1
|
Walker RC, Pezeshki P, Barman S, Ngan S, Whyte G, Lagergren J, Gossage J, Kelly M, Baker C, Knight W, West MA, Davies AR. Exercise During Chemotherapy for Cancer: A Systematic Review. J Surg Oncol 2024. [PMID: 39444237 DOI: 10.1002/jso.27845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 10/25/2024]
Abstract
Exercise prehabilitation may improve the tolerance and effectiveness of anticancer treatments such as chemotherapy. This systematic review assesses the impact of exercise on chemotherapy outcomes and identifies research priorities. Nineteen studies (1418 patients) were reviewed, including 11 randomised controlled trials and eight observational studies. Exercise led to improvements in body composition, fitness, strength and quality of life (QoL) across studies. Exercise can be safely and effectively delivered during chemotherapy. Limited standardisation and small sample sizes highlight the need for larger, better-designed studies to optimise this low-cost intervention.
Collapse
|
2
|
Cantwell C, McGrath JS, Smith CA, Whyte G. Image-Based Feedback of Multi-Component Microdroplets for Ultra-Monodispersed Library Preparation. MICROMACHINES 2023; 15:27. [PMID: 38258146 PMCID: PMC10820162 DOI: 10.3390/mi15010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
Using devices with microfluidic channels can allow for precise control over liquids flowing through them. Merging flows of immiscible liquids can create emulsions with highly monodispersed microdroplets within a carrier liquid, which are ideal for miniaturised reaction vessels which can be generated with a high throughput of tens of thousands of droplets per second. Control of the size and composition of these droplets is generally performed by controlling the pumping system pushing the liquids into the device; however, this is an indirect manipulation and inadequate if absolute precision is required in the size or composition of the droplets. In this work, we extend the previous development of image-based closed-loop feedback control over microdroplet generation to allow for the control of not only the size of droplets but also the composition by merging two aqueous flows. The feedback allows direct control over the desired parameters of volume and ratio of the two components over a wide range of ratios and outperforms current techniques in terms of monodispersity in volume and composition. This technique is ideal for situations where precise control over droplets is critical, or where a library of droplets of different concentrations but the same volume is required.
Collapse
|
3
|
Buck E, Burt J, Karampatsas K, Hsia Y, Whyte G, Amirthalingam G, Skirrow H, Le Doare K. 'Unable to have a proper conversation over the phone about my concerns': a multimethods evaluation of the impact of COVID-19 on routine childhood vaccination services in London, UK. Public Health 2023; 225:229-236. [PMID: 37944278 DOI: 10.1016/j.puhe.2023.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVES Investigating the completion rate of 12-month vaccinations and parental perspectives on vaccine services during COVID-19. STUDY-DESIGN Service evaluation including parental questionnaire. METHODS Uptake of 12-month vaccinations in three London general practices during three periods: pre-COVID (1/3/2018-28/2/2019, n = 826), during COVID (1/3/2019-28/2/2020, n = 775) and post-COVID first wave (1/8/2020-31/1/2021, n = 419). Questionnaire of parents whose children were registered at the practices (1/4/2019-1/22/2021, n = 1350). RESULTS Comparing pre-COVID and both COVID cohorts, the completion rates of 12-month vaccines were lower. Haemophilus influenzae type B/meningococcal group C (Hib/MenC) vaccination uptake was 5.6% lower (89.0% vs 83.4%, P=<0.001), meningococcal group B (MenB) booster uptake was 4.4% lower (87.3% vs 82.9%, P = 0.006), pneumococcal conjugate vaccine (PCV) booster uptake was 6% lower (88.0% vs 82.0%, P < 0.001) and measles, mumps and rubella (MMR) vaccine uptake was 5.2% lower (89.1% vs 83.9%, P = 0.003). Black/Black-British ethnicity children had increased odds of missing their 12-month vaccinations compared to White ethnicity children (adjusted odds ratio 0.43 [95% confidence interval 0.24-0.79, P = 0.005; 0.36 [0.20-0.65], P < 0.001; 0.48 [0.27-0.87], P = 0.01; 0.40 [0.22-0.73], P = 0.002; for Hib/MenC, MenB booster, PCV booster and MMR. Comparing pre-COVID and COVID periods, vaccinations coded as not booked increased for MMR (10%), MenB (7%) and PCV booster (8%). Parents reported changes to vaccination services during COVID-19, including difficulties booking and attending appointments and lack of vaccination reminders. CONCLUSION A sustained decrease in 12-month childhood vaccination uptake disproportionally affected Black/Black British ethnicity infants during the first wave of the pandemic. Vaccination reminders and availability of healthcare professionals to discuss parental vaccine queries are vital to maintaining uptake.
