1
|
Longo F, Lloreda-Jurado PJ, Gil-Rostra J, Gonzalez-Elipe AR, Yubero F, Thomä SLJ, Neels A, Borgschulte A. Hard X-ray Photoelectron Spectroscopy Probing Fe Segregation during the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59516-59527. [PMID: 39418653 DOI: 10.1021/acsami.4c11902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
NiFe electrocatalysts are among the most active phases for water splitting with regard to the alkaline oxygen evolution reaction (OER). The interplay between Ni and Fe, both at the surface and in the subsurface of the catalyst, is crucial to understanding such outstanding properties and remains a subject of debate. Various phenomena, ranging from the formation of oxides/(oxy)hydroxides to the associated segregation of certain species, occur during the electrochemical reactions and add another dimension of complexity that hinders the rational design of electrodes for water splitting. In this work, we have developed the procedure for the quantification of chemical depth profiling by XPS/HAXPES measurements and applied it to two NiFe electrodes with different porosities. The main outcome of this study is related to the surface reconstruction of the electrodes during the OER, followed at two different depths by means of X-ray photoelectron spectroscopy. We find that Fe initially segregates at the surface when exposed to ambient conditions, resulting in the formation of an inactive FeOx phase. In addition, the porosity of the catalyst plays a significant role in the segregation process and thus in the performance of the electrode. In particular, the higher porosity of the nanostructured sample is responsible for a more pronounced diffusion of Fe from the subsurface to the surface with a more effective suppression of the activity of the Ni1-xFexOOH phase. These results highlight the importance of the fact that the chemical state of the surface of a multielement system is a snapshot in time, dependent on both external parameters, such as the applied potential and the adjacent electrolyte, and the underlying bulk properties accessible with HAXPES.
Collapse
|
2
|
Lahoz F, de Armas-Rillo S, Hernández-Rodríguez C, Gil-Rostra J, Yubero F. Optical monitoring of detergent pollutants in greywater. OPTICS EXPRESS 2023; 31:15227-15238. [PMID: 37157630 DOI: 10.1364/oe.466194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Large amount of wastewater is produced by washing machines and dishwashers, which are used in a daily basis. This domestic wastewater generated in households or office buildings (also called greywater) is drained directly to the drainpipes without differentiation from that with fecal contamination from toilets. Detergents are arguably the pollutants most frequently found in greywater from home appliances. Their concentrations vary in the successive stages in a wash cycle, which could be taken into account in a rational design of home appliances wastewater management. Analytical chemistry procedures are commonly used to determine the pollutant content in wastewater. They require collecting samples and their transport to properly equipped laboratories, which hampers real time wastewater management. In this paper, optofluidic devices based on planar Fabry-Perot microresonators operating in transmission mode in the visible and near infrared spectral ranges have been studied to determine the concentration of five brands of soap dissolved in water. It is found that the spectral positions of the optical resonances redshift when the soap concentration increases in the corresponding solutions. Experimental calibration curves of the optofluidic device were used to determine the soap concentration of wastewater from the successive stages of a washing machine wash cycle either loaded with garments or unloaded. Interestingly, the analysis of the optical sensor indicated that the greywater from the last water discharge of the wash cycle could be reused for gardening or agriculture. The integration of this kind of microfluidic devices into the home appliances design could lead to reduce our hydric environmental impact.
Collapse
|
3
|
Pauly N, Yubero F, Tougaard S. Determination of the Primary Excitation Spectra in XPS and AES. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:339. [PMID: 36678092 PMCID: PMC9865875 DOI: 10.3390/nano13020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
This paper reviews a procedure that allows for extracting primary photoelectron or Auger electron emissions from homogeneous isotropic samples. It is based on a quantitative dielectric description of the energy losses of swift electrons travelling nearby surfaces in presence of stationary positive charges. The theory behind the modeling of the electron energy losses, implemented in a freely available QUEELS-XPS software package, takes into account intrinsic and extrinsic effects affecting the electron transport. The procedure allows for interpretation of shake-up and multiplet structures on a quantitative basis. We outline the basic theory behind it and illustrate its capabilities with several case examples. Thus, we report on the angular dependence of the intrinsic and extrinsic Al 2s photoelectron emission from aluminum, the shake-up structure of the Ag 3d, Cu 2p, and Ce 3d photoelectron emission from silver, CuO and CeO2, respectively, and the quantification of the two-hole final states contributing to the L3M45M45 Auger electron emission of copper. These examples illustrate the procedure, that can be applied to any homogeneous isotropic material.
