1
|
Pakeerathan T, Havla J, Schwake C, Salmen A, Ringelstein M, Aktas O, Weise M, Gernert JA, Kornek B, Bsteh G, Pröbstel AK, Papadopoulou A, Kulsvehagen L, Ayroza Galvão Ribeiro Gomes AB, Cerdá-Fuertes N, Oertel FC, Duchow AS, Paul F, Stellmann JP, Stolowy N, Hellwig K, Schneider-Gold C, Kümpfel T, Gold R, Albrecht P, Ayzenberg I. Rapid differentiation of MOGAD and MS after a single optic neuritis. J Neurol 2024:10.1007/s00415-024-12666-w. [PMID: 39249105 DOI: 10.1007/s00415-024-12666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Optic neuritis (ON) is a common manifestation of multiple sclerosis (MS) and myelin-oligodendrocyte-glycoprotein IgG-associated disease (MOGAD). This study evaluated the applicability of optical coherence tomography (OCT) for differentiating between both diseases in two independent cohorts. METHODS One hundred sixty two patients from seven sites underwent standard OCT and high-contrast visual acuity (HCVA) testing at least 6 months after first ON. Of these, 100 patients (32 MOGAD, 68 MS) comprised the primary investigational cohort, while 62 patients (31 MOGAD, 31 MS) formed a validation cohort. A composite score distinguishing between MOGAD and MS was developed using multivariate logistic regression. RESULTS Bilateral simultaneous ON occurred more frequently in MOGAD compared to MS (46.9 vs. 11.8%, p < 0.001). OCT revealed more peripapillary retinal nerve fiber layer (pRNFL) atrophy in all segments in MOGAD compared to predominantly temporal pRNFL atrophy in MS (p < 0.001). HCVA was better preserved in MS (p = 0.007). pRNFL thickness in all except for temporal segments was suitable for differentiating MOGAD and MS. Simultaneous bilateral ON and critical atrophy in nasal (< 58.5 µm) and temporal superior (< 105.5 µm) segments were included into the composite score as three independent predictors for MOGAD. The composite score distinguished MOGAD from MS with 75% sensitivity and 90% specificity in the investigational cohort, and 68% sensitivity and 87% specificity in the validation cohort. CONCLUSION Following a single ON-episode, MOGAD exhibits more pronounced global pRNFL atrophy and lower visual acuity after ON compared to MS. The introduced OCT-based composite score enabled differentiation between the two entities across both cohorts.
Collapse
|
2
|
Fatykhova D, Fritsch VN, Siebert K, Methling K, Lalk M, Busche T, Kalinowski J, Weiner J, Beule D, Bertrams W, Kohler TP, Hammerschmidt S, Löwa A, Fischer M, Mieth M, Hellwig K, Frey D, Neudecker J, Rueckert JC, Toennies M, Bauer TT, Graff M, Tran HL, Eggeling S, Gruber AD, Antelmann H, Hippenstiel S, Hocke AC. Microenvironmental acidification by pneumococcal sugar consumption fosters barrier disruption and immune suppression in the human alveolus. Eur Respir J 2024:2301983. [PMID: 39231629 DOI: 10.1183/13993003.01983-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 08/14/2024] [Indexed: 09/06/2024]
Abstract
Streptococcus pneumoniae (S.p.) is the most common causative agent of community-acquired pneumonia worldwide. A key pathogenic mechanism that exacerbates severity of disease is the disruption of the alveolar-capillary barrier. However, the specific virulence mechanisms responsible for this in the human lung are not yet fully understood.In this study, we infected living human lung tissue with S.p. and observed a significant degradation of the central junctional proteins occludin and VE-cadherin, indicating barrier disruption. Surprisingly, neither pneumolysin, bacterial hydrogen peroxide nor pro-inflammatory activation were sufficient to cause this junctional degradation. Instead, pneumococcal infection led to a significant decrease of pH (approximately 6), resulting in acidification of the alveolar microenvironment, which was linked to junctional degradation. Stabilising the pH at physiological levels during infection reversed this effect, even in a therapeutic-like approach.Further analysis of bacterial metabolites and RNA sequencing revealed sugar consumption and subsequent lactate production were the major factors contributing to bacterially induced alveolar acidification, which also hindered the release of critical immune factors.Our findings highlight bacterial metabolite-induced acidification as an independent virulence mechanism for barrier disruption and inflammatory dysregulation in pneumonia. Thus, our data suggest that strictly monitoring and buffering alveolar pH during infections caused by fermentative bacteria could serve as an adjunctive therapeutic strategy for sustaining barrier integrity and immune response.
Collapse
|
3
|
Baumgardt M, Hülsemann M, Löwa A, Fatykhova D, Hoffmann K, Kessler M, Mieth M, Hellwig K, Frey D, Langenhagen A, Voss A, Obermayer B, Wyler E, Dökel S, Gruber AD, Tölch U, Hippenstiel S, Hocke AC, Hönzke K. Correction: State-of-the-art analytical methods of viral infections in human lung organoids. PLoS One 2023; 18:e0294216. [PMID: 37922305 PMCID: PMC10624303 DOI: 10.1371/journal.pone.0294216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0276115.].
Collapse
|
4
|
Baumgardt M, Hülsemann M, Löwa A, Fatykhova D, Hoffmann K, Kessler M, Mieth M, Hellwig K, Frey D, Langenhagen A, Voss A, Obermayer B, Wyler E, Dökel S, Gruber AD, Tölch U, Hippenstiel S, Hocke AC, Hönzke K. State-of-the-art analytical methods of viral infections in human lung organoids. PLoS One 2022; 17:e0276115. [PMID: 36538516 PMCID: PMC9767351 DOI: 10.1371/journal.pone.0276115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
Human-based organ models can provide strong predictive value to investigate the tropism, virulence, and replication kinetics of viral pathogens. Currently, such models have received widespread attention in the study of SARS-CoV-2 causing the COVID-19 pandemic. Applicable to a large set of organoid models and viruses, we provide a step-by-step work instruction for the infection of human alveolar-like organoids with SARS-CoV-2 in this protocol collection. We also prepared a detailed description on state-of-the-art methodologies to assess the infection impact and the analysis of relevant host factors in organoids. This protocol collection consists of five different sets of protocols. Set 1 describes the protein extraction from human alveolar-like organoids and the determination of protein expression of angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2) and FURIN as exemplary host factors of SARS-CoV-2. Set 2 provides detailed guidance on the extraction of RNA from human alveolar-like organoids and the subsequent qPCR to quantify the expression level of ACE2, TMPRSS2, and FURIN as host factors of SARS-CoV-2 on the mRNA level. Protocol set 3 contains an in-depth explanation on how to infect human alveolar-like organoids with SARS-CoV-2 and how to quantify the viral replication by plaque assay and viral E gene-based RT-qPCR. Set 4 provides a step-by-step protocol for the isolation of single cells from infected human alveolar-like organoids for further processing in single-cell RNA sequencing or flow cytometry. Set 5 presents a detailed protocol on how to perform the fixation of human alveolar-like organoids and guides through all steps of immunohistochemistry and in situ hybridization to visualize SARS-CoV-2 and its host factors. The infection and all subsequent analytical methods have been successfully validated by biological replications with human alveolar-like organoids based on material from different donors.
Collapse
|
5
|
Hönzke K, Obermayer B, Mache C, Fatykhova D, Kessler M, Dökel S, Wyler E, Baumgardt M, Löwa A, Hoffmann K, Graff P, Schulze J, Mieth M, Hellwig K, Demir Z, Biere B, Brunotte L, Mecate-Zambrano A, Bushe J, Dohmen M, Hinze C, Elezkurtaj S, Tönnies M, Bauer TT, Eggeling S, Tran HL, Schneider P, Neudecker J, Rückert JC, Schmidt-Ott KM, Busch J, Klauschen F, Horst D, Radbruch H, Radke J, Heppner F, Corman VM, Niemeyer D, Müller MA, Goffinet C, Mothes R, Pascual-Reguant A, Hauser AE, Beule D, Landthaler M, Ludwig S, Suttorp N, Witzenrath M, Gruber AD, Drosten C, Sander LE, Wolff T, Hippenstiel S, Hocke AC. Human lungs show limited permissiveness for SARS-CoV-2 due to scarce ACE2 levels but virus-induced expansion of inflammatory macrophages. Eur Respir J 2022; 60:2102725. [PMID: 35728978 PMCID: PMC9712848 DOI: 10.1183/13993003.02725-2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilises the angiotensin-converting enzyme 2 (ACE2) transmembrane peptidase as cellular entry receptor. However, whether SARS-CoV-2 in the alveolar compartment is strictly ACE2-dependent and to what extent virus-induced tissue damage and/or direct immune activation determines early pathogenesis is still elusive. METHODS Spectral microscopy, single-cell/-nucleus RNA sequencing or ACE2 "gain-of-function" experiments were applied to infected human lung explants and adult stem cell derived human lung organoids to correlate ACE2 and related host factors with SARS-CoV-2 tropism, propagation, virulence and immune activation compared to SARS-CoV, influenza and Middle East respiratory syndrome coronavirus (MