1
|
Andrieu J, Valade M, Lebideau M, Bretelle F, Mège JL, Wurtz N, Mezouar S, La Scola B, Baudoin JP. Pan-microscopic examination of monkeypox virus in trophoblasts cells reveals new insights into virions release through filopodia-like projections. J Med Virol 2024; 96:e29620. [PMID: 38647027 DOI: 10.1002/jmv.29620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
Vertical transmission has been described following monkeypox virus (MPXV) infection in pregnant women. The presence of MPXV has been reported in the placenta from infected women, but whether pathogens colonize placenta remains unexplored. We identify trophoblasts as a target cell for MPXV replication. In a pan-microscopy approach, we decipher the specific infectious cycle of MPXV and inner cellular structures in trophoblasts. We identified the formation of a specialized region for viral morphogenesis and replication in placental cells. We also reported infection-induced cellular remodeling. We found that MPXV stimulates cytoskeleton reorganization with intercellular extensions for MPXV cell spreading specifically to trophoblastic cells. Altogether, the specific infectious cycle of MPXV in trophoblast cells and these protrusions that were structurally and morphologically similar to filopodia reveal new insights into the infection of MPXV.
Collapse
|
2
|
Naud S, Valles C, Abdillah A, Abou Chacra L, Mekhalif FZ, Ibrahim A, Caputo A, Baudoin JP, Gouriet F, Bittar F, Lagier JC, Ranque S, Fenollar F, Tidjani Alou M, Raoult D. Preliminary landscape of Candidatus Saccharibacteria in the human microbiome. Front Cell Infect Microbiol 2023; 13:1195679. [PMID: 37577371 PMCID: PMC10414567 DOI: 10.3389/fcimb.2023.1195679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Candidate Phyla Radiation (CPR) and more specifically Candidatus Saccharibacteria (TM7) have now been established as ubiquitous members of the human oral microbiota. Additionally, CPR have been reported in the gastrointestinal and urogenital tracts. However, the exploration of new human niches has been limited to date. Methods In this study, we performed a prospective and retrospective screening of TM7 in human samples using standard PCR, real-time PCR, scanning electron microscopy (SEM) and shotgun metagenomics. Results Using Real-time PCR and standard PCR, oral samples presented the highest TM7 prevalence followed by fecal samples, breast milk samples, vaginal samples and urine samples. Surprisingly, TM7 were also detected in infectious samples, namely cardiac valves and blood cultures at a low prevalence (under 3%). Moreover, we observed CPR-like structures using SEM in all sample types except cardiac valves. The reconstruction of TM7 genomes in oral and fecal samples from shotgun metagenomics reads further confirmed their high prevalence in some samples. Conclusion This study confirmed, through their detection in multiple human samples, that TM7 are human commensals that can also be found in clinical settings. Their detection in clinical samples warrants further studies to explore their role in a pathological setting.
Collapse
|
3
|
Braï MA, Hannachi N, El Gueddari N, Baudoin JP, Dahmani A, Lepidi H, Habib G, Camoin-Jau L. The Role of Platelets in Infective Endocarditis. Int J Mol Sci 2023; 24:ijms24087540. [PMID: 37108707 PMCID: PMC10143005 DOI: 10.3390/ijms24087540] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/02/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Over the last decade, the incidence of infective endocarditis (IE) has increased, with a change in the frequency of causative bacteria. Early evidence has substantially demonstrated the crucial role of bacterial interaction with human platelets, with no clear mechanistic characterization in the pathogenesis of IE. The pathogenesis of endocarditis is so complex and atypical that it is still unclear how and why certain bacterial species will induce the formation of vegetation. In this review, we will analyze the key role of platelets in the physiopathology of endocarditis and in the formation of vegetation, depending on the bacterial species. We provide a comprehensive outline of the involvement of platelets in the host immune response, investigate the latest developments in platelet therapy, and discuss prospective research avenues for solving the mechanistic enigma of bacteria-platelet interaction for preventive and curative medicine.
Collapse
|
4
|
Brahim Belhaouari D, Baudoin JP, Lagier JC, Monnet-Corti V, La Scola B, Antezack A. Microscopic observations of SARS-CoV-2 like particles in different oral samples. Eur J Oral Sci 2022; 130:e12903. [PMID: 36404273 PMCID: PMC10099536 DOI: 10.1111/eos.12903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/21/2022] [Indexed: 11/22/2022]
Abstract
The emerging coronavirus pneumonia epidemic caused by the SARS-CoV-2 infection has spread rapidly around the world. The main routes of transmission of SARS-CoV-2 are currently recognised as aerosol/droplet inhalation. However, the involvement of the oral cavity in coronavirus disease 2019 (COVID-19) is poorly known. The current data indicates the presence of viral RNA in oral samples, suggesting the implication of saliva in SARS-CoV-2 transmission, however, no direct observation of SARS-CoV-2 particles in different oral samples has been reported. In this study, we investigated whether particles of SARS-CoV-2 were present in oral samples collected from three symptomatic COVID-19 patients. Using scanning electron microscopy (SEM), the correlative strategy of light microscopy and electron microscopy and immunofluorescence staining, we showed the presence of SARS-like particles in RT-qPCR SARS-CoV-2-positive saliva, dental plaque and gingival crevicular fluid (GCF) samples. In the saliva samples, we demonstrated the presence of epithelial oral cells with morphogenetic features of SARS-CoV-2 infected cells. Inside those cells, vacuoles filled with nascent particles were observed, suggesting the potential infection and replication of SARS-CoV-2 in oral tissues. Our results corroborate previous studies and confirm that the oral cavity may be a potential niche for SARS-CoV-2 infection and a potential source of transmission.
Collapse
|
5
|
Le Bideau M, Pires de Souza GA, Boschi C, Baudoin JP, Penant G, Jardot P, Fenollar F, Colson P, Lenk M, La Scola B. Limited permissibility of ENL-R and Mv-1-Lu mink cell lines to SARS-CoV-2. Front Microbiol 2022; 13:1003824. [PMID: 36312916 PMCID: PMC9597503 DOI: 10.3389/fmicb.2022.1003824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
The SARS-CoV-2 pandemic started in the end of 2019 in Wuhan, China, which highlighted the scenario of frequent cross-species transmission events. From the outbreak possibly initiated by viral spill-over into humans from an animal reservoir, now we face the human host moving globally while interacting with domesticated and peridomestic animals. The emergence of a new virus into the ecosystem leads to selecting forces and species-specific adaptations. The adaptation of SARS-CoV-2 to other animals represents a risk to controlling the dissemination of this coronavirus and the emergence of new variants. Since 2020, several mink farms in Europe and the United States have had SARS-CoV-2 outbreaks with human-mink and mink-human transmission, where the mink-selected variants possibly hold evolutionary concerning advantages. Here we investigated the permissibility of mink lung-derived cells using two cell lines, Mv-1-Lu and ENL-R, against several lineages of SARS-CoV-2, including some classified as variants of concern. The viral release rate and the infectious titers indicate that these cells support infections by different SARS-CoV-2 lineages. The viral production occurs in the first few days after infection with the low viral release by these mink cells, which is often absent for the omicron variant for lung cells. The electron microscopy reveals that during the viral replication cycle, the endomembrane system of the mink-host cell undergoes typical changes while the viral particles are produced, especially in the first days of infection. Therefore, even if limited, mink lung cells may represent a selecting source for SARS-CoV-2 variants, impacting their transmissibility and pathogenicity and making it difficult to control this new coronavirus.
Collapse
|
6
|
Hannachi N, Arregle F, Lepidi H, Baudoin JP, Gouriet F, Martel H, Hubert S, Desnues B, Riberi A, Casalta JP, Habib G, Camoin-Jau L. A Massive Number of Extracellular Tropheryma whipplei in Infective Endocarditis: A Case Report and Literature Review. Front Immunol 2022; 13:900589. [PMID: 35844524 PMCID: PMC9278803 DOI: 10.3389/fimmu.2022.900589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
Whipple’s disease (WD) is a chronic multisystemic infection caused by Tropheryma whipplei. If this bacterium presents an intracellular localization, associated with rare diseases and without pathognomonic signs, it is often subject to a misunderstanding of its physiopathology, often a misdiagnosis or simply an oversight. Here, we report the case of a patient treated for presumed rheumatoid arthritis. Recently, this patient presented to the hospital with infectious endocarditis. After surgery and histological analysis, we discovered the presence of T. whipplei. Electron microscopy allowed us to discover an atypical bacterial organization with a very large number of bacteria present in the extracellular medium in vegetation and valvular tissue. This atypical presentation we report here might be explained by the anti-inflammatory treatment administrated for our patient’s initial diagnosis of rheumatoid arthritis.
Collapse
|
7
|
Osman IO, Garrec C, de Souza GAP, Zarubica A, Belhaouari DB, Baudoin JP, Lepidi H, Mege JL, Malissen B, Scola BL, Devaux CA. Control of CDH1/E-Cadherin Gene Expression and Release of a Soluble Form of E-Cadherin in SARS-CoV-2 Infected Caco-2 Intestinal Cells: Physiopathological Consequences for the Intestinal Forms of COVID-19. Front Cell Infect Microbiol 2022; 12:798767. [PMID: 35601094 PMCID: PMC9114883 DOI: 10.3389/fcimb.2022.798767] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/22/2022] [Indexed: 12/19/2022] Open
Abstract
COVID-19 is the biggest pandemic the world has seen this century. Alongside the respiratory damage observed in patients with severe forms of the disease, gastrointestinal symptoms have been frequently reported. These symptoms (e.g., diarrhoea), sometimes precede the development of respiratory tract illnesses, as if the digestive tract was a major target during early SARS-CoV-2 dissemination. We hypothesize that in patients carrying intestinal SARS-CoV-2, the virus may trigger epithelial barrier damage through the disruption of E-cadherin (E-cad) adherens junctions, thereby contributing to the overall gastrointestinal symptoms of COVID-19. Here, we use an intestinal Caco-2 cell line of human origin which expresses the viral receptor/co-receptor as well as the membrane anchored cell surface adhesion protein E-cad to investigate the expression of E-cad after exposure to SARS-CoV-2. We found that the expression of CDH1/E-cad mRNA was significantly lower in cells infected with SARS-CoV-2 at 24 hours post-infection, compared to virus-free Caco-2 cells. The viral receptor ACE2 mRNA expression was specifically down-regulated in SARS-CoV-2-infected Caco-2 cells, while it remained stable in HCoV-OC43-infected Caco-2 cells, a virus which uses HLA class I instead of ACE2 to enter cells. It is worth noting that SARS-CoV-2 induces lower transcription of TMPRSS2 (involved in viral entry) and higher expression of B0AT1 mRNA (that encodes a protein known to co-express with ACE2 on intestinal cells). At 48 hours post-exposure to the virus, we also detected a small but significant increase of soluble E-cad protein (sE-cad) in the culture supernatant of SARS-CoV-2-infected Caco-2 cells. The increase of sE-cad release was also found in the intestinal HT29 cell line when infected by SARS-CoV-2. Beside the dysregulation of E-cad, SARS-CoV-2 infection of Caco-2 cells also leads to the dysregulation of other cell adhesion proteins (occludin, JAMA-A, zonulin, connexin-43 and PECAM-1). Taken together, these results shed light on the fact that infection of Caco-2 cells with SARS-CoV-2 affects tight-, adherens-, and gap-junctions. Moreover, intestinal tissues damage was associated to the intranasal SARS-CoV-2 infection in human ACE2 transgenic mice.
Collapse
|
8
|
Aherfi S, Brahim Belhaouari D, Pinault L, Baudoin JP, Decloquement P, Abrahao J, Colson P, Levasseur A, Lamb DC, Chabriere E, Raoult D, La Scola B. Incomplete tricarboxylic acid cycle and proton gradient in Pandoravirus massiliensis: is it still a virus? THE ISME JOURNAL 2022; 16:695-704. [PMID: 34556816 PMCID: PMC8857278 DOI: 10.1038/s41396-021-01117-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 11/24/2022]
Abstract
The discovery of Acanthamoeba polyphaga Mimivirus, the first isolated giant virus of amoeba, challenged the historical hallmarks defining a virus. Giant virion sizes are known to reach up to 2.3 µm, making them visible by optical microscopy. Their large genome sizes of up to 2.5 Mb can encode proteins involved in the translation apparatus. We have investigated possible energy production in Pandoravirus massiliensis. Mitochondrial membrane markers allowed for the detection of a membrane potential in purified virions and this was enhanced by a regulator of the tricarboxylic acid cycle but abolished by the use of a depolarizing agent. Bioinformatics was employed to identify enzymes involved in virion proton gradient generation and this approach revealed that eight putative P. massiliensis proteins exhibited low sequence identities with known cellular enzymes involved in the universal tricarboxylic acid cycle. Further, all eight viral genes were transcribed during replication. The product of one of these genes, ORF132, was cloned and expressed in Escherichia coli, and shown to function as an isocitrate dehydrogenase, a key enzyme of the tricarboxylic acid cycle. Our findings show for the first time that a membrane potential can exist in Pandoraviruses, and this may be related to tricarboxylic acid cycle. The presence of a proton gradient in P. massiliensis makes this virus a form of life for which it is legitimate to ask the question "what is a virus?".
Collapse
|
9
|
Brun S, Bestion E, Raymond E, Bassissi F, Jilkova ZM, Mezouar S, Rachid M, Novello M, Tracz J, Hamaï A, Lalmanach G, Vanderlynden L, Legouffe R, Stauber J, Schubert T, Plach MG, Courcambeck J, Drouot C, Jacquemot G, Serdjebi C, Roth G, Baudoin JP, Ansaldi C, Decaens T, Halfon P. GNS561, a clinical-stage PPT1 inhibitor, is efficient against hepatocellular carcinoma via modulation of lysosomal functions. Autophagy 2021; 18:678-694. [PMID: 34740311 PMCID: PMC9037544 DOI: 10.1080/15548627.2021.1988357] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma is the most frequent primary liver cancer. Macroautophagy/autophagy inhibitors have been extensively studied in cancer but, to date, none has reached efficacy in clinical trials. In this study, we demonstrated that GNS561, a new autophagy inhibitor, whose anticancer activity was previously linked to lysosomal cell death, displayed high liver tropism and potent antitumor activity against a panel of human cancer cell lines and in two hepatocellular carcinoma in vivo models. We showed that due to its lysosomotropic properties, GNS561 could reach and specifically inhibited its enzyme target, PPT1 (palmitoyl-protein thioesterase 1), resulting in lysosomal unbound Zn2+ accumulation, impairment of cathepsin activity, blockage of autophagic flux, altered location of MTOR (mechanistic target of rapamycin kinase), lysosomal membrane permeabilization, caspase activation and cell death. Accordingly, GNS561, for which a global phase 1b clinical trial in liver cancers was just successfully achieved, represents a promising new drug candidate and a hopeful therapeutic strategy in cancer treatment. Abbreviations: ANXA5:annexin A5; ATCC: American type culture collection; BafA1: bafilomycin A1; BSA: bovine serum albumin; CASP3: caspase 3; CASP7: caspase 7; CASP8: caspase 8; CCND1: cyclin D1; CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; CQ: chloroquine; iCCA: intrahepatic cholangiocarcinoma; DEN: diethylnitrosamine; DMEM: Dulbelcco’s modified Eagle medium; FBS: fetal bovine serum; FITC: fluorescein isothiocyanate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HCC: hepatocellular carcinoma; HCQ: hydroxychloroquine; HDSF: hexadecylsulfonylfluoride; IC50: mean half-maximal inhibitory concentration; LAMP: lysosomal associated membrane protein; LC3-II: phosphatidylethanolamine-conjugated form of MAP1LC3; LMP: lysosomal membrane permeabilization; MALDI: matrix assisted laser desorption ionization; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MKI67: marker of proliferation Ki-67; MTOR: mechanistic target of rapamycin kinase; MRI: magnetic resonance imaging; NH4Cl: ammonium chloride; NtBuHA: N-tert-butylhydroxylamine; PARP: poly(ADP-ribose) polymerase; PBS: phosphate-buffered saline; PPT1: palmitoyl-protein thioesterase 1; SD: standard deviation; SEM: standard error mean; vs, versus; Zn2+: zinc ion; Z-Phe: Z-Phe-Tyt(tBu)-diazomethylketone; Z-VAD-FMK: carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]- fluoromethylketone.
Collapse
|
10
|
Otmani Idrissi M, Baudoin JP, Chateau AL, Aherfi S, Bedotto-Buffet M, Latil A, Lepidi H, Chiaroni J, Picard C, Mege JL, La Scola B, Mezouar S. Presence of SARS-CoV-2 in a Cornea Transplant. Pathogens 2021; 10:pathogens10080934. [PMID: 34451398 PMCID: PMC8401771 DOI: 10.3390/pathogens10080934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022] Open
Abstract
Background: The SARS-CoV-2 pandemic has impacted tissue transplantation procedures since conjunctivas were found to be associated with coronavirus infection. Here, we investigated infection of a cornea graft from a COVID-19-positive donor. Methods: In order to evaluate the presence of SARS-CoV-2 in the cornea graft we first carried out a qRT-PCR and then we investigated the presence of SARS-CoV-2 by fluorescence and electron microscopy. Conclusions: Although the cornea graft was found to be negative by qRT-PCR, we were able to show the presence of SARS-CoV-2 in corneal cells expressing the SARS-CoV-2 receptor, ACE2. Taken together, our findings may have important implications for the use of corneal tissue in graft indications and open the debate on SARS-CoV-2 transmissibility.
Collapse
|
11
|
Sahmi-Bounsiar D, Baudoin JP, Hannat S, Decloquement P, Chabrieres E, Aherfi S, La Scola B. Generation of Infectious Mimivirus Virions Through Inoculation of Viral DNA Within Acanthamoeba castellanii Shows Involvement of Five Proteins, Essentially Uncharacterized. Front Microbiol 2021; 12:677847. [PMID: 34305841 PMCID: PMC8299487 DOI: 10.3389/fmicb.2021.677847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
One of the most curious findings associated with the discovery of Acanthamoeba polyphaga mimivirus (APMV) was the presence of many proteins and RNAs within the virion. Although some hypotheses on their role in Acanthamoeba infection have been put forward, none have been validated. In this study, we directly transfected mimivirus DNA with or without additional proteinase K treatment to extracted DNA into Acanthamoeba castellanii. In this way, it was possible to generate infectious APMV virions, but only without extra proteinase K treatment of extracted DNA. The virus genomes before and after transfection were identical. We searched for the remaining DNA-associated proteins that were digested by proteinase K and could visualize at least five putative proteins. Matrix-assisted laser desorption/ionization time-of-flight and liquid chromatography–mass spectrometry comparison with protein databases allowed the identification of four hypothetical proteins—L442, L724, L829, and R387—and putative GMC-type oxidoreductase R135. We believe that L442 plays a major role in this protein–DNA interaction. In the future, expression in vectors and then diffraction of X-rays by protein crystals could help reveal the exact structure of this protein and its precise role.
Collapse
|
12
|
Pires de Souza GA, Osman IO, Le Bideau M, Baudoin JP, Jaafar R, Devaux C, La Scola B. Angiotensin II Receptor Blockers (ARBs Antihypertensive Agents) Increase Replication of SARS-CoV-2 in Vero E6 Cells. Front Cell Infect Microbiol 2021; 11:639177. [PMID: 34178717 PMCID: PMC8231006 DOI: 10.3389/fcimb.2021.639177] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
Several comorbidities, including hypertension, have been associated with an increased risk of developing severe disease during SARS-CoV-2 infection. Angiotensin II receptor blockers (ARBs) are currently some of the most widely-used drugs to control blood pressure by acting on the angiotensin II type 1 receptor (AT1R). ARBs have been reported to trigger the modulation of the angiotensin I converting enzyme 2 (ACE2), the receptor used by the virus to penetrate susceptible cells, raising concern that such treatments may promote virus capture and increase their viral load in patients receiving ARBs therapy. In this in vitro study, we reviewed the effect of ARBs on ACE2 and AT1R expression and investigated whether treatment of permissive ACE2+/AT1R+ Vero E6 cells with ARBs alters SARS-CoV-2 replication in vitro in an angiotensin II-free system. After treating the cells with the ARBs, we observed an approximate 50% relative increase in SARS-CoV-2 production in infected Vero E6 cells that correlates with the ARBs-induced up-regulation of ACE2 expression. From this data, we believe that the use of ARBs in hypertensive patients infected by SARS-CoV-2 should be carefully evaluated.
Collapse
|
13
|
Le Bideau M, Wurtz N, Baudoin JP, La Scola B. Innovative Approach to Fast Electron Microscopy Using the Example of a Culture of Virus-Infected Cells: An Application to SARS-CoV-2. Microorganisms 2021; 9:microorganisms9061194. [PMID: 34073053 PMCID: PMC8228702 DOI: 10.3390/microorganisms9061194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/23/2022] Open
Abstract
Despite the development of new diagnostic methods, co-culture, based on sample inoculation of cell monolayers coupled with electron microscopy (EM) observation, remains the gold standard in virology. Indeed, co-culture allows for the study of cell morphology (infected and not infected), the ultrastructure of the inoculated virus, and the different steps of the virus infectious cycle. Most EM methods for studying virus cycles are applied after infected cells are produced in large quantities and detached to obtain a pellet. Here, cell culture was performed in sterilized, collagen-coated single-break strip wells. After one day in culture, cells were infected with SARS-CoV-2. Wells of interest were fixed at different time points, from 2 to 36 h post-infection. Microwave-assisted resin embedding was accomplished directly in the wells in 4 h. Finally, ultra-thin sections were cut directly through the infected-cell monolayers. Our methodology requires, in total, less than four days for preparing and observing cells. Furthermore, by observing undetached infected cell monolayers, we were able to observe new ultrastructural findings, such as cell–cell interactions and baso-apical cellular organization related to the virus infectious cycle. Our innovative methodology thus not only saves time for preparation but also adds precision and new knowledge about viral infection, as shown here for SARS-CoV-2.
Collapse
|
14
|
Brahim Belhaouari D, Wurtz N, Grimaldier C, Lacoste A, Pires de Souza GA, Penant G, Hannat S, Baudoin JP, La Scola B. Microscopic Observation of SARS-Like Particles in RT-qPCR SARS-CoV-2 Positive Sewage Samples. Pathogens 2021; 10:516. [PMID: 33923138 PMCID: PMC8146039 DOI: 10.3390/pathogens10050516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
The ongoing outbreak of novel coronavirus pneumonia (COVID-19) caused by SARS-CoV-2 infection has spread rapidly worldwide. The major transmission routes of SARS-CoV-2 are recognised as inhalation of aerosol/droplets and person-to-person contact. However, some studies have demonstrated that live SARS-CoV-2 can be isolated from the faeces and urine of infected patients, which can then enter the wastewater system. The currently available evidence indicates that the viral RNA present in wastewater may become a potential source of epidemiological data. However, to investigate whether wastewater may present a risk to humans such as sewage workers, we investigated whether intact particles of SARS-CoV-2 were observable and whether it was possible to isolate the virus in wastewater. Using a correlative strategy of light microscopy and electron microscopy (CLEM), we demonstrated the presence of intact and degraded SARS-like particles in RT-qPCR SARS-CoV-2-positive sewage sample collected in the city of Marseille. However, the viral infectivity assessment of SARS-CoV-2 in the wastewater was inconclusive, due to the presence of other viruses known to be highly resistant in the environment such as enteroviruses, rhinoviruses, and adenoviruses. Although the survival and the infectious risk of SARS-CoV-2 in wastewater cannot be excluded from our study, additional work may be required to investigate the stability, viability, fate, and decay mechanisms of SARS-CoV-2 thoroughly in wastewater.
Collapse
|
15
|
Valera G, Markov DA, Bijari K, Randlett O, Asgharsharghi A, Baudoin JP, Ascoli GA, Portugues R, López-Schier H. A neuronal blueprint for directional mechanosensation in larval zebrafish. Curr Biol 2021; 31:1463-1475.e6. [PMID: 33545047 PMCID: PMC8044000 DOI: 10.1016/j.cub.2021.01.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/30/2020] [Accepted: 01/13/2021] [Indexed: 01/02/2023]
Abstract
Animals have a remarkable ability to use local cues to orient in space in the absence of a panoramic fixed reference frame. Here we use the mechanosensory lateral line in larval zebrafish to understand rheotaxis, an innate oriented swimming evoked by water currents. We generated a comprehensive light-microscopy cell-resolution projectome of lateralis afferent neurons (LANs) and used clustering techniques for morphological classification. We find surprising structural constancy among LANs. Laser-mediated microlesions indicate that precise topographic mapping of lateral-line receptors is not essential for rheotaxis. Recording neuronal-activity during controlled mechanical stimulation of neuromasts reveals unequal representation of water-flow direction in the hindbrain. We explored potential circuit architectures constrained by anatomical and functional data to suggest a parsimonious model under which the integration of lateralized signals transmitted by direction-selective LANs underlies the encoding of water-flow direction in the brain. These data provide a new framework to understand how animals use local mechanical cues to orient in space.
Collapse
|
16
|
Halfon P, Bestion E, Zandi K, Andreani J, Baudoin JP, La Scola B, Mege JL, Mezouar S, Schinazi RF. GNS561 exhibits potent in vitro antiviral activity against SARS-CoV-2 through autophagy inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33052342 DOI: 10.1101/2020.10.06.327635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2/2019-nCoV) has spread quickly worldwide, with more than 29 million cases and 920,000 deaths. Interestingly, coronaviruses were found to subvert and hijack the autophagic process to allow their viral replication. One of the spotlights had been focused on the autophagy inhibitors as a target mechanism effective in the inhibition of SARS-CoV-2 infection. Consequently, chloroquine (CQ) and hydroxychloroquine (HCQ), a derivative of CQ, was suggested as the first potentially be therapeutic strategies as they are known to be autophagy inhibitors. Then, they were used as therapeutics in SARS-CoV-2 infection along with remdesivir, for which the FDA approved emergency use authorization. Here, we investigated the antiviral activity and associated mechanism of GNS561, a small basic lipophilic molecule inhibitor of late-stage autophagy, against SARS-CoV-2. Our data indicated that GNS561 showed the highest antiviral effect for two SARS-CoV-2 strains compared to CQ and remdesivir. Focusing on the autophagy mechanism, we showed that GNS561, located in LAMP2-positive lysosomes, together with SARS-CoV-2, blocked autophagy by increasing the size of LC3-II spots and the accumulation of autophagic vacuoles in the cytoplasm with the presence of multilamellar bodies characteristic of a complexed autophagy. Finally, our study revealed that the combination of GNS561 and remdesivir was associated with a strong synergistic antiviral effect against SARS-CoV-2. Overall, our study highlights GNS561 as a powerful drug in SARS-CoV-2 infection and supports that the hypothesis that autophagy inhibitors could be an alternative strategy for SARS-CoV-2 infection.
Collapse
|
17
|
Brahim Belhaouari D, Fontanini A, Baudoin JP, Haddad G, Le Bideau M, Bou Khalil JY, Raoult D, La Scola B. The Strengths of Scanning Electron Microscopy in Deciphering SARS-CoV-2 Infectious Cycle. Front Microbiol 2020; 11:2014. [PMID: 32973730 PMCID: PMC7466455 DOI: 10.3389/fmicb.2020.02014] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Electron microscopy is a powerful tool in the field of microbiology. It has played a key role in the rapid diagnosis of viruses in patient samples and has contributed significantly to the clarification of virus structure and function, helping to guide the public health response to emerging viral infections. In the present study, we used scanning electron microscopy (SEM) to study the infectious cycle of SARS-CoV-2 in Vero E6 cells and we controlled some key findings by classical transmission electronic microscopy (TEM). The replication cycle of the virus was followed from 1 to 36 h post-infection. Our results revealed that SARS-CoV-2 infected the cells through membrane fusion. Particles are formed in the peri-nuclear region from a budding of the endoplasmic reticulum-Golgi apparatus complex into morphogenesis matrix vesicae. New SARS-CoV-2 particles were expelled from the cells, through cell lysis or by fusion of virus containing vacuoles with the cell plasma membrane. Overall, this cycle is highly comparable to that of SARS-CoV. By providing a detailed and complete SARS-CoV-2 infectious cycle, SEM proves to be a very rapid and efficient tool compared to classical TEM.
Collapse
|
18
|
Hannachi N, Lepidi H, Fontanini A, Takakura T, Bou-Khalil J, Gouriet F, Habib G, Raoult D, Camoin-Jau L, Baudoin JP. A Novel Approach for Detecting Unique Variations among Infectious Bacterial Species in Endocarditic Cardiac Valve Vegetation. Cells 2020; 9:cells9081899. [PMID: 32823780 PMCID: PMC7464176 DOI: 10.3390/cells9081899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/25/2022] Open
Abstract
Infectious endocarditis (IE) remains one of the deadliest heart diseases with a high death rate, generally following thrombo-embolic events. Today, therapy is based on surgery and antibiotic therapy. When thromboembolic complications in IE patients persist, this is often due to our lack of knowledge regarding the pathophysiological development and organization of cells in the vegetation, most notably the primordial role of platelets and further triggered hemostasis, which is related to the diversity of infectious microorganisms involved. Our objective was to study the organization of IE vegetations due to different bacteria species in order to understand the related pathophysiological mechanism of vegetation development. We present an approach for ultrastructural analysis of whole-infected heart valve tissue based on scanning electron microscopy and energy-dispersive X-ray spectroscopy. Our approach allowed us to detect differences in cell organization between the analyzed vegetations and revealed a distinct chemical feature in viridans Streptococci ones. Our results illustrate the benefits that such an approach may bring for guiding therapy, considering the germ involved for each IE patient.
Collapse
|
19
|
Baudoin JP, Camoin-Jau L, Prasanth A, Habib G, Lepidi H, Hannachi N. Ultrastructure of a late-stage bacterial endocarditis valve vegetation. J Thromb Thrombolysis 2020; 51:821-826. [PMID: 32749620 DOI: 10.1007/s11239-020-02232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Infective endocarditis (IE) remains a severe illness with high mortality rate, despite advances in antibiotic therapy and cardiac surgery. If infectious bacteria and platelets are two key players of human IE vegetation developmental process, their interactions and respective roles in fully developed late-stage IE vegetations remain obscure. The objective of this study was to better understand the organization of the different components of the IE vegetation and to provide a detailed description of this vegetation ultrastructure. A late stage Staphylococcal endocarditic vegetation was provided from a 13 years teenager patient. After reception of the surgical piece, we carried out a histological study using routine methods, notably the hematoxylin-eosin-saffron staining. Labeling with the anti-CD 61 antibody was also carried out. In a second step, we used transmission electron microscopy to describe the different regions making up the vegetation. Our ultrastructural study revealed vegetation was clearly composed by three different regions and identified the specific location of the bacteria and platelets in the vegetation tissues. Histological analysis showed that platelets and Staphylococcus aureus were not co-localized. Electron microscopy study confirmed that S. aureus were found at distance from platelets, as well from immune cells, embedded in a biofilm and/or a necrotic area. These results reveal a development of a deep bacteria-only niche in vegetation, raising questions about medication access to these microorganisms. Vegetation composed of three regions: a region rich in bacteria incorporated into the necrotic tissue, the second region composed of fibrin filaments and the third region rich in platelets and free of bacteria.
Collapse
|
20
|
Diop K, Cadoret F, Nguyen TT, Baudoin JP, Armstrong N, Raoult D, Bretelle F, Fournier PE, Fenollar F. Vaginimicrobium propionicum gen. nov., sp. nov., a novel propionic acid bacterium derived from human vaginal discharge. Int J Syst Evol Microbiol 2020; 70:4091-4097. [PMID: 32628103 DOI: 10.1099/ijsem.0.004106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A Gram-stain-positive anaerobic rod-shaped bacterium, designated strain Marseille-P3275T, was isolated using culturomics from the vaginal discharge of healthy French woman. Marseille-P3275T was non-motile and did not form spores. Cells had neither catalase nor oxidase activity. The major fatty acids were C16 : 0 (29 %), C18:1ω9 (18 %), and iso-C15 : 0 (17 %). The genomic DNA G+C content was 50.64 mol%. The phylogenetic analysis based on 16S rRNA gene sequence indicated that Marseille-P3275T was related to members of the family Propionibacteriaceae (between 90.32-92.92 % sequence similarity) with formation of a clade with the monospecific genus Propionimicrobium (type species Propionimicrobium lymphophilum). On the basis of these phylogenetic and phenotypic differences, Marseille-P3275T was classified in a novel genus, Vaginimicrobium, as Vaginimicrobium propionicum gen. nov., sp. nov. The type strain is Marseille-P3275T (=CSUR P3275T=CECT 9677T).
Collapse
|
21
|
Andreani J, Million M, Baudoin JP, Ominami Y, Khalil JYB, Frémond C, Khelaifia S, Levasseur A, Raoult D, La Scola B. Klenkia terrae resistant to DNA extraction in germ-free mice stools illustrates the extraction pitfall faced by metagenomics. Sci Rep 2020; 10:10228. [PMID: 32576848 PMCID: PMC7311423 DOI: 10.1038/s41598-020-66627-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 05/14/2020] [Indexed: 11/09/2022] Open
Abstract
Over the past decade, metagenomics has become the preferred method for exploring complex microbiota such as human gut microbiota. However, several bias affecting the results of microbiota composition, such as those due to DNA extraction, have been reported. These bias have been confirmed with the development of culturomics technique. In the present study, we report the contamination of a gnotobiotic mice unit with a bacterium first detected by gram staining. Scanning electron microscopy and transmission electron microscopy permitted to detect a bacterium with a thick cell wall. However, in parallel, the first attempt to identify and culture this bacterium by gene amplification and metagenomics of universal 16S rRNA failed. Finally, the isolation in culture of a fastidious bacterium not detected by using universal PCR was successfully achieved by using a BCYE agar plate with CO2 atmosphere at 30 °C. We performed genome sequencing of this bacterium using a strong extraction procedure. The genomic comparison allowed us to classify this bacterium as Klenkia terrae. And finally, it was also detected in the stool and kibble that caused the contamination by using specific qPCR against this bacterium. The elucidation of this contamination provides additional evidence that DNA extraction could be a bias for the study of the microbiota. Currently, most studies that strive to analyze and compare the gut microbiota are based on metagenomics. In a gnotobiotic mice unit contaminated with the fastidious Actinobacteria Klenkia terrae, standard culture, 16S rRNA gene amplification and metagenomics failed to identify the micro-organism observed in stools by gram-staining. Only a procedure based on culturomics allowed us to identify this bacterium and to elucidate the mode of contamination of the gnotobiotic mice unit through diet.
Collapse
|
22
|
Hannachi N, Ogé-Ganaye E, Baudoin JP, Fontanini A, Bernot D, Habib G, Camoin-Jau L. Antiplatelet Agents Have a Distinct Efficacy on Platelet Aggregation Induced by Infectious Bacteria. Front Pharmacol 2020; 11:863. [PMID: 32581813 PMCID: PMC7291881 DOI: 10.3389/fphar.2020.00863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/26/2020] [Indexed: 02/01/2023] Open
Abstract
Platelets are the cornerstone of hemostasis. However, their exaggerated aggregation induces deleterious consequences. In several diseases, such as infectious endocarditis and sepsis, the interaction between platelets and bacteria leads to platelet aggregation. Despite platelet involvement, no antiplatelet therapy is currently recommended in these infectious diseases. We aimed here, to evaluate, in vitro, the effect of antiplatelet drugs on platelet aggregation induced by two of the bacterial pathogens most involved in infectious endocarditis, Staphylococcus aureus and Streptococcus sanguinis. Blood samples were collected from healthy donors (n = 43). Treated platelet rich plasmas were incubated with three bacterial strains of each species tested. Platelet aggregation was evaluated by Light Transmission Aggregometry. CD62P surface exposure was evaluated by flow cytometry. Aggregate organizations were analyzed by scanning electron microscopy. All the strains tested induced a strong platelet aggregation. Antiplatelet drugs showed distinct effects depending on the bacterial species involved with different magnitude between strains of the same species. Ticagrelor exhibited the highest inhibitory effect on platelet activation (p <0.001) and aggregation (p <0.01) induced by S. aureus. In the case of S. sanguinis, platelet activation and aggregation were better inhibited using the combination of both aspirin and ticagrelor (p <0.05 and p <0.001 respectively). Aggregates ultrastructure and effect of antiplatelet drugs observed by scanning electron microscopy depended on the species involved. Our results highlighted that the effect of antiplatelet drugs depended on the bacterial species involved. We might recommend therefore to consider the germ involved before introduction of an optimal antiplatelet therapy.