Collapse
|
4
|
Rico VJ, Turk H, Yubero F, Gonzalez-Elipe AR. Titania Enhanced Photocatalysis and Dye Giant Absorption in Nanoporous 1D Bragg Microcavities. ACS APPLIED NANO MATERIALS 2022; 5:5487-5497. [PMID: 35492435 PMCID: PMC9040112 DOI: 10.1021/acsanm.2c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Light trapping effects are known to boost the photocatalytic degradation of organic molecules in 3D photonic structures of anatase titania (a-TiO2) with an inverse opal configuration. In the present work, we show that photocatalytic activity can also be enhanced in a-TiO2 thin films if they are incorporated within a nanoporous 1D optical resonant microcavity. We have designed and manufactured multilayer systems that, presenting a high open porosity to enable a straightforward diffusion of photodegradable molecules, provide light confinement effects at wavelengths around the absorption edge of photoactive a-TiO2. In brief, we have observed that a nanoporous 1D Bragg microcavity prepared by electron beam evaporation at oblique angles comprising a central defect layer of nanoporous a-TiO2 boosts the photocatalytic degradation of nitrobenzene and methyl orange dye solutions. The multilayer structure of the microcavity was designed to ensure the appearance of optical resonances at the a-TiO2 layer location and wavelengths around the absorption onset of this semiconductor. In this porous 1D Bragg microcavity, the diffusion constraints of molecules through the capping layers covering the a-TiO2 are effectively compensated by an increase in the photocatalytic activity due to the light confinement phenomena. We also report that the absorption coefficient of methyl orange dye solution infiltrated within the pore structure of the microcavity is exalted at the wavelengths of the corresponding optical resonances. This effect gives rise to a small but non-negligible visible light photodegradation of dye molecules. The possibilities of tailoring the design of 1D photonic systems to boost the photocatalytic activity of a-TiO2 are discussed.
Collapse
|
5
|
Tougaard S, Pauly N, Yubero F. QUEELS: Software to calculate the energy loss processes in TEELS, REELS, XPS, and AES including effects of the core hole. SURF INTERFACE ANAL 2022. [DOI: 10.1002/sia.7095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Mogni E, Pellegrini G, Gil-Rostra J, Yubero F, Simone G, Fossati S, Dostálek J, Martinez-Vazquez R, Osellame R, Celebrano M, Finazzi M, Biagioni P. One-dimensional photonic crystal for polarization-sensitive surface-enhanced spectroscopy. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202226606009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We realize and experimentally characterize a novel platform for surface-enhanced sensing through Bloch Surface Waves (BSWs). We test a one-dimensional photonic crystal, with a high index inclusion in the top layer, that sustains surfaces modes with, in principle, arbitrary polarization. This is achieved through the coherent superposition of TE and TM dispersion relations of BSWs, which can also provide superchiral fields over a wide spectral range (down to the UV). The resulting platform paves the way to the implementation of polarization-resolved surface-enhanced techniques.
Collapse
|
7
|
López-Fernández E, Sacedón CG, Gil-Rostra J, Yubero F, González-Elipe AR, de Lucas-Consuegra A. Recent Advances in Alkaline Exchange Membrane Water Electrolysis and Electrode Manufacturing. Molecules 2021; 26:6326. [PMID: 34770735 PMCID: PMC8587517 DOI: 10.3390/molecules26216326] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
Water electrolysis to obtain hydrogen in combination with intermittent renewable energy resources is an emerging sustainable alternative to fossil fuels. Among the available electrolyzer technologies, anion exchange membrane water electrolysis (AEMWE) has been paid much attention because of its advantageous behavior compared to other more traditional approaches such as solid oxide electrolyzer cells, and alkaline or proton exchange membrane water electrolyzers. Recently, very promising results have been obtained in the AEMWE technology. This review paper is focused on recent advances in membrane electrode assembly components, paying particular attention to the preparation methods for catalyst coated on gas diffusion layers, which has not been previously reported in the literature for this type of electrolyzers. The most successful methodologies utilized for the preparation of catalysts, including co-precipitation, electrodeposition, sol-gel, hydrothermal, chemical vapor deposition, atomic layer deposition, ion beam sputtering, and magnetron sputtering deposition techniques, have been detailed. Besides a description of these procedures, in this review, we also present a critical appraisal of the efficiency of the water electrolysis carried out with cells fitted with electrodes prepared with these procedures. Based on this analysis, a critical comparison of cell performance is carried out, and future prospects and expected developments of the AEMWE are discussed.
Collapse
|
8
|
Castillo-Seoane J, Gil-Rostra J, López-Flores V, Lozano G, Javier Ferrer F, Espinós JP, Ostrikov K(K, Yubero F, González-Elipe AR, Barranco Á, Sánchez-Valencia JR, Borrás A. One-reactor vacuum and plasma synthesis of transparent conducting oxide nanotubes and nanotrees: from single wire conductivity to ultra-broadband perfect absorbers in the NIR. NANOSCALE 2021; 13:13882-13895. [PMID: 34477662 PMCID: PMC8374677 DOI: 10.1039/d1nr01937f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
The eventual exploitation of one-dimensional nanomaterials needs the development of scalable, high yield, homogeneous and environmentally friendly methods capable of meeting the requirements for fabrication of functional nanomaterials with properties on demand. In this article, we demonstrate a vacuum and plasma one-reactor approach for the synthesis of fundamental common elements in solar energy and optoelectronics, i.e. the transparent conducting electrode but in the form of nanotube and nanotree architectures. Although the process is generic and can be used for a variety of TCOs and wide-bandgap semiconductors, we focus herein on indium doped tin oxide (ITO) as the most previously researched in previous applications. This protocol combines widely applied deposition techniques such as thermal evaporation for the formation of organic nanowires serving as 1D and 3D soft templates, deposition of polycrystalline layers by magnetron sputtering, and removal of the templates by simply annealing under mild vacuum conditions. The process variables are tuned to control the stoichiometry, morphology, and alignment of the ITO nanotubes and nanotrees. Four-probe characterization reveals the improved lateral connectivity of the ITO nanotrees and applied on individual nanotubes shows resistivities as low as 3.5 ± 0.9 × 10-4Ω cm, a value comparable to that of single-crystalline counterparts. The assessment of diffuse reflectance and transmittance in the UV-Vis range confirms the viability of the supported ITO nanotubes as random optical media working as strong scattering layers. Their further ability to form ITO nanotrees opens a path for practical applications as ultra-broadband absorbers in the NIR. The demonstrated low resistivity and optical properties of these ITO nanostructures open a way for their use in LEDs, IR shields, energy harvesting, nanosensors, and photoelectrochemical applications.
Collapse
|
9
|
Oliva-Ramírez M, López-Santos C, Berthon H, Goven M, Pórtoles J, Gil-Rostra J, González-Elipe AR, Yubero F. Form Birefringence in Resonant Transducers for the Selective Monitoring of VOCs under Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19148-19158. [PMID: 33856758 DOI: 10.1021/acsami.1c02499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, we have developed a new kind of nanocolumnar birefringent Bragg microcavity (BBM) that, tailored by oblique angle deposition, behaves as a selective transducer of volatile organic compounds (VOCs). Unlike the atomic lattice origin of birefringence in anisotropic single crystals, in the BBM, it stems from an anisotropic self-organization at the nanoscale of the voids and structural elements of the layers. The optical adsorption isotherms recorded upon exposure of these nanostructured systems to water vapor and VOCs have revealed a rich yet unexplored phenomenology linked to their optical activity that provides both capacity for vapor identification and partial pressure determination. This photonic response has been reproduced with a theoretical model accounting for the evolution of the form birefringence of the individual layers upon vapor condensation in nanopores and internanocolumnar voids. BBMs that repel water vapor but are accessible to VOCs have been also developed through grafting of their internal surfaces with perfluorooctyltriethoxysilane molecules. These nanostructured photonic systems are proposed for the development of transducers that, operating under environmental conditions, may respond specifically to VOCs without any influence by the degree of humidity of the medium.
Collapse
|
10
|
Pauly N, Yubero F, Tougaard S. Optical properties of molybdenum in the ultraviolet and extreme ultraviolet by reflection electron energy loss spectroscopy. APPLIED OPTICS 2020; 59:4527-4532. [PMID: 32400432 DOI: 10.1364/ao.391014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Optical properties of polycrystalline molybdenum are determined from ultraviolet up to extreme ultraviolet by reflection electron energy loss spectroscopy (REELS). Calculations are performed within the dielectric response theory by means of the quantitative analysis of electron energy losses at surfaces QUEELS-ϵ(k,ω)-REELS software [Surf. Interface Anal.36, 824 (2004)SIANDQ0142-242110.1002/sia.1774] that allows the simulation of inelastic scattering cross sections, using a parametric energy loss function describing the optical response of the material. From this energy loss function, the real and imaginary parts of the dielectric function, the refractive index, and the extinction coefficient are deduced and compared with previously published results.
Collapse
|
11
|
López-Fernández E, Gil-Rostra J, Espinós JP, González-Elipe AR, de Lucas Consuegra A, Yubero F. Chemistry and Electrocatalytic Activity of Nanostructured Nickel Electrodes for Water Electrolysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00856] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Pauly N, Yubero F, Espinós JP, Tougaard S. XPS primary excitation spectra of Zn 2
p
, Fe 2
p
, and Ce 3
d
from ZnO, α‐Fe
2
O
3
, and CeO
2. SURF INTERFACE ANAL 2018. [DOI: 10.1002/sia.6587] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
13
|
Pauly N, Yubero F, Tougaard S. Quantitative analysis of Yb 4d photoelectron spectrum of metallic Yb. SURF INTERFACE ANAL 2018. [DOI: 10.1002/sia.6402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Pauly N, Yubero F, Espinós JP, Tougaard S. Optical properties and electronic transitions of zinc oxide, ferric oxide, cerium oxide, and samarium oxide in the ultraviolet and extreme ultraviolet. APPLIED OPTICS 2017; 56:6611-6621. [PMID: 29047953 DOI: 10.1364/ao.56.006611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
Optical properties and electronic transitions of four oxides, namely zinc oxide, ferric oxide, cerium oxide, and samarium oxide, are determined in the ultraviolet and extreme ultraviolet by reflection electron energy loss spectroscopy using primary electron energies in the range 0.3-2.0 keV. This technique allows the evaluation of the optical response in these ultraviolet spectral regions of a thin layer of material, and the analysis is straightforward. It is performed within the dielectric response theory by means of the QUEELS-ε(k, ω)-REELS software developed by Tougaard and Yubero [Surf. Interface Anal.36, 824 (2004)SIANDQ0142-242110.1002/(ISSN)1096-9918]. The method consists basically in the fitting of experimentally determined single-scattering electron energy loss cross sections with a parametric energy loss function of the corresponding material, to the one calculated within a dielectric response formalism. The obtained refractive index and extinction coefficients, as well as the identified electronic transitions are compared, when available, with previously published results.
Collapse
|
15
|
Gil-Rostra J, Ferrer FJ, Espinós JP, González-Elipe AR, Yubero F. Energy-Sensitive Ion- and Cathode-Luminescent Radiation-Beam Monitors Based on Multilayer Thin-Film Designs. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16313-16320. [PMID: 28436216 DOI: 10.1021/acsami.7b01175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A multilayer luminescent design concept is presented to develop energy-sensitive radiation-beam monitors on the basis of colorimetric analysis. Each luminescent layer within the stack consists of rare-earth-doped transparent oxides of optical quality and a characteristic luminescent emission under excitation with electron or ion beams. For a given type of particle beam (electron, protons, α particles, etc.), its penetration depth and therefore its energy loss at a particular buried layer within the multilayer stack depend on the energy of the initial beam. The intensity of the luminescent response of each layer is proportional to the energy deposited by the radiation beam within the layer, so characteristic color emission will be achieved if different phosphors are considered in the layers of the luminescent stack. Phosphor doping, emission efficiency, layer thickness, and multilayer structure design are key parameters relevant to achieving a broad colorimetric response. Two case examples are designed and fabricated to illustrate the capabilities of these new types of detector to evaluate the kinetic energy of either electron beams of a few kilo-electron volts or α particles of a few mega-electron volts.
Collapse
|
16
|
Yubero F. SURVEY OF THE USE OF ENZYMES IN THE PARAGUAYAN INDUSTRY AND ITS APPLICATION IN THE PRODUCTION OF ANIMAL FEED. COMPENDIO DE CIENCIAS VETERINARIAS 2016. [DOI: 10.18004/compend.cienc.vet.2016.06.31-34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
17
|
Rico VJ, Lahoz R, Rey-García F, Yubero F, Espinós JP, de la Fuente GF, González-Elipe AR. Laser Treatment of Nanoparticulated Metal Thin Films for Ceramic Tile Decoration. ACS APPLIED MATERIALS & INTERFACES 2016; 8:24880-24886. [PMID: 27556592 DOI: 10.1021/acsami.6b07469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper presents a new method for the fabrication of metal-like decorative layers on glazed ceramic tiles. It consists of the laser treatment of Cu thin films prepared by electron-beam evaporation at glancing angles. A thin film of discontinuous Cu nanoparticles was electron-beam-evaporated in an oblique angle configuration onto ceramic tiles and an ample palette of colors obtained by laser treatment both in air and in vacuum. Scanning electron microscopy along with UV-vis-near-IR spectroscopy and time-of-flight secondary ion mass spectrometry analysis were used to characterize the differently colored layers. On the basis of these analyses, color development has been accounted for by a simple model considering surface melting phenomena and different microstructural and chemical transformations of the outmost surface layers of the samples.
Collapse
|
18
|
Lahoz F, Martín IR, Gil-Rostra J, Oliva-Ramirez M, Yubero F, Gonzalez-Elipe AR. Portable IR dye laser optofluidic microresonator as a temperature and chemical sensor. OPTICS EXPRESS 2016; 24:14383-14392. [PMID: 27410592 DOI: 10.1364/oe.24.014383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A compact and portable optofluidic microresonator has been fabricated and characterized. It is based on a Fabry-Perot microcavity consisting essentially of two tailored dichroic Bragg mirrors prepared by reactive magnetron sputtering deposition. The microresonator has been filled with an ethanol solution of Nile-Blue dye. Infrared laser emission has been measured with a pump threshold as low as 0.12 MW/cm2 and an external energy conversion efficiency of 41%. The application of the device as a temperature and a chemical sensor is demonstrated. Small temperature variations as well as small amount of water concentrations in the liquid laser medium are detected as a shift of the resonant laser modes.
Collapse
|
19
|
Garcia-Garcia F, Salazar P, Yubero F, González-Elipe A. Non-enzymatic Glucose electrochemical sensor made of porous NiO thin films prepared by reactive magnetron sputtering at oblique angles. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.03.193] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Oliva-Ramirez M, Barranco A, Löffler M, Yubero F, González-Elipe AR. Optofluidic Modulation of Self-Associated Nanostructural Units Forming Planar Bragg Microcavities. ACS NANO 2016; 10:1256-1264. [PMID: 26653767 DOI: 10.1021/acsnano.5b06625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bragg microcavities (BMs) formed by the successive stacking of nanocolumnar porous SiO2 and TiO2 layers with slanted, zigzag, chiral, and vertical configurations are prepared by physical vapor deposition at oblique angles while azimuthally varying the substrate orientation during the multilayer growth. The slanted and zigzag BMs act as wavelength-selective optical retarders when they are illuminated with linearly polarized light, while no polarization dependence is observed for the chiral and vertical cavities. This distinct optical behavior is attributed to a self-nanostructuration mechanism involving a fence-bundling association of nanocolumns as observed by focused ion beam scanning electron microscopy in the slanted and zigzag microcavities. The outstanding retarder response of the optically active BMs can be effectively modulated by dynamic infiltration of nano- and mesopores with liquids of different refraction indices acting as a switch of the polarization behavior. The unprecedented polarization and tunable optofluidic properties of these nanostructured photonic systems have been successfully simulated with a simple model that assumes a certain birefringence for the individual stacked layers and accounts for the light interference phenomena developed in the BMs. The possibilities of this type of self-arranged nanostructured and optically active BMs for liquid sensing and monitoring applications are discussed.
Collapse
|
21
|
Alvarez R, Yubero F. Interpretation of electron Rutherford backscattering spectrometry for hydrogen quantification. SURF INTERFACE ANAL 2014. [DOI: 10.1002/sia.5486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Terriza A, Vilches-Pérez JI, González-Caballero JL, Orden EDL, Yubero F, Barranco A, Gonzalez-Elipe AR, Vilches J, Salido M. Osteoblasts Interaction with PLGA Membranes Functionalized with Titanium Film Nanolayer by PECVD. In vitro Assessment of Surface Influence on Cell Adhesion during Initial Cell to Material Interaction. MATERIALS 2014; 7:1687-1708. [PMID: 28788538 PMCID: PMC5453252 DOI: 10.3390/ma7031687] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/10/2014] [Accepted: 02/25/2014] [Indexed: 01/05/2023]
Abstract
New biomaterials for Guided Bone Regeneration (GBR), both resorbable and non-resorbable, are being developed to stimulate bone tissue formation. Thus, the in vitro study of cell behavior towards material surface properties turns a prerequisite to assess both biocompatibility and bioactivity of any material intended to be used for clinical purposes. For this purpose, we have developed in vitro studies on normal human osteoblasts (HOB®) HOB® osteoblasts grown on a resorbable Poly (lactide-co-glycolide) (PLGA) membrane foil functionalized by a very thin film (around 15 nm) of TiO2 (i.e., TiO2/PLGA membranes), designed to be used as barrier membrane. To avoid any alteration of the membranes, the titanium films were deposited at room temperature in one step by plasma enhanced chemical vapour deposition. Characterization of the functionalized membranes proved that the thin titanium layer completely covers the PLGA foils that remains practically unmodified in their interior after the deposition process and stands the standard sterilization protocols. Both morphological changes and cytoskeletal reorganization, together with the focal adhesion development observed in HOB osteoblasts, significantly related to TiO2 treated PLGA in which the Ti deposition method described has revealed to be a valuable tool to increase bioactivity of PLGA membranes, by combining cell nanotopography cues with the incorporation of bioactive factors.
Collapse
|
23
|
Pauly N, Tougaard S, Yubero F. Modeling of X-ray photoelectron spectra: surface and core hole effects. SURF INTERFACE ANAL 2014. [DOI: 10.1002/sia.5372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Díaz-Fernández D, Méndez J, Yubero F, Domínguez-Cañizares G, Gutiérrez A, Soriano L. Study of the early stages of growth of Co oxides on oxide substrates. SURF INTERFACE ANAL 2014. [DOI: 10.1002/sia.5366] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Oliva-Ramirez M, González-García L, Parra-Barranco J, Yubero F, Barranco A, González-Elipe AR. Liquids analysis with optofluidic bragg microcavities. ACS APPLIED MATERIALS & INTERFACES 2013; 5:6743-6750. [PMID: 23781881 DOI: 10.1021/am401685r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Porous Bragg microcavities formed by stacking a series of porous nanocolumnar layers with alternate low (SiO2) and high (TiO2) refractive index materials have been prepared by physical vapor deposition at glancing angles (GLAD). By strictly controlling the porosity and refractive index of the individual films, as well as the relative orientation of the nanocolumns from one layer to the next, very porous and nondispersive high optical quality microcavities have been manufactured. These photonic structures have been implemented into responsive devices to characterize liquids, mixtures of liquids, or solutions flowing through them. The large displacements observed in the optical spectral features (Bragg reflector gap and resonant peak) of the photonic structures have been quantitatively correlated by optical modeling with the refractive index of the circulating liquids. Experiments carried out with different glucose and NaCl solutions and mixtures of water plus glycerol illustrate the potentialities of these materials to serve as optofluidic devices to determine the concentration of solutions or the proportion of two phases in a liquid mixture.
Collapse
|