Collapse
|
4
|
Kermanizadeh A, Valli J, Sanchez K, Hutter S, Pawlowska A, Whyte G, Moritz W, Stone V. Particulate and drug-induced toxicity assessed in novel quadruple cell human primary hepatic disease models of steatosis and pre-fibrotic NASH. Arch Toxicol 2021; 96:287-303. [PMID: 34668024 PMCID: PMC8748349 DOI: 10.1007/s00204-021-03181-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 10/28/2022]
Abstract
In an effort to replace, reduce and refine animal experimentation, there is an unmet need to advance current in vitro models that offer features with physiological relevance and enhanced predictivity of in vivo toxicological output. Hepatic toxicology is key following chemical, drug and nanomaterials (NMs) exposure, as the liver is vital in metabolic detoxification of chemicals as well as being a major site of xenobiotic accumulation (i.e., low solubility particulates). With the ever-increasing production of NMs, there is a necessity to evaluate the probability of consequential adverse effects, not only in health but also in clinically asymptomatic liver, as part of risk stratification strategies. In this study, two unique disease initiation and maintenance protocols were developed and utilised to mimic steatosis and pre-fibrotic NASH in scaffold-free 3D liver microtissues (MT) composed of primary human hepatocytes, hepatic stellate cells, Kupffer cells and sinusoidal endothelial cells. The characterized diseased MT were utilized for the toxicological assessment of a panel of xenobiotics. Highlights from the study included: 1. Clear experimental evidence for the pre-existing liver disease is important in the augmentation of xenobiotic-induced hepatotoxicity and 2. NMs are able to activate stellate cells. The data demonstrated that pre-existing disease is vital in the intensification of xenobiotic-induced liver damage. Therefore, it is imperative that all stages of the wide spectrum of liver disease are incorporated in risk assessment strategies. This is of significant consequence, as a substantial number of the general population suffer from sub-clinical liver injury without any apparent or diagnosed manifestations.
Collapse
|
5
|
Choudhury D, McNicholl DK, Repetti A, Gris-Sánchez I, Li S, Phillips DB, Whyte G, Birks TA, Wiaux Y, Thomson RR. Computational optical imaging with a photonic lantern. Nat Commun 2020; 11:5217. [PMID: 33060608 PMCID: PMC7562926 DOI: 10.1038/s41467-020-18818-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/10/2020] [Indexed: 11/24/2022] Open
Abstract
The thin and flexible nature of optical fibres often makes them the ideal technology to view biological processes in-vivo, but current microendoscopic approaches are limited in spatial resolution. Here, we demonstrate a route to high resolution microendoscopy using a multicore fibre (MCF) with an adiabatic multimode-to-single-mode “photonic lantern” transition formed at the distal end by tapering. We show that distinct multimode patterns of light can be projected from the output of the lantern by individually exciting the single-mode MCF cores, and that these patterns are highly stable to fibre movement. This capability is then exploited to demonstrate a form of single-pixel imaging, where a single pixel detector is used to detect the fraction of light transmitted through the object for each multimode pattern. A custom computational imaging algorithm we call SARA-COIL is used to reconstruct the object using only the pre-measured multimode patterns themselves and the detector signals. Here, the authors demonstrate a route to high resolution microendoscopy using a multicore fibre with a photonic lantern. They show that distinct multimode patterns of light can be projected from the output of the lantern by individually exciting the single-mode MCF cores, whose patterns are highly stable to fibre movement.
Collapse
|
6
|
Sesen M, Whyte G. Image-Based Single Cell Sorting Automation in Droplet Microfluidics. Sci Rep 2020; 10:8736. [PMID: 32457421 PMCID: PMC7250914 DOI: 10.1038/s41598-020-65483-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
The recent boom in single-cell omics has brought researchers one step closer to understanding the biological mechanisms associated with cell heterogeneity. Rare cells that have historically been obscured by bulk measurement techniques are being studied by single cell analysis and providing valuable insight into cell function. To support this progress, novel upstream capabilities are required for single cell preparation for analysis. Presented here is a droplet microfluidic, image-based single-cell sorting technique that is flexible and programmable. The automated system performs real-time dual-camera imaging (brightfield & fluorescent), processing, decision making and sorting verification. To demonstrate capabilities, the system was used to overcome the Poisson loading problem by sorting for droplets containing a single red blood cell with 85% purity. Furthermore, fluorescent imaging and machine learning was used to load single K562 cells amongst clusters based on their instantaneous size and circularity. The presented system aspires to replace manual cell handling techniques by translating expert knowledge into cell sorting automation via machine learning algorithms. This powerful technique finds application in the enrichment of single cells based on their micrographs for further downstream processing and analysis.
Collapse
|
7
|
Guzniczak E, Otto O, Whyte G, Willoughby N, Jimenez M, Bridle H. Correction: Deformability-induced lift force in spiral microchannels for cell separation. LAB ON A CHIP 2020; 20:1877. [PMID: 32342962 DOI: 10.1039/d0lc90036b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Correction for 'Deformability-induced lift force in spiral microchannels for cell separation' by Ewa Guzniczak et al., Lab Chip, 2020, 20, 614-625.
Collapse
|
8
|
Guzniczak E, Otto O, Whyte G, Chandra T, Robertson NA, Willoughby N, Jimenez M, Bridle H. Purifying stem cell-derived red blood cells: a high-throughput label-free downstream processing strategy based on microfluidic spiral inertial separation and membrane filtration. Biotechnol Bioeng 2020; 117:2032-2045. [PMID: 32100873 PMCID: PMC7383897 DOI: 10.1002/bit.27319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Cell-based therapeutics, such as in vitro manufactured red blood cells (mRBCs), are different to traditional biopharmaceutical products (the final product being the cells themselves as opposed to biological molecules such as proteins) and that presents a challenge of developing new robust and economically feasible manufacturing processes, especially for sample purification. Current purification technologies have limited throughput, rely on expensive fluorescent or magnetic immunolabeling with a significant (up to 70%) cell loss and quality impairment. To address this challenge, previously characterized mechanical properties of umbilical cord blood CD34+ cells undergoing in vitro erythropoiesis were used to develop an mRBC purification strategy. The approach consists of two main stages: (a) a microfluidic separation using inertial focusing for deformability-based sorting of enucleated cells (mRBC) from nuclei and nucleated cells resulting in 70% purity and (b) membrane filtration to enhance the purity to 99%. Herein, we propose a new route for high-throughput (processing millions of cells/min and mls of medium/min) purification process for mRBC, leading to high mRBC purity while maintaining cell integrity and no alterations in their global gene expression profile. Further adaption of this separation approach offers a potential route for processing of a wide range of cellular products.
Collapse
|
9
|
Guzniczak E, Otto O, Whyte G, Willoughby N, Jimenez M, Bridle H. Deformability-induced lift force in spiral microchannels for cell separation. LAB ON A CHIP 2020; 20:614-625. [PMID: 31915780 DOI: 10.1039/c9lc01000a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cell sorting and isolation from a heterogeneous mixture is a crucial task in many aspects of cell biology, biotechnology and medicine. Recently, there has been an interest in methods allowing cell separation upon their intrinsic properties such as cell size and deformability, without the need for use of biochemical labels. Inertial focusing in spiral microchannels has been recognised as an attractive approach for high-throughput cell sorting for myriad point of care and clinical diagnostics. Particles of different sizes interact to a different degree with the fluid flow pattern generated within the spiral microchannel and that leads to particles ordering and separation based on size. However, the deformable nature of cells adds complexity to their ordering within the spiral channels. Herein, an additional force, deformability-induced lift force (FD), involved in the cell focusing mechanism within spiral microchannels has been identified, investigated and reported for the first time, using a cellular deformability model (where the deformability of cells is gradually altered using chemical treatments). Using this model, we demonstrated that spiral microchannels are capable of separating cells of the same size but different deformability properties, extending the capability of the previous method. We have developed a unique label-free approach for deformability-based purification through coupling the effect of FD with inertial focusing in spiral microchannels. This microfluidic-based purification strategy, free of the modifying immuno-labels, allowing cell processing at a large scale (millions of cells per min and mls of medium per minute), up to high purities and separation efficiency and without compromising cell quality.
Collapse
|
10
|
Kermanizadeh A, Berthing T, Guzniczak E, Wheeldon M, Whyte G, Vogel U, Moritz W, Stone V. Assessment of nanomaterial-induced hepatotoxicity using a 3D human primary multi-cellular microtissue exposed repeatedly over 21 days - the suitability of the in vitro system as an in vivo surrogate. Part Fibre Toxicol 2019; 16:42. [PMID: 31739797 PMCID: PMC6862829 DOI: 10.1186/s12989-019-0326-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/09/2019] [Indexed: 12/19/2022] Open
Abstract
Background With ever-increasing exposure to engineered nanomaterials (NMs), there is an urgent need to evaluate the probability of consequential adverse effects. The potential for NM translocation to distal organs is a realistic prospect, with the liver being one of the most important target organs. Traditional in vitro or ex vivo hepatic toxicology models are often limiting (i.e. short life-span, reduced metabolic activity, lacking important cell populations, etc.). In this study, we scrutinize a 3D human liver microtissue (MT) model (composed of primary hepatocytes and non-parenchymal cells). This unique experiment benefits from long-term (3 weeks) repeated very low exposure concentrations, as well as incorporation of recovery periods (up to 2 weeks), in an attempt to account for the liver’s recovery capacity in vivo. As a means of assessing the toxicological potential of NMs, cell cytotoxicity (cell membrane integrity and aspartate aminotransferase (AST) activity), pro/anti-inflammatory response and hepatic function were investigated. Results The data showed that 2 weeks of cell culture might be close to limits before subtle ageing effects start to overshadow low sub-lethal NM-induced cellular responses in this test system (adenylate kinase (AK) cytotoxicity assay). We showed that in vitro AST measurement are not suitable in a nanotoxicological context. Moreover, the cytokine analysis (IL6, IL8, IL10 and TNF-α) proved useful in highlighting recovery periods as being sufficient for allowing a reduction in the pro-inflammatory response. Next, low soluble NM-treated MT showed a concentration-dependent penetration of materials deep into the tissue. Conclusion In this study the advantages and pitfalls of the multi-cellular primary liver MT are discussed. Furthermore, we explore a number of important considerations for allowing more meaningful in vitro vs. in vivo comparisons in the field of hepatic nanotoxicology.
Collapse
|
11
|
Buckley BJR, Thijssen DHJ, Murphy RC, Graves LEF, Whyte G, Gillison FB, Crone D, Wilson PM, Watson PM. Making a move in exercise referral: co-development of a physical activity referral scheme. J Public Health (Oxf) 2018; 40:e586-e593. [DOI: 10.1093/pubmed/fdy072] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/09/2018] [Indexed: 11/12/2022] Open
|
12
|
Angell P, Green D, Lord R, Gaze D, Whyte G, George K. Acute cardiovascular responses to resistance exercise in anabolic steroids users: A preliminary investigation. Sci Sports 2018. [DOI: 10.1016/j.scispo.2018.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Farrugia A, Douglas S, James J, Whyte G, Herrington R. Use of Plasma with High Levels of lonised Calcium in the Production of Model Scale Goagulation Factor Concentrates. Thromb Haemost 2018. [DOI: 10.1055/s-0038-1647322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
SummaryWe have attempted to exploit the Ca2+ -dependent stability of factor VIII in producing factor VIII concentrates of higher yield. Plasma levels of ionised calcium were increased in two ways: (a) whole blood collection into half-strength citrate CPD anticoagulant, leading to free Ca2+ levels of ca 120 µM and (b) apheresis collection of plasma which was then recalcified to free Ca2+ levels
of ca 300 µM under heparin cover. Coagulation factor concentrates were prepared using model versions of our industrial scale manufacturing methods. Factor VIII yield was increased through low citrate collection. This did not compromise factor IX yield or thrombogenic potential. Use of recalcified heparinised plasma did not lead to any improvement in factor VIII yield and resulted in a marked drop in factor IX recovery, possibly from interference by
heparin of factor IX binding in ion-exchange chromatography. The benefits accruable through the use of half-strength citrate CPD anticoagulant support the continued evaluation of this preservative in large scale blood collection and fractionation. The deleterious effects of heparin in charge-mediated plasma fractionations may pose serious difficulties in harvesting vitamin K dependent factors.
Collapse
|
14
|
Wu PH, Aroush DRB, Asnacios A, Chen WC, Dokukin ME, Doss BL, Durand-Smet P, Ekpenyong A, Guck J, Guz NV, Janmey PA, Lee JSH, Moore NM, Ott A, Poh YC, Ros R, Sander M, Sokolov I, Staunton JR, Wang N, Whyte G, Wirtz D. A comparison of methods to assess cell mechanical properties. Nat Methods 2018; 15:491-498. [PMID: 29915189 DOI: 10.1038/s41592-018-0015-1] [Citation(s) in RCA: 381] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/11/2017] [Indexed: 01/06/2023]
Abstract
The mechanical properties of cells influence their cellular and subcellular functions, including cell adhesion, migration, polarization, and differentiation, as well as organelle organization and trafficking inside the cytoplasm. Yet reported values of cell stiffness and viscosity vary substantially, which suggests differences in how the results of different methods are obtained or analyzed by different groups. To address this issue and illustrate the complementarity of certain approaches, here we present, analyze, and critically compare measurements obtained by means of some of the most widely used methods for cell mechanics: atomic force microscopy, magnetic twisting cytometry, particle-tracking microrheology, parallel-plate rheometry, cell monolayer rheology, and optical stretching. These measurements highlight how elastic and viscous moduli of MCF-7 breast cancer cells can vary 1,000-fold and 100-fold, respectively. We discuss the sources of these variations, including the level of applied mechanical stress, the rate of deformation, the geometry of the probe, the location probed in the cell, and the extracellular microenvironment.
Collapse
|
15
|
Kolb T, Kraxner J, Skodzek K, Haug M, Crawford D, Maaß KK, Aifantis KE, Whyte G. Optomechanical measurement of the role of lamins in whole cell deformability. JOURNAL OF BIOPHOTONICS 2017; 10:1657-1664. [PMID: 28485113 DOI: 10.1002/jbio.201600198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 06/07/2023]
Abstract
There is mounting evidence that the nuclear envelope, and particularly the lamina, plays a critical role in the mechanical and regulation properties of the cell and changes to the lamina can have implications for the physical properties of the whole cell. In this study we demonstrate that the optical stretcher can measure changes in the time-dependent mechanical properties of living cells with different levels of A-type lamin expression. Results from the optical stretcher shows a decrease in the deformability of cells as the levels of lamin A increases, for cells which grow both adherently and in suspension. Further detail can be probed by combining the optical stretcher with fluorescence microscopy to investigate the nuclear mechanical properties which show a larger decrease in deformability than for the whole cell.
Collapse
|
16
|
Guzniczak E, Mohammad Zadeh M, Dempsey F, Jimenez M, Bock H, Whyte G, Willoughby N, Bridle H. High-throughput assessment of mechanical properties of stem cell derived red blood cells, toward cellular downstream processing. Sci Rep 2017; 7:14457. [PMID: 29089557 PMCID: PMC5663858 DOI: 10.1038/s41598-017-14958-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
Stem cell products, including manufactured red blood cells, require efficient sorting and purification methods to remove components potentially harmful for clinical application. However, standard approaches for cellular downstream processing rely on the use of specific and expensive labels (e.g. FACS or MACS). Techniques relying on inherent mechanical and physical properties of cells offer high-throughput scalable alternatives but knowledge of the mechanical phenotype is required. Here, we characterized for the first time deformability and size changes in CD34+ cells, and expelled nuclei, during their differentiation process into red blood cells at days 11, 14, 18 and 21, using Real-Time Deformability Cytometry (RT-DC) and Atomic Force Microscopy (AFM). We found significant differences (p < 0.0001; standardised mixed model) between the deformability of nucleated and enucleated cells, while they remain within the same size range. Expelled nuclei are smaller thus could be removed by size-based separation. An average Young's elastic modulus was measured for nucleated cells, enucleated cells and nuclei (day 14) of 1.04 ± 0.47 kPa, 0.53 ± 0.12 kPa and 7.06 ± 4.07 kPa respectively. Our identification and quantification of significant differences (p < 0.0001; ANOVA) in CD34+ cells mechanical properties throughout the differentiation process could enable development of new routes for purification of manufactured red blood cells.
Collapse
|
17
|
Crawford DF, Smith CA, Whyte G. Image-based closed-loop feedback for highly mono-dispersed microdroplet production. Sci Rep 2017; 7:10545. [PMID: 28874820 PMCID: PMC5585215 DOI: 10.1038/s41598-017-11254-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/21/2017] [Indexed: 11/19/2022] Open
Abstract
Micron-scale droplets isolated by an immiscible liquid can provide miniaturised reaction vessels which can be manipulated in microfluidic networks, and has seen a rapid growth in development. In many experiments, the precise volume of these microdroplets is a critical parameter which can be influenced by many external factors. In this work, we demonstrate the combination of imaging-based feedback and pressure driven pumping to accurately control the size of microdroplets produced in a microfluidic device. The use of fast-response, pressure-driving pumps allows the microfluidic flow to be quickly and accurately changed, while directly measuring the droplet size allows the user to define the more meaningful parameters of droplet size and generation frequency rather than flow rates or pressures. The feedback loop enables the drift correction of pressure based pumps, and leads to a large increase in the mono-dispersity of the droplets produced over long periods. We also show how this can be extended to control multiple liquid flows, allowing the frequency of droplet formation or the average concentration of living cells per droplet to be controlled and kept constant.
Collapse
|
18
|
Lange JR, Metzner C, Richter S, Schneider W, Spermann M, Kolb T, Whyte G, Fabry B. Unbiased High-Precision Cell Mechanical Measurements with Microconstrictions. Biophys J 2017; 112:1472-1480. [PMID: 28402889 PMCID: PMC5389962 DOI: 10.1016/j.bpj.2017.02.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 01/25/2017] [Accepted: 02/16/2017] [Indexed: 11/16/2022] Open
Abstract
We describe a quantitative, high-precision, high-throughput method for measuring the mechanical properties of cells in suspension with a microfluidic device, and for relating cell mechanical responses to protein expression levels. Using a high-speed (750 fps) charge-coupled device camera, we measure the driving pressure Δp, maximum cell deformation εmax, and entry time tentry of cells in an array of microconstrictions. From these measurements, we estimate population averages of elastic modulus E and fluidity β (the power-law exponent of the cell deformation in response to a step change in pressure). We find that cell elasticity increases with increasing strain εmax according to E ∼ εmax, and with increasing pressure according to E ∼ Δp. Variable cell stress due to driving pressure fluctuations and variable cell strain due to cell size fluctuations therefore cause significant variability between measurements. To reduce measurement variability, we use a histogram matching method that selects and analyzes only those cells from different measurements that have experienced the same pressure and strain. With this method, we investigate the influence of measurement parameters on the resulting cell elastic modulus and fluidity. We find a small but significant softening of cells with increasing time after cell harvesting. Cells harvested from confluent cultures are softer compared to cells harvested from subconfluent cultures. Moreover, cell elastic modulus increases with decreasing concentration of the adhesion-reducing surfactant pluronic. Lastly, we simultaneously measure cell mechanics and fluorescence signals of cells that overexpress the GFP-tagged nuclear envelope protein lamin A. We find a dose-dependent increase in cell elastic modulus and decrease in cell fluidity with increasing lamin A levels. Together, our findings demonstrate that histogram matching of pressure, strain, and protein expression levels greatly reduces the variability between measurements and enables us to reproducibly detect small differences in cell mechanics.
Collapse
|
19
|
Subbu R, Weiler R, Whyte G. The practical use of surface electromyography during running: does the evidence support the hype? A narrative review. BMJ Open Sport Exerc Med 2016; 1:e000026. [PMID: 27900124 PMCID: PMC5117013 DOI: 10.1136/bmjsem-2015-000026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2015] [Indexed: 11/07/2022] Open
Abstract
Background/aims Surface electromyography (sEMG) is a commonly used technique to investigate muscle activation and fatigue, which is non-invasive and can allow for continuous measurement. Systematic research on the use of sEMG in the sporting environment has been on-going for many years and predominantly based on cycling and rowing activities. To date there have been no reviews assessing the validity and reliability in sEMG exclusively in running activities specifically during on-field testing. The purpose of this review is to evaluate the use of sEMG in the practical context and whether this be translated to on-field testing. Methods Electronic literature searches were performed using the Cochrane Library, PUBMED, CINAHL and PeDro without restrictions on the study date to identify the relevant current English language literature. Results 10 studies were relevant after title and content review. All the studies identified were all level three evidence based. The general trends of the sEMG activity appear to correlate with running velocity and muscle fatigue seems almost always the consequence of prolonged, dynamic activity. However, these changes are not consistently measured or statistically significant throughout the studies raising the question of the accuracy and reliability when analysing sEMG measurements and making assumptions about the cause of fatigue. Conclusions An agreed consensus when measuring and analysing sEMG data during running activities particularly in field testing with the most appropriate study design and reliable methodology is yet to be determined and further studies are required.
Collapse
|
20
|
Whyte G, Rokito A. The Teenage Terrible Triad A Case Report. BULLETIN OF THE HOSPITAL FOR JOINT DISEASE (2013) 2016; 74:172-175. [PMID: 27281325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Anterior shoulder dislocation in the athlete may result in an assortment of injuries that often benefit from surgical stabilization procedures. These injury patterns can be complex, requiring a multimodal approach to treatment. We present a rare case of a traumatic anterior shoulder dislocation in a teenage athlete that resulted in humeral avulsion of the glenohumeral ligament, rotator cuff tear, and axillary nerve palsy. Surgical treatment enabled return to football within 1 year of injury, and full function was restored.
Collapse
|
21
|
Liu X, Painter RE, Enesa K, Holmes D, Whyte G, Garlisi CG, Monsma FJ, Rehak M, Craig FF, Smith CA. High-throughput screening of antibiotic-resistant bacteria in picodroplets. LAB ON A CHIP 2016; 16:1636-43. [PMID: 27033300 DOI: 10.1039/c6lc00180g] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The prevalence of clinically-relevant bacterial strains resistant to current antibiotic therapies is increasing and has been recognized as a major health threat. For example, multidrug-resistant tuberculosis and methicillin-resistant Staphylococcus aureus are of global concern. Novel methodologies are needed to identify new targets or novel compounds unaffected by pre-existing resistance mechanisms. Recently, water-in-oil picodroplets have been used as an alternative to conventional high-throughput methods, especially for phenotypic screening. Here we demonstrate a novel microfluidic-based picodroplet platform which enables high-throughput assessment and isolation of antibiotic-resistant bacteria in a label-free manner. As a proof-of-concept, the system was used to isolate fusidic acid-resistant mutants and estimate the frequency of resistance among a population of Escherichia coli (strain HS151). This approach can be used for rapid screening of rare antibiotic-resistant mutants to help identify novel compound/target pairs.
Collapse
|
22
|
Salmon AR, Esteban R, Taylor RW, Hugall JT, Smith CA, Whyte G, Scherman OA, Aizpurua J, Abell C, Baumberg JJ. Monitoring Early-Stage Nanoparticle Assembly in Microdroplets by Optical Spectroscopy and SERS. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1788-96. [PMID: 26865562 DOI: 10.1002/smll.201503513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/11/2016] [Indexed: 05/19/2023]
Abstract
Microfluidic microdroplets have increasingly found application in biomolecular sensing as well as nanomaterials growth. More recently the synthesis of plasmonic nanostructures in microdroplets has led to surface-enhanced Raman spectroscopy (SERS)-based sensing applications. However, the study of nanoassembly in microdroplets has previously been hindered by the lack of on-chip characterization tools, particularly at early timescales. Enabled by a refractive index matching microdroplet formulation, dark-field spectroscopy is exploited to directly track the formation of nanometer-spaced gold nanoparticle assemblies in microdroplets. Measurements in flow provide millisecond time resolution through the assembly process, allowing identification of a regime where dimer formation dominates the dark-field scattering and SERS. Furthermore, it is shown that small numbers of nanoparticles can be isolated in microdroplets, paving the way for simple high-yield assembly, isolation, and sorting of few nanoparticle structures.
Collapse
|
23
|
Lange JR, Steinwachs J, Kolb T, Lautscham LA, Harder I, Whyte G, Fabry B. Microconstriction arrays for high-throughput quantitative measurements of cell mechanical properties. Biophys J 2016; 109:26-34. [PMID: 26153699 DOI: 10.1016/j.bpj.2015.05.029] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022] Open
Abstract
We describe a method for quantifying the mechanical properties of cells in suspension with a microfluidic device consisting of a parallel array of micron-sized constrictions. Using a high-speed charge-coupled device camera, we measure the flow speed, cell deformation, and entry time into the constrictions of several hundred cells per minute during their passage through the device. From the flow speed and the occupation state of the microconstriction array with cells, the driving pressure across each constriction is continuously computed. Cell entry times into microconstrictions decrease with increased driving pressure and decreased cell size according to a power law. From this power-law relationship, the cell elasticity and fluidity can be estimated. When cells are treated with drugs that depolymerize or stabilize the cytoskeleton or the nucleus, elasticity and fluidity data from all treatments collapse onto a master curve. Power-law rheology and collapse onto a master curve are predicted by the theory of soft glassy materials and have been previously shown to describe the mechanical behavior of cells adhering to a substrate. Our finding that this theory also applies to cells in suspension provides the foundation for a quantitative high-throughput measurement of cell mechanical properties with microfluidic devices.
Collapse
|
24
|
Lange JR, Steinwachs J, Metzner C, Whyte G, Fabry B. Cell Mechanical Properties Measured with Micron-Scale Constrictions: Influence of Pressure, Strain and Culture Conditions. Biophys J 2016. [DOI: 10.1016/j.bpj.2015.11.773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Delabre U, Feld K, Crespo E, Whyte G, Sykes C, Seifert U, Guck J. Deformation of phospholipid vesicles in an optical stretcher. SOFT MATTER 2015; 11:6075-88. [PMID: 26135540 DOI: 10.1039/c5sm00562k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Phospholipid vesicles are common model systems for cell membranes. Important aspects of the membrane function relate to its mechanical properties. Here we have investigated the deformation behaviour of phospholipid vesicles in a dual-beam laser trap, also called an optical stretcher. This study explicitly makes use of the inherent heating present in such traps to investigate the dependence of vesicle deformation on temperature. By using lasers with different wavelengths, optically induced mechanical stresses and temperature increase can be tuned fairly independently with a single setup. The phase transition temperature of vesicles can be clearly identified by an increase in deformation. In the case of no heating effects, a minimal model for drop deformation in an optical stretcher and a more specific model for vesicle deformation that takes explicitly into account the angular dependence of the optical stress are presented to account for the experimental results. Elastic constants are extracted from the fitting procedures, which agree with literature data. This study demonstrates the utility of optical stretching, which is easily combined with microfluidic delivery, for the future serial, high-throughput study of the mechanical and thermodynamic properties of phospholipid vesicles.
Collapse
|