywords and subject headings to include pediatrics, brain tumors, and immunotherapies. Manuscripts included in the analysis included completed clinical studies using any immunotherapy intervention with a patient population that consisted of at least half pediatric patients (<18 years) with primary CNS tumors. Conference abstracts were excluded as well as studies that did not include completed safety or primary outcome results. KEY CONTENT AND FINDINGS Search results returned 1,494 articles. Screening titles and abstracts resulted in 180 articles for full text review. Of the 180 articles, 18 were included for analysis. Another two articles were ultimately included after review of references and inclusion of newly published articles, for a total of 20 included articles. Immunotherapies included dendritic cell vaccines, oncolytic virotherapy/viral immunotherapy, chimeric antigen receptor (CAR) T-cell therapy, peptide vaccines, immunomodulatory agents, and others. CONCLUSIONS In this review, 20 published articles were highlighted which use immunotherapy in the treatment of primary pediatric brain tumors. To date, most of the studies published utilizing immunotherapy were phase I and pilot studies focused primarily on establishing safety and maximum dose-tolerance and toxicity while monitoring survival endpoints. With established efficacy and toxicity profiles, future trials may progress to further understanding the overall survival and quality of life benefits to pediatric patients with primary brain tumors.
Collapse
|
19
|
Hendrikse LD, Haldipur P, Saulnier O, Millman J, Sjoboen AH, Erickson AW, Ong W, Gordon V, Coudière-Morrison L, Mercier AL, Shokouhian M, Suárez RA, Ly M, Borlase S, Scott DS, Vladoiu MC, Farooq H, Sirbu O, Nakashima T, Nambu S, Funakoshi Y, Bahcheli A, Diaz-Mejia JJ, Golser J, Bach K, Phuong-Bao T, Skowron P, Wang EY, Kumar SA, Balin P, Visvanathan A, Lee JJY, Ayoub R, Chen X, Chen X, Mungall KL, Luu B, Bérubé P, Wang YC, Pfister SM, Kim SK, Delattre O, Bourdeaut F, Doz F, Masliah-Planchon J, Grajkowska WA, Loukides J, Dirks P, Fèvre-Montange M, Jouvet A, French PJ, Kros JM, Zitterbart K, Bailey SD, Eberhart CG, Rao AAN, Giannini C, Olson JM, Garami M, Hauser P, Phillips JJ, Ra YS, de Torres C, Mora J, Li KKW, Ng HK, Poon WS, Pollack IF, López-Aguilar E, Gillespie GY, Van Meter TE, Shofuda T, Vibhakar R, Thompson RC, Cooper MK, Rubin JB, Kumabe T, Jung S, Lach B, Iolascon A, Ferrucci V, de Antonellis P, Zollo M, Cinalli G, Robinson S, Stearns DS, Van Meir EG, Porrati P, Finocchiaro G, Massimino M, Carlotti CG, Faria CC, Roussel MF, Boop F, Chan JA, Aldinger KA, Razavi F, Silvestri E, McLendon RE, Thompson EM, Ansari M, Garre ML, Chico F, Eguía P, Pérezpeña M, Morrissy AS, Cavalli FMG, Wu X, Daniels C, Rich JN, Jones SJM, Moore RA, Marra MA, Huang X, Reimand J, Sorensen PH, Wechsler-Reya RJ, Weiss WA, Pugh TJ, Garzia L, Kleinman CL, Stein LD, Jabado N, Malkin D, Ayrault O, Golden JA, Ellison DW, Doble B, Ramaswamy V, Werbowetski-Ogilvie TE, Suzuki H, Millen KJ, Taylor MD. Failure of human rhombic lip differentiation underlies medulloblastoma formation. Nature 2022; 609:1021-1028. [PMID: 36131014 PMCID: PMC10026724 DOI: 10.1038/s41586-022-05215-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/09/2022] [Indexed: 02/08/2023]
Abstract
Medulloblastoma (MB) comprises a group of heterogeneous paediatric embryonal neoplasms of the hindbrain with strong links to early development of the hindbrain1-4. Mutations that activate Sonic hedgehog signalling lead to Sonic hedgehog MB in the upper rhombic lip (RL) granule cell lineage5-8. By contrast, mutations that activate WNT signalling lead to WNT MB in the lower RL9,10. However, little is known about the more commonly occurring group 4 (G4) MB, which is thought to arise in the unipolar brush cell lineage3,4. Here we demonstrate that somatic mutations that cause G4 MB converge on the core binding factor alpha (CBFA) complex and mutually exclusive alterations that affect CBFA2T2, CBFA2T3, PRDM6, UTX and OTX2. CBFA2T2 is expressed early in the progenitor cells of the cerebellar RL subventricular zone in Homo sapiens, and G4 MB transcriptionally resembles these progenitors but are stalled in developmental time. Knockdown of OTX2 in model systems relieves this differentiation blockade, which allows MB cells to spontaneously proceed along normal developmental differentiation trajectories. The specific nature of the split human RL, which is destined to generate most of the neurons in the human brain, and its high level of susceptible EOMES+KI67+ unipolar brush cell progenitor cells probably predisposes our species to the development of G4 MB.
Collapse
|
20
|
Apelgren P, Sämfors S, Säljö K, Mölne J, Gatenholm P, Troedsson C, Thompson EM, Kölby L. Biomaterial and biocompatibility evaluation of tunicate nanocellulose for tissue engineering. BIOMATERIALS ADVANCES 2022; 137:212828. [PMID: 35929261 DOI: 10.1016/j.bioadv.2022.212828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Extracellular matrix fibril components, such as collagen, are crucial for the structural properties of several tissues and organs. Tunicate-derived cellulose nanofibrils (TNC) combined with living cells could become the next gold standard for cartilage and soft-tissue repair, as TNC fibrils present similar dimensions to collagen, feasible industrial production, and chemically straightforward and cost-efficient extraction procedures. In this study, we characterized the physical properties of TNC derived from aquaculture production in Norwegian fjords and evaluated its biocompatibility regarding induction of an inflammatory response and foreign-body reactions in a Wistar rat model. Additionally, histologic and immunohistochemical analyses were performed for comparison with expanded polytetrafluoroethylene (ePTFE) as a control. The average length of the TNC as determined by atomic force microscopy was tunable from 3 μm to 2.4 μm via selection of a various number of passages through a microfluidizer, and rheologic analysis showed that the TNC hydrogels were highly shear-thinning and with a viscosity dependent on fibril length and concentration. As a bioink, TNC exhibited excellent rheological and printability properties, with constructs capable of being printed with high resolution and fidelity. We found that post-print cross-linking with alginate stabilized the construct shape and texture, which increased its ease of handling during surgery. Moreover, after 30 days in vivo, the constructs showed a highly-preserved shape and fidelity of the grid holes, with these characteristics preserved after 90 days and with no signs of necrosis, infection, acute inflammation, invasion of neutrophil granulocytes, or extensive fibrosis. Furthermore, we observed a moderate foreign-body reaction involving macrophages, lymphocytes, and giant cells in both the TNC constructs and PTFE controls, although TNC was considered a non-irritant biomaterial according to ISO 10993-6 as compared with ePTFE. These findings represent a milestone for future clinical application of TNC scaffolds for tissue repair. One sentence summary: In this study, the mechanical properties of tunicate nanocellulose are superior to nanocellulose extracted from other sources, and the biocompatibility is comparable to that of ePTFE.
Collapse
|
21
|
Zhang M, Wong S, Wright J, Toescu S, Mohammadzadeh M, Han M, Lummus S, Wagner M, Yecies DW, Lai H, Eghbal A, Radmanesh A, Nemelka J, Harward SC, Malinzak M, Laughlin S, Perreault S, Braun K, Vosough A, Poussaint TY, Goetti R, Ertl-Wagner B, Ho C, Oztekin O, Ramaswamy V, Mankad K, Vitanza N, Cheshier SH, Said M, Aquilina K, Thompson EM, Jaju A, Grant GA, Lober R, Yeom K. 507 Rational Radiomic Design for Stepwise Diagnosis of Posterior Fossa Pediatric Tumors. Neurosurgery 2022. [DOI: 10.1227/neu.0000000000001880_507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
22
|
Harward SC, Komisarow JM, Rames J, Hodges SE, Rice H, Thompson EM, Fuchs HE, Muh CR, George TM, Grant GA. 379 Timing of Intra-abdominal Surgery and Ventriculoperitoneal Shunt Placement in the Pediatric Population: Risk of Shunt Infection. Neurosurgery 2022. [DOI: 10.1227/neu.0000000000001880_379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Ma X, Øvrebø JI, Thompson EM. Evolution of CDK1 Paralog Specializations in a Lineage With Fast Developing Planktonic Embryos. Front Cell Dev Biol 2022; 9:770939. [PMID: 35155443 PMCID: PMC8832800 DOI: 10.3389/fcell.2021.770939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/27/2021] [Indexed: 12/03/2022] Open
Abstract
The active site of the essential CDK1 kinase is generated by core structural elements, among which the PSTAIRE motif in the critical αC-helix, is universally conserved in the single CDK1 ortholog of all metazoans. We report serial CDK1 duplications in the chordate, Oikopleura. Paralog diversifications in the PSTAIRE, activation loop substrate binding platform, ATP entrance site, hinge region, and main Cyclin binding interface, have undergone positive selection to subdivide ancestral CDK1 functions along the S-M phase cell cycle axis. Apparent coevolution of an exclusive CDK1d:Cyclin Ba/b pairing is required for oogenic meiosis and early embryogenesis, a period during which, unusually, CDK1d, rather than Cyclin Ba/b levels, oscillate, to drive very rapid cell cycles. Strikingly, the modified PSTAIRE of odCDK1d shows convergence over great evolutionary distance with plant CDKB, and in both cases, these variants exhibit increased specialization to M-phase.
Collapse
|
24
|
Shalita C, Sankey EW, Bergin SM, McManigle J, Buckley AF, Radtke R, Torres C, Dear GL, Thompson EM. Successful Neonatal, Intraoperative Neuromonitoring in the Surgical Correction of a Thoracic Dermal Sinus Tract: Technical Note. Pediatr Neurosurg 2022; 57:295-300. [PMID: 35512661 DOI: 10.1159/000524924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/29/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Intraoperative neuromonitoring (IONM) is commonly used during surgery of the spine and spinal cord for early surveillance of iatrogenic injury to the central and peripheral nervous system. However, for infants and young children under 3 years of age, the use of IONM is challenging due to incomplete central and peripheral myelination. CASE PRESENTATION We report a case of a T4-T6 dermal sinus tract (DST) that was resected on day of life 23, with the successful use of IONM. CONCLUSION To our knowledge, this is the youngest reported case of the use of IONM in the surgical correction of a DST in a neonatal patient. This case demonstrates the potential efficacy of IONM in neonatal spine surgery and the techniques used to adapt the technology to an immature nervous system.
Collapse
|
25
|
Park C, Liu B, Harward SC, Zhang AR, Gloria J, Lee HJ, Fuchs HE, Muh CR, Hodges SE, Thompson EM. Ventriculomegaly and postoperative lateral/third ventricular blood as predictors of cerebrospinal fluid diversion following posterior fossa tumor resection. J Neurosurg Pediatr 2021; 28:533-543. [PMID: 34388710 DOI: 10.3171/2021.4.peds2188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/13/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Postoperative hydrocephalus occurs in one-third of children after posterior fossa tumor resection. Although models to predict the need for CSF diversion after resection exist for preoperative variables, it is unknown which postoperative variables predict the need for CSF diversion. In this study, the authors sought to determine the clinical and radiographic predictors for CSF diversion in children following posterior fossa tumor resection. METHODS This was a retrospective cohort study involving patients ≤ 18 years of age who underwent resection of a primary posterior fossa tumor between 2000 and 2018. The primary outcome was the need for CSF diversion 6 months after surgery. Candidate predictors for CSF diversion including age, race, sex, frontal occipital horn ratio (FOHR), tumor type, tumor volume and location, transependymal edema, papilledema, presence of postoperative intraventricular blood, and residual tumor were evaluated using a best subset selection method with logistic regression. RESULTS Of the 63 included patients, 26 (41.3%) had CSF diversion at 6 months. Patients who required CSF diversion had a higher median FOHR (0.5 vs 0.4) and a higher percentage of postoperative intraventricular blood (30.8% vs 2.7%) compared with those who did not. A 0.1-unit increase in FOHR or intraventricular blood was associated with increased odds of CSF diversion (OR 2.9 [95% CI 1.3-7.8], p = 0.02 and OR 20.2 [95% CI 2.9-423.1], p = 0.01, respectively) with an overfitting-corrected concordance index of 0.68 (95% CI 0.56-0.80). CONCLUSIONS The preoperative FOHR and postoperative intraventricular blood were significant predictors of the need for permanent CSF diversion within 6 months after posterior fossa tumor resection in children.
Collapse
|