Collapse
|
23
|
Colson P, Lagier JC, Baudoin JP, Bou Khalil J, La Scola B, Raoult D. Ultrarapid diagnosis, microscope imaging, genome sequencing, and culture isolation of SARS-CoV-2. Eur J Clin Microbiol Infect Dis 2020; 39:1601-1603. [PMID: 32270412 PMCID: PMC7138953 DOI: 10.1007/s10096-020-03869-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022]
|
24
|
Brahim Belhaouari D, Baudoin JP, Gnankou F, Di Pinto F, Colson P, Aherfi S, La Scola B. Evidence of a Cellulosic Layer in Pandoravirus massiliensis Tegument and the Mystery of the Genetic Support of Its Biosynthesis. Front Microbiol 2019; 10:2932. [PMID: 31921087 PMCID: PMC6932959 DOI: 10.3389/fmicb.2019.02932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/05/2019] [Indexed: 11/13/2022] Open
Abstract
Pandoraviruses are giant viruses of ameba with 1 μm-long virions. They have an ovoid morphology and are surrounded by a tegument-like structure lacking any capsid protein nor any gene encoding a capsid protein. In this work, we studied the ultrastructure of the tegument surrounding Pandoravirus massiliensis virions and noticed that this tegument is composed of a peripheral sugar layer, an electron-dense membrane, and a thick electron-dense layer consisting in several tubules arranged in a helicoidal structure resembling that of cellulose. Pandoravirus massiliensis particles were stained by Calcofluor white, a fluorescent dye of cellulose, and the enzymatic treatment of particles by cellulase showed the degradation of the viral tegument. We first hypothesized that the cellulose tegument could be synthesized by enzymes encoded by the virus. Bioinformatic analyses revealed in P. massiliensis, a candidate gene encoding a putative cellulose synthase, with a homology with the BcsA domain, one of the catalytic subunits of the bacterial cellulose synthase, but with a low level of homology. This gene was transcribed during the replicative cycle of P. massiliensis, but several arguments run counter to this hypothesis. Indeed, even if this gene is present in other pandoraviruses, the one of the strain studied is the only one to have this BcsA domain and no other enzymes involved in the synthesis of cellulose could be detected, although we cannot rule out that such genes could have been undetected among the large proportion of Orfans of pandoraviruses. As an alternative, we investigated whether P. massiliensis could divert the cellulose synthesis machinery of the ameba to its own account. Indeed, contrary to what is observed in the case of infections with other giant viruses such as mimiviruses, it appears that the transcription of the ameba, at least for the cellulose synthase gene, continues throughout the growth phase of particles of P. massiliensis. Finally, we believe that this scenario is more plausible. If confirmed, it could be a unique mechanism in the virosphere.
Collapse
|
25
|
Hannachi N, Baudoin JP, Prasanth A, Habib G, Camoin-Jau L. The distinct effects of aspirin on platelet aggregation induced by infectious bacteria. Platelets 2019; 31:1028-1038. [PMID: 31856631 DOI: 10.1080/09537104.2019.1704717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacteria induce platelet aggregation triggered by several mechanisms. The goal of this work was to characterize platelet aggregates induced by different bacterial strains and to quantify the effect of aspirin treatment using aggregation tests, as well as a novel approach based on confocal analysis. Blood samples were obtained from either healthy donors (n = 27) or patients treated with long-term aspirin (n = 15). The bacterial species included were Staphylococcus aureus, Enterococcus faecalis, and Streptococcus sanguinis. The different aggregate's ultrastructures depending on the bacterial strain were analyzed using Scanning electron microscopy. Quantification of the size of the platelet aggregates, their mean number as well as the bacterial impregnation within the aggregates was performed using confocal laser scanning light microscopy. Light Transmission Aggregometry was also performed. Our results reported distinct characteristics of platelet aggregates depending on the bacterial strain. Using confocal analysis, we have shown that aspirin significantly reduced platelet aggregation induced by S. aureus (p = .003) and E. faecalis (p = .006) with no effect in the case of S. sanguinis (p = .529). The results of the aggregometry were concordant with those of the confocal technique in the case of S. aureus and S. sanguinis. Interestingly, aggregation induced by E. faecalis was detected only with confocal analysis. In conclusion, our confocal scanning microscopy allowed a detailed study of the platelet aggregation induced by bacteria. We showed that aspirin acts on bacterial-induced platelet aggregation depending on the species. These results are in favor of the use of aspirin considering the species and the bacterial strain involved.
Collapse
|