1
|
Becsei Á, Fuschi A, Otani S, Kant R, Weinstein I, Alba P, Stéger J, Visontai D, Brinch C, de Graaf M, Schapendonk CME, Battisti A, De Cesare A, Oliveri C, Troja F, Sironen T, Vapalahti O, Pasquali F, Bányai K, Makó M, Pollner P, Merlotti A, Koopmans M, Csabai I, Remondini D, Aarestrup FM, Munk P. Author Correction: Time-series sewage metagenomics distinguishes seasonal, human-derived and environmental microbial communities potentially allowing source-attributed surveillance. Nat Commun 2024; 15:8953. [PMID: 39419961 PMCID: PMC11487243 DOI: 10.1038/s41467-024-53282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
|
2
|
Nuanmuang N, Leekitcharoenphon P, Njage PMK, Thorn AV, Aarestrup FM. The dynamics of bla TEM resistance genes in Salmonella Typhi. Sci Rep 2024; 14:24311. [PMID: 39414800 PMCID: PMC11484844 DOI: 10.1038/s41598-024-74321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Salmonella Typhi (S. Typhi) is an important pathogen causing typhoid fever worldwide. The emergence of antibiotic resistance, including that of blaTEM genes encoding to TEM [Formula: see text]-lactamases has been observed. This study aimed to investigate the dynamics of blaTEM genes in S. Typhi by analyzing the phylogeny and flanking region patterns and phylogenetic associating them with metadata (year, country) and genomic data (genotypes, antibiotic resistance genes (ARGs), plasmids). Genomic sequences of publicly available S. Typhi harboring blaTEM (n = 6079), spanning from 1983 to 2023, were downloaded and analyzed using CSIPhylogeny for phylogeny, Flankophile for identifying genetic contexts around blaTEM genes and GenoTyphi for determining genotypes, ARGs and plasmid replicons. We found that blaTEM-positive isolates occurred most commonly in specific location, especially in Asia and Africa and clustered among a limited number of genotypes. Flankophile identified 740 isolates (12.2%) with distinct flanking region patterns, which were categorized into 13 patterns. Notably, 7 patterns showed a predominantly phylogenetic association with genotypes. Additionally, these 7 patterns exhibited relation to the country, ARGs and plasmid replicons. Further examination of the flanking region patterns provided association with mobile genetic elements (MGEs). Taken together, this study suggests that blaTEM has been acquired by S. Typhi isolates a limited number of times and subsequently spread clonally with specific genotypes.
Collapse
|
3
|
Aarestrup FM, Hansen EB, Kumburu HH, Mzee T, Otani S. Improved ability to utilize lactose and grow in milk as a potential explanation for emergence of the novel bovine Staphylococcus aureus ST5477. Int J Med Microbiol 2024; 317:151637. [PMID: 39442481 DOI: 10.1016/j.ijmm.2024.151637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/23/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Staphyloccous aureus belonging to sequence type 5477 have recently been identified as a predominant clone causing bovine mastitis in Rwanda and Tanzania. We compared nine S. aureus ST5477 to 17 isolates belonging to other sequence types by their biochemical profile and ability to acidify milk and grow in minimum media containing lactose. We found that ST5477 isolates all were positive in ONPG (o-nitrophenyl-β-D-galactopyranoside) test and negative for mannitol fermentation potentially challenging the correct identification of this sequence type as S. aureus. In addition, ST5477 isolates were all much faster in acidifying milk and grew faster in minimal media with lactose compared to other strains suggesting an increased lactose utilization and thereby adaptation to the bovine udder environment as a possible reason for the recent successful emergence. Comparison of the lac gene region of the genome of a recently sequenced ST5477 and that of S. aureus reference genome showed that both strains contained the known lacABCD genes involved in the lactose degradation, but that ST5477 had a 12 amino-acid deletion and two amino-acid differences in the lac gene transcription regulator, suggesting that increased transcription might play a role. In conclusion, these preliminary data suggests that improved lactose utilization and the ability to grow faster in milk may have been a key feature for the recent success of ST5477 as a bovine adapted clone.
Collapse
|
4
|
Nzoyikorera N, Nduwimana C, Schuele L, Nieuwenhuijse DF, Koopmans M, Otani S, Aarestrup FM, Ihorimbere T, Niyomwungere D, Ndihokubwayo A, Diawara I, Niyomwungere A, Nizigiyimana D, Uwineza MN, Oude Munnink BB, Nyandwi J. Monkeypox Clade Ib virus introduction into Burundi: first findings, July to mid-August 2024. Euro Surveill 2024; 29:2400666. [PMID: 39421956 PMCID: PMC11487920 DOI: 10.2807/1560-7917.es.2024.29.42.2400666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024] Open
Abstract
We describe cases with monkeypox virus (MPXV) Clade Ib in Burundi from their first detection in July until 20 August 2024. Testing 442 people with vesicular lesions confirmed 170 cases (98 male; 72 female), 82 (48%) being < 15 years old. Differential diagnosis of the first 30 individuals testing MPXV negative revealed chickenpox in 20. Cases occurred in 26 of 49 Burundi health districts, but mostly in Bujumbura Nord (88/170; 67%). Case-derived MPXV genetic sequences from Burundi and South-Kivu (Democratic Republic of the Congo), clustered together in phylogenetic analysis.
Collapse
|
5
|
Becsei Á, Fuschi A, Otani S, Kant R, Weinstein I, Alba P, Stéger J, Visontai D, Brinch C, de Graaf M, Schapendonk CME, Battisti A, De Cesare A, Oliveri C, Troja F, Sironen T, Vapalahti O, Pasquali F, Bányai K, Makó M, Pollner P, Merlotti A, Koopmans M, Csabai I, Remondini D, Aarestrup FM, Munk P. Time-series sewage metagenomics distinguishes seasonal, human-derived and environmental microbial communities potentially allowing source-attributed surveillance. Nat Commun 2024; 15:7551. [PMID: 39215001 PMCID: PMC11364805 DOI: 10.1038/s41467-024-51957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Sewage metagenomics has risen to prominence in urban population surveillance of pathogens and antimicrobial resistance (AMR). Unknown species with similarity to known genomes cause database bias in reference-based metagenomics. To improve surveillance, we seek to recover sewage genomes and develop a quantification and correlation workflow for these genomes and AMR over time. We use longitudinal sewage sampling in seven treatment plants from five major European cities to explore the utility of catch-all sequencing of these population-level samples. Using metagenomic assembly methods, we recover 2332 metagenome-assembled genomes (MAGs) from prokaryotic species, 1334 of which were previously undescribed. These genomes account for ~69% of sequenced DNA and provide insight into sewage microbial dynamics. Rotterdam (Netherlands) and Copenhagen (Denmark) show strong seasonal microbial community shifts, while Bologna, Rome, (Italy) and Budapest (Hungary) have occasional blooms of Pseudomonas-dominated communities, accounting for up to ~95% of sample DNA. Seasonal shifts and blooms present challenges for effective sewage surveillance. We find that bacteria of known shared origin, like human gut microbiota, form communities, suggesting the potential for source-attributing novel species and their ARGs through network community analysis. This could significantly improve AMR tracking in urban environments.
Collapse
|
6
|
Hallgren MB, Clausen PTLC, Aarestrup FM. NanoMGT: Marker gene typing of low complexity mono-species metagenomic samples using noisy long reads. Biol Methods Protoc 2024; 9:bpae057. [PMID: 39262440 PMCID: PMC11387619 DOI: 10.1093/biomethods/bpae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024] Open
Abstract
Rapid advancements in sequencing technologies have led to significant progress in microbial genomics, yet challenges persist in accurately identifying microbial strain diversity in metagenomic samples, especially when working with noisy long-read data from platforms like Oxford Nanopore Technologies (ONT). In this article, we introduce NanoMGT, a tool designed to enhance marker gene typing in low-complexity mono-species samples, leveraging the unique properties of long reads. NanoMGT excels in its ability to accurately identify mutations amidst high error rates, ensuring the reliable detection of multiple strain-specific marker genes. Our tool implements a novel scoring system that rewards mutations co-occurring across different reads and penalizes densely grouped, likely erroneous variants, thereby achieving a good balance between sensitivity and precision. A comparative evaluation of NanoMGT, using a simulated multi-strain sample of seven bacterial species, demonstrated superior performance relative to existing tools and the advantages of using a threshold-based filtering approach to calling minority variants in ONT's sequencing data. NanoMGT's potential as a post-binning tool in metagenomic pipelines is particularly notable, enabling researchers to more accurately determine specific alleles and understand strain diversity in microbial communities. Our findings have significant implications for clinical diagnostics, environmental microbiology, and the broader field of genomics. The findings offer a reliable and efficient approach to marker gene typing in complex metagenomic samples.
Collapse
|
7
|
Schuele L, Masirika LM, Udahemuka JC, Siangoli FB, Mbiribindi JB, Ndishimye P, Aarestrup FM, Koopmans M, Oude Munnink BB, Molenkamp R. Real-time PCR assay to detect the novel Clade Ib monkeypox virus, September 2023 to May 2024. Euro Surveill 2024; 29:2400486. [PMID: 39119722 PMCID: PMC11312019 DOI: 10.2807/1560-7917.es.2024.29.32.2400486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024] Open
Abstract
Monkeypox virus (MPXV) is an emerging zoonotic pathogen with complex epidemiology necessitating rapid diagnosis and distinguishing between clades and subclades. The emerging Clade Ib lacks the genomic region used in the Clade I-specific assay from the Centers for Disease Control and Prevention. We report an MPXV real-time PCR to specifically detect Clade Ib. The assay demonstrated proficient sensitivity and specificity in 92 samples and can be included along other TaqMan-based assays to detect MPXV and distinguish between clades and subclades.
Collapse
|
8
|
Brinch C, Otani S, Munk P, van den Beld M, Franz E, Aarestrup FM. Discovery of Vibrio cholerae in Urban Sewage in Copenhagen, Denmark. MICROBIAL ECOLOGY 2024; 87:102. [PMID: 39085652 PMCID: PMC11291605 DOI: 10.1007/s00248-024-02419-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
We report the discovery of a persistent presence of Vibrio cholerae at very low abundance in the inlet of a single wastewater treatment plant in Copenhagen, Denmark at least since 2015. Remarkably, no environmental or locally transmitted clinical case of V. cholerae has been reported in Denmark for more than 100 years. We, however, have recovered a near-complete genome out of 115 metagenomic sewage samples taken over the past 8 years, despite the extremely low relative abundance of one V. cholerae read out of 500,000 sequenced reads. Due to the very low relative abundance, routine screening of the individual samples did not reveal V. cholerae. The recovered genome lacks the gene responsible for cholerae toxin production, but although this strain may not pose an immediate public health risk, our finding illustrates the importance, challenges, and effectiveness of wastewater-based pathogen surveillance.
Collapse
|
9
|
Szarvas J, Nag S, Otani S, Birkedahl LEK, Møller FD, Asante-Sefa S, Daley D, Gustafson NW, Møller M, Onipede A, Tafaj S, Aarestrup FM. Complete genome sequences of Cytobacillus sp., Domibacillus sp., Enterobacter sp., Neisseria sp., Pseudomonas sp., and Streptococcus sp. strains from human clinical infections collected at diagnostic units in 2020. Microbiol Resour Announc 2024; 13:e0104023. [PMID: 38809034 PMCID: PMC11256767 DOI: 10.1128/mra.01040-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/09/2024] [Indexed: 05/30/2024] Open
Abstract
Members of Bacillota and Pseudomonadota phyla are frequently considered bacterial infectious agents in humans. As part of a large sequencing project of clinically relevant pathogens, we hybrid-assembled complete genomes of Cytobacillus, Domibacillus, Enterobacter, Neisseria, Pseudomonas, and Streptococcus species isolated from clinical specimens.
Collapse
|
10
|
Martiny HM, Munk P, Brinch C, Aarestrup FM, Calle ML, Petersen TN. Utilizing co-abundances of antimicrobial resistance genes to identify potential co-selection in the resistome. Microbiol Spectr 2024; 12:e0410823. [PMID: 38832899 PMCID: PMC11218503 DOI: 10.1128/spectrum.04108-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
The rapid spread of antimicrobial resistance (AMR) is a threat to global health, and the nature of co-occurring antimicrobial resistance genes (ARGs) may cause collateral AMR effects once antimicrobial agents are used. Therefore, it is essential to identify which pairs of ARGs co-occur. Given the wealth of next-generation sequencing data available in public repositories, we have investigated the correlation between ARG abundances in a collection of 214,095 metagenomic data sets. Using more than 6.76∙108 read fragments aligned to acquired ARGs to infer pairwise correlation coefficients, we found that more ARGs correlated with each other in human and animal sampling origins than in soil and water environments. Furthermore, we argued that the correlations could serve as risk profiles of resistance co-occurring to critically important antimicrobials (CIAs). Using these profiles, we found evidence of several ARGs conferring resistance for CIAs being co-abundant, such as tetracycline ARGs correlating with most other forms of resistance. In conclusion, this study highlights the important ARG players indirectly involved in shaping the resistomes of various environments that can serve as monitoring targets in AMR surveillance programs. IMPORTANCE Understanding the collateral effects happening in a resistome can reveal previously unknown links between antimicrobial resistance genes (ARGs). Through the analysis of pairwise ARG abundances in 214K metagenomic samples, we observed that the co-abundance is highly dependent on the environmental context and argue that these correlations can be used to show the risk of co-selection occurring in different settings.
Collapse
|
11
|
Kohle S, Petersen TN, Vigre H, Johansson MHK, Aarestrup FM. Metagenomic analysis of sewage for surveillance of bacterial pathogens: A release experiment to determine sensitivity. PLoS One 2024; 19:e0300733. [PMID: 38753691 PMCID: PMC11098379 DOI: 10.1371/journal.pone.0300733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/04/2024] [Indexed: 05/18/2024] Open
Abstract
Accurate monitoring of gastro-enteric and other diseases in large populations poses a challenge for public health management. Sewage represents a larger population, is freely obtainable and non-subject to ethical approval. Metagenomic sequencing offers simultaneous, multiple-target analysis. However, no study has demonstrated the sensitivity of metagenomics for detecting bacteria in sewage. In this study, we spot-released 1013 colony-forming units (CFU) of Staphyloccus hyicus (non-pathogenetic strain 842J-88). The strain was flushed down a toilet into the sewer in the catchment area of a public wastewater treatment plant (WWTP), serving a population of 36,000 people. Raw sewage was continuously sampled at the WWTP's inlet over 30- and 60-minute intervals for a total period of seven hours. The experiment was conducted twice with one week in-between release days and under comparable weather conditions. For the metagenomics analyses, the pure single isolate of S. hyicus was sequenced, assembled and added to a large database of bacterial reference sequences. All sewage samples were analyzed by shotgun metagenome sequencing and mapped against the reference database. S. hyicus was identified in duplicate samples at both of two release days and these sequence fragment counts served as a proxy to estimate the minimum number of sick people or sensitivity required in order to observe at least one sick person at 95% probability. We found the sensitivity to be in the range 41-140 and 16-36 sick people at release days 1 and 2, respectively. The WWTP normally serves 36,000 people giving a normalized sensitivity in the range of one in 257 to 2,250 persons.
Collapse
|
12
|
Toyting J, Nuanmuang N, Utrarachkij F, Supha N, Thongpanich Y, Leekitcharoenphon P, Aarestrup FM, Sato T, Thapa J, Nakajima C, Suzuki Y. Genomic analysis of Salmonella isolated from canal water in Bangkok, Thailand. Microbiol Spectr 2024; 12:e0421623. [PMID: 38563788 PMCID: PMC11064549 DOI: 10.1128/spectrum.04216-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Antimicrobial resistance (AMR) poses an escalating global public health threat. Canals are essential in Thailand, including the capital city, Bangkok, as agricultural and daily water sources. However, the characteristic and antimicrobial-resistance properties of the bacteria in the urban canals have never been elucidated. This study employed whole genome sequencing to characterize 30 genomes of a causal pathogenic bacteria, Salmonella enterica, isolated from Bangkok canal water between 2016 and 2020. The dominant serotype was Salmonella Agona. In total, 35 AMR genes and 30 chromosomal-mediated gene mutations were identified, in which 21 strains carried both acquired genes and mutations associated with fluoroquinolone resistance. Virulence factors associated with invasion, adhesion, and survival during infection were detected in all study strains. 75.9% of the study stains were multidrug-resistant and all the strains harbored the necessary virulence factors associated with salmonellosis. One strain carried 20 resistance genes, including mcr-3.1, mutations in GyrA, ParC, and ParE, and typhoid toxin-associated genes. Fifteen plasmid replicon types were detected, with Col(pHAD28) being the most common type. Comparative analysis of nine S. Agona from Bangkok and 167 from public databases revealed that specific clonal lineages of S. Agona might have been circulating between canal water and food sources in Thailand and globally. These findings provide insight into potential pathogens in the aquatic ecosystem and support the inclusion of environmental samples into comprehensive AMR surveillance initiatives as part of a One Health approach. This approach aids in comprehending the rise and dissemination of AMR and devising sustainable intervention strategies.IMPORTANCEBangkok is the capital city of Thailand and home to a large canal network that serves the city in various ways. The presence of pathogenic and antimicrobial-resistant Salmonella is alarming and poses a significant public health risk. The present study is the first characterization of the genomic of Salmonella strains from Bangkok canal water. Twenty-two of 29 strains (75.9%) were multidrug-resistant Salmonella and all the strains carried essential virulence factors for pathogenesis. Various plasmid types were identified in these strains, potentially facilitating the horizontal transfer of AMR genes. Additional investigations indicated a potential circulation of S. Agona between canal water and food sources in Thailand. The current study underscores the role of environmental water in an urban city as a reservoir of pathogens and these data obtained can serve as a basis for public health risk assessment and help shape intervention strategies to combat AMR challenges in Thailand.
Collapse
|
13
|
Munk P, Yang D, Röder T, Maier L, Petersen TN, Duarte ASR, Clausen PTLC, Brinch C, Van Gompel L, Luiken R, Wagenaar JA, Schmitt H, Heederik DJJ, Mevius DJ, Smit LAM, Bossers A, Aarestrup FM. The European livestock resistome. mSystems 2024; 9:e0132823. [PMID: 38501800 PMCID: PMC11019871 DOI: 10.1128/msystems.01328-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
Metagenomic sequencing has proven to be a powerful tool in the monitoring of antimicrobial resistance (AMR). Here, we provide a comparative analysis of the resistome from pigs, poultry, veal calves, turkey, and rainbow trout, for a total of 538 herds across nine European countries. We calculated the effects of per-farm management practices and antimicrobial usage (AMU) on the resistome in pigs, broilers, and veal calves. We also provide an in-depth study of the associations between bacterial diversity, resistome diversity, and AMR abundances as well as co-occurrence analysis of bacterial taxa and antimicrobial resistance genes (ARGs) and the universality of the latter. The resistomes of veal calves and pigs clustered together, as did those of avian origin, while the rainbow trout resistome was different. Moreover, we identified clear core resistomes for each specific food-producing animal species. We identified positive associations between bacterial alpha diversity and both resistome alpha diversity and abundance. Network analyses revealed very few taxa-ARG associations in pigs but a large number for the avian species. Using updated reference databases and optimized bioinformatics, previously reported significant associations between AMU, biosecurity, and AMR in pig and poultry farms were validated. AMU is an important driver for AMR; however, our integrated analyses suggest that factors contributing to increased bacterial diversity might also be associated with higher AMR load. We also found that dispersal limitations of ARGs are shaping livestock resistomes, and future efforts to fight AMR should continue to emphasize biosecurity measures.IMPORTANCEUnderstanding the occurrence, diversity, and drivers for antimicrobial resistance (AMR) is important to focus future control efforts. So far, almost all attempts to limit AMR in livestock have addressed antimicrobial consumption. We here performed an integrated analysis of the resistomes of five important farmed animal populations across Europe finding that the resistome and AMR levels are also shaped by factors related to bacterial diversity, as well as dispersal limitations. Thus, future studies and interventions aimed at reducing AMR should not only address antimicrobial usage but also consider other epidemiological and ecological factors.
Collapse
|
14
|
Karlsmose AK, Ivanova M, Kragh ML, Kjeldgaard JS, Otani S, Svendsen CA, Papić B, Zdovc I, Tasara T, Stephan R, Heir E, Langsrud S, Møretrø T, Dalgaard P, Fagerlund A, Hansen LT, Aarestrup FM, Leekitcharoenphon P. A novel metagenomic approach uncovers phage genes as markers for increased disinfectant tolerance in mixed Listeria monocytogenes communities. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 119:105582. [PMID: 38467173 DOI: 10.1016/j.meegid.2024.105582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Listeria monocytogenes is an important human pathogen with a high mortality rate. Consumption of contaminated ready-to-eat food is the main mode of transmission to humans. Disinfectant-tolerant L. monocytogenes have emerged, which are believed to have increased persistence potential. Elucidating the mechanisms of L. monocytogenes disinfectant tolerance has been the focus of previous studies using pure cultures. A limitation of such approach is the difficulty to identify strains with reduced susceptibility due to inter-strain variation and the need to screen large numbers of strains and genes. In this study, we applied a novel metagenomic approach to detect genes associated with disinfectant tolerance in mixed L. monocytogenes planktonic communities. Two communities, consisting of 71 and 80 isolates each, were treated with the food industry disinfectants benzalkonium chloride (BC, 1.75 mg/L) or peracetic acid (PAA, 38 mg/L). The communities were subjected to metagenomic sequencing and differences in individual gene abundances between biocide-free control communities and biocide-treated communities were determined. A significant increase in the abundance of Listeria phage-associated genes was observed in both communities after treatment, suggesting that prophage carriage could lead to an increased disinfectant tolerance in mixed L. monocytogenes planktonic communities. In contrast, a significant decrease in the abundance of a high-copy emrC-harbouring plasmid pLmN12-0935 was observed in both communities after treatment. In PAA-treated community, a putative ABC transporter previously found to be necessary for L. monocytogenes resistance to antimicrobial agents and virulence, was among the genes with the highest weight for differentiating treated from control samples. The undertaken metagenomic approach in this study can be applied to identify genes associated with increased tolerance to other antimicrobials in mixed bacterial communities.
Collapse
|
15
|
Roer L, Kaya H, Tedim AP, Novais C, Coque TM, Aarestrup FM, Peixe L, Hasman H, Hammerum AM, Freitas AR. VirulenceFinder for Enterococcus faecium and Enterococcus lactis: an enhanced database for detection of putative virulence markers by using whole-genome sequencing data. Microbiol Spectr 2024; 12:e0372423. [PMID: 38329344 PMCID: PMC10913372 DOI: 10.1128/spectrum.03724-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/20/2024] [Indexed: 02/09/2024] Open
Abstract
Enterococcus faecium (Efm) is a leading cause of hospital-associated (HA) infections, often enriched in putative virulence markers (PVMs). Recently, the Efm clade B was assigned as Enterococcus lactis (Elts), which usually lack HA-Efm infection markers. Available databases for extracting PVM are incomplete and/or present an intermix of genes from Efm and Enterococcus faecalis, with distinct virulence profiles. In this study, we constructed a new database containing 27 PVMs [acm, scm, sgrA, ecbA, fnm, sagA, hylEfm, ptsD, orf1481, fms15, fms21-fms20 (pili gene cluster 1, PGC-1), fms14-fms17-fms13 (PGC-2), empA-empB-empC (PGC-3), fms11-fms19-fms16 (PGC-4), ccpA, bepA, gls20-glsB1, and gls33-glsB] from nine reference genomes (seven Efm + two Elts). The database was validated against these reference genomes and further evaluated using a collection of well-characterized Efm (n = 43) and Elts (n = 7) control strains, by assessing PVM presence/absence and its variants together with a genomic phylogeny constructed as single-nucleotide polymorphisms. We found a high concordance between the phylogeny and in silico findings of the PVM, with Elts clustering separately and mostly carrying Elts-specific PVM gene variants. Based on our validation results, we recommend using the database with raw reads instead of assemblies to avoid missing gene variants. This newly constructed database of 27 PVMs will enable a more comprehensive characterization of Efm and Elts based on WGS data. The developed database exhibits scalability and boasts a range of applications in public health, including diagnostics, outbreak investigations, and epidemiological studies. It can be further used in risk assessment for distinguishing between safe and unsafe enterococci.IMPORTANCEThe newly constructed database, consisting of 27 putative virulence markers, is highly scalable and serves as a valuable resource for the comprehensive characterization of these closely related species using WGS data. It holds significant potential for various public health applications, including hospital outbreak investigations, surveillance, and risk assessment for probiotics and feed additives.
Collapse
|
16
|
Martiny HM, Pyrounakis N, Petersen TN, Lukjančenko O, Aarestrup FM, Clausen PTLC, Munk P. ARGprofiler-a pipeline for large-scale analysis of antimicrobial resistance genes and their flanking regions in metagenomic datasets. Bioinformatics 2024; 40:btae086. [PMID: 38377397 PMCID: PMC10918635 DOI: 10.1093/bioinformatics/btae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/11/2023] [Accepted: 02/19/2024] [Indexed: 02/22/2024] Open
Abstract
MOTIVATION Analyzing metagenomic data can be highly valuable for understanding the function and distribution of antimicrobial resistance genes (ARGs). However, there is a need for standardized and reproducible workflows to ensure the comparability of studies, as the current options involve various tools and reference databases, each designed with a specific purpose in mind. RESULTS In this work, we have created the workflow ARGprofiler to process large amounts of raw sequencing reads for studying the composition, distribution, and function of ARGs. ARGprofiler tackles the challenge of deciding which reference database to use by providing the PanRes database of 14 078 unique ARGs that combines several existing collections into one. Our pipeline is designed to not only produce abundance tables of genes and microbes but also to reconstruct the flanking regions of ARGs with ARGextender. ARGextender is a bioinformatic approach combining KMA and SPAdes to recruit reads for a targeted de novo assembly. While our aim is on ARGs, the pipeline also creates Mash sketches for fast searching and comparisons of sequencing runs. AVAILABILITY AND IMPLEMENTATION The ARGprofiler pipeline is a Snakemake workflow that supports the reuse of metagenomic sequencing data and is easily installable and maintained at https://github.com/genomicepidemiology/ARGprofiler.
Collapse
|
17
|
Masirika LM, Udahemuka JC, Schuele L, Ndishimye P, Otani S, Mbiribindi JB, Marekani JM, Mambo LM, Bubala NM, Boter M, Nieuwenhuijse DF, Lang T, Kalalizi EB, Musabyimana JP, Aarestrup FM, Koopmans M, Oude Munnink BB, Siangoli FB. Ongoing mpox outbreak in Kamituga, South Kivu province, associated with monkeypox virus of a novel Clade I sub-lineage, Democratic Republic of the Congo, 2024. Euro Surveill 2024; 29:2400106. [PMID: 38487886 PMCID: PMC10941309 DOI: 10.2807/1560-7917.es.2024.29.11.2400106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/13/2024] [Indexed: 03/17/2024] Open
Abstract
Since the beginning of 2023, the number of people with suspected monkeypox virus (MPXV) infection have sharply increased in the Democratic Republic of the Congo (DRC). We report near-to-complete MPXV genome sequences derived from six cases from the South Kivu province. Phylogenetic analyses reveal that the MPXV affecting the cases belongs to a novel Clade I sub-lineage. The outbreak strain genome lacks the target sequence of the probe and primers of a commonly used Clade I-specific real-time PCR.
Collapse
|
18
|
Leekitcharoenphon P, Otani S, Szarvas J, Mzee T, Kumburu H, Møller FD, Aarestrup FM. The first complete genome sequence of Staphylococcus aureus ST5477. Microbiol Resour Announc 2024; 13:e0100423. [PMID: 38179915 PMCID: PMC10868164 DOI: 10.1128/mra.01004-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
This study presents the first complete genome of Staphylococcus aureus ST5477, one of the most common sequence types (ST) from bovine in eastern Africa. The genome consists of a 2,723,132-bp circular chromosome and a 3,044-bp plasmid. This strain was collected in 2017 from cow milk in Tanzania.
Collapse
|
19
|
Gmeiner A, Njage PMK, Hansen LT, Aarestrup FM, Leekitcharoenphon P. Predicting Listeria monocytogenes virulence potential using whole genome sequencing and machine learning. Int J Food Microbiol 2024; 410:110491. [PMID: 38000216 DOI: 10.1016/j.ijfoodmicro.2023.110491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/06/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023]
Abstract
Contamination with food-borne pathogens, such as Listeria monocytogenes, remains a big concern for food safety. Hence, rigorous and continuous microbial surveillance is a standard procedure. At this point, however, the food industry and authorities only focus on detection of Listeria monocytogenes without characterization of individual strains into groups of more or less concern. As whole genome sequencing (WGS) gains increasing interest in the industry, this methodology presents an opportunity to obtain finer resolution of microbial traits such as virulence. Within this study, we therefore aimed to explore the use of WGS in combination with Machine Learning (ML) to predict L. monocytogenes virulence potential on a sub-species level. The WGS datasets used in this study for ML model training consisted of i) national surveillance isolates (n = 169, covering 38 MLST types) and ii) publicly available isolates acquired through the GenomeTrakr network (n = 2880, spanning 80 MLST types). We used the clinical frequency, i.e., ratio of the number of clinical isolates to total amount of isolates, as estimate for virulence potential. The predictive performance of input features from three different genomic levels (i.e., virulence genes, pan-genome genes, and single nucleotide polymorphisms (SNPs)) and six machine learning algorithms (i.e., Support Vector Machine with a linear kernel, Support Vector Machine with a radial kernel, Random Forrest, Neural Networks, LogitBoost, and Majority Voting) were compared. Our machine learning models predicted sub-species virulence potential with nested cross-validation F1-scores up to 0.88 for the majority voting classifier trained on national surveillance data and using pan-genome genes as input features. The validation of the pre-trained ML models based on 101 previously in vivo studied isolates resulted in F1-scores up to 0.76. Furthermore, we found that the more rapid and less computationally intensive raw read alignment yields comparably accurate models as de novo assembly. The results of our study suggest that a majority voting classifier trained on pan-genome genes is the best and most robust choice for the prediction of clinical frequency. Our study contributes to more rapid and precise characterization of L. monocytogenes virulence and its variation on a sub-species level. We further demonstrated a possible application of WGS data in the context of microbial hazard characterization for food safety. In the future, predictive models may assist case-specific microbial risk management in the food industry. The python code, pre-trained models, and prediction pipeline are deposited at (https://github.com/agmei/LmonoVirulenceML).
Collapse
|
20
|
Bogri A, Jensen EEB, Borchert AV, Brinch C, Otani S, Aarestrup FM. Transmission of antimicrobial resistance in the gut microbiome of gregarious cockroaches: the importance of interaction between antibiotic exposed and non-exposed populations. mSystems 2024; 9:e0101823. [PMID: 38095429 PMCID: PMC10805027 DOI: 10.1128/msystems.01018-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/17/2023] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance (AMR) is a major global health concern, further complicated by its spread via the microbiome bacterial members. While mathematical models discuss AMR transmission through the symbiotic microbiome, experimental studies are scarce. Herein, we used a gregarious cockroach, Pycnoscelus surinamensis, as an in vivo animal model for AMR transmission investigations. We explored whether the effect of antimicrobial treatment is detectable with metagenomic sequencing, and whether AMR genes can be spread and established in unchallenged (not treated with antibiotics) individuals following contact with treated donors, and under various frequencies of interaction. Gut and soil substrate microbiomes were investigated by metagenomic sequencing for bacterial community composition and resistome profiling. We found that tetracycline treatment altered the treated gut microbiome by decreasing bacterial diversity and increasing the abundance of tetracycline resistance genes. Untreated cockroaches that interacted with treated donors also had elevated tetracycline resistance. The levels of resistance differed depending on the magnitude and frequency of donor transfer. Additionally, treated donors showed signs of microbiome recovery due to their interaction with the untreated ones. Similar patterns were also recorded in the soil substrate microbiomes. Our results shed light on how interacting microbiomes facilitate AMR gene transmission to previously unchallenged hosts, a dynamic influenced by the interaction frequencies, using an in vivo model to validate theoretical AMR transmission models.IMPORTANCEAntimicrobial resistance is a rising threat to human and animal health. The spread of resistance through the transmission of the symbiotic gut microbiome is of concern and has been explored in theoretical modeling studies. In this study, we employ gregarious insect populations to examine the emergence and transmission of antimicrobial resistance in vivo and validate modeling hypotheses. We find that antimicrobial treatment increases the levels of resistance in treated populations. Most importantly, we show that resistance increased in untreated populations after interacting with the treated ones. The level of resistance transmission was affected by the magnitude and frequency of population mixing. Our results highlight the importance of microbial transmission in the spread of antimicrobial resistance.
Collapse
|
21
|
Thorn AV, Aarestrup FM, Munk P. Flankophile: a bioinformatic pipeline for prokaryotic genomic synteny analysis. Microbiol Spectr 2024; 12:e0241323. [PMID: 38084973 PMCID: PMC10783016 DOI: 10.1128/spectrum.02413-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE The Flankophile pipeline enables the analysis and visualization of flanking regions of prokaryotic sequences of interest on large data sets in one step and in a consistent manner. A specific tool for flanking region analysis with automated visualization has not been developed before, and Flankophile will make flanking region analysis easier and accessible to more people. Flankophile will be especially useful in the field of genomic epidemiology of acquired antimicrobial resistance genes. Here, information from flanking region sequences can be instrumental in rejecting or supporting the possibility of a recent common source of the same resistance gene found in different samples.
Collapse
|
22
|
Lu L, Zhang F, Oude Munnink BB, Munger E, Sikkema RS, Pappa S, Tsioka K, Sinigaglia A, Dal Molin E, Shih BB, Günther A, Pohlmann A, Ziegler U, Beer M, Taylor RA, Bartumeus F, Woolhouse M, Aarestrup FM, Barzon L, Papa A, Lycett S, Koopmans MPG. West Nile virus spread in Europe: Phylogeographic pattern analysis and key drivers. PLoS Pathog 2024; 20:e1011880. [PMID: 38271294 PMCID: PMC10810478 DOI: 10.1371/journal.ppat.1011880] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND West Nile virus (WNV) outbreaks in birds, humans, and livestock have occurred in multiple areas in Europe and have had a significant impact on animal and human health. The patterns of emergence and spread of WNV in Europe are very different from those in the US and understanding these are important for guiding preparedness activities. METHODS We mapped the evolution and spread history of WNV in Europe by incorporating viral genome sequences and epidemiological data into phylodynamic models. Spatially explicit phylogeographic models were developed to explore the possible contribution of different drivers to viral dispersal direction and velocity. A "skygrid-GLM" approach was used to identify how changes in environments would predict viral genetic diversity variations over time. FINDINGS Among the six lineages found in Europe, WNV-2a (a sub-lineage of WNV-2) has been predominant (accounting for 73% of all sequences obtained in Europe that have been shared in the public domain) and has spread to at least 14 countries. In the past two decades, WNV-2a has evolved into two major co-circulating clusters, both originating from Central Europe, but with distinct dynamic history and transmission patterns. WNV-2a spreads at a high dispersal velocity (88km/yr-215 km/yr) which is correlated to bird movements. Notably, amongst multiple drivers that could affect the spread of WNV, factors related to land use were found to strongly influence the spread of WNV. Specifically, the intensity of agricultural activities (defined by factors related to crops and livestock production, such as coverage of cropland, pasture, cultivated and managed vegetation, livestock density) were positively associated with both spread direction and velocity. In addition, WNV spread direction was associated with high coverage of wetlands and migratory bird flyways. CONCLUSION Our results suggest that-in addition to ecological conditions favouring bird- and mosquito- presence-agricultural land use may be a significant driver of WNV emergence and spread. Our study also identified significant gaps in data and the need to strengthen virological surveillance in countries of Central Europe from where WNV outbreaks are likely seeded. Enhanced monitoring for early detection of further dispersal could be targeted to areas with high agricultural activities and habitats of migratory birds.
Collapse
|
23
|
Bonaldo F, Avot BJP, De Cesare A, Aarestrup FM, Otani S. Foodborne Pathogen Dynamics in Meat and Meat Analogues Analysed Using Traditional Microbiology and Metagenomic Sequencing. Antibiotics (Basel) 2023; 13:16. [PMID: 38275326 PMCID: PMC10812575 DOI: 10.3390/antibiotics13010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Meat analogues play an increasing role in meeting global nutritional needs. However, while it is well known that meat possesses inherent characteristics that create favourable conditions for the growth of various pathogenic bacteria, much less is known about meat analogues. This study aimed to compare the growth and survival of Escherichia coli HEHA16, Listeria monocytogenes, Salmonella enterica Typhi, Cronobacter sakazakii, and a cocktail of these bacteria in sterile juices from minced chicken, pig, and beef, as well as pea-based and soy-based minced meat. Traditional microbiology and next-generation sequencing of those metagenomes were employed to analyse the pathogen variability, abundance, and survival after an incubation period. Our findings show that all the meat juices provided favourable conditions for the growth and proliferation of the studied bacteria, with the exception of E. coli HEHA16, which showed lower survival rates in the chicken matrix. Meat analogue juice mainly supported L. monocytogenes survival, with C. sakazakii survival supported to a lesser extent. A correlation was observed between the traditional culturing and metagenomic analysis results, suggesting that further work is needed to compare these technologies in foodborne setups. Our results indicate that plant-based meats could serve as vectors for the transmission of certain, but likely not all, foodborne pathogens, using two accurate detection methods. This warrants the need for additional research to better understand and characterise their safety implications, including their potential association with additional pathogens.
Collapse
|
24
|
Lepper HC, Perry MR, Wee BA, Wills D, Nielsen H, Otani S, Simon M, Aarestrup FM, Woolhouse MEJ, van Bunnik BAD. Distinctive hospital and community resistomes in Scottish urban wastewater: Metagenomics of a paired wastewater sampling design. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165978. [PMID: 37544442 DOI: 10.1016/j.scitotenv.2023.165978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/08/2023]
Abstract
The wastewater microbiome contains a multitude of resistant bacteria of human origin, presenting an opportunity for surveillance of resistance in the general population. However, wastewater microbial communities are also influenced by clinical sources, such as hospitals. Identifying signatures of the community and hospital resistome in wastewater is needed for interpretation and risk analysis. In this study, we compare the resistome and microbiome of hospital, community, and mixed municipal wastewater to investigate how and why the composition of these different sites differ. We conducted shotgun metagenomic analysis on wastewater samples from eight wastewater treatment plants (WWTPs), four hospitals, and four community sites in Scotland, using a paired sampling design. Cluster analysis and source attribution random forest models demonstrated that the hospital resistome was distinct from community and WWTP resistomes. Hospital wastewater had a higher abundance and diversity of resistance genes, in keeping with evidence that hospitals act as a reservoir and enricher of resistance. However, this distinctive 'hospital' signature appeared to be weak in the resistome of downstream WWTPs, likely due to dilution. We conclude that hospital and community wastewater resistomes differ, with the hospital wastewater representing a reservoir of patient- and hospital environment-associated bacteria. However, this 'hospital' signature is transient and does not overwhelm the community signature in the resistome of the downstream WWTP influent.
Collapse
|
25
|
Apenteng OO, Aarestrup FM, Vigre H. Modelling the effectiveness of surveillance based on metagenomics in detecting, monitoring, and forecasting antimicrobial resistance in livestock production under economic constraints. Sci Rep 2023; 13:20410. [PMID: 37990114 PMCID: PMC10663573 DOI: 10.1038/s41598-023-47754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
Current surveillance of antimicrobial resistance (AMR) is mostly based on testing indicator bacteria using minimum inhibitory concentration (MIC) panels. Metagenomics has the potential to identify all known antimicrobial resistant genes (ARGs) in complex samples and thereby detect changes in the occurrence earlier. Here, we simulate the results of an AMR surveillance program based on metagenomics in the Danish pig population. We modelled both an increase in the occurrence of ARGs and an introduction of a new ARG in a few farms and the subsequent spread to the entire population. To make the simulation realistic, the total cost of the surveillance was constrained, and the sampling schedule was set at one pool per month with 5, 20, 50, or 100 samples. Our simulations demonstrate that a pool of 20-50 samples and a sequencing depth of 250 million fragments resulted in the shortest time to detection in both scenarios, with a time delay to detection of change of [Formula: see text]15 months in all scenarios. Compared with culture-based surveillance, our simulation indicates that there are neither significant reductions nor increases in time to detect a change using metagenomics. The benefit of metagenomics is that it is possible to monitor all known resistance in one sampling and laboratory procedure in contrast to the current monitoring that is based on the phenotypic characterisation of selected indicator bacterial species. Therefore, overall changes in AMR in a population will be detected earlier using metagenomics due to the fact that the resistance gene does not have to be transferred to and expressed by an indicator bacteria before it is possible to detect.
Collapse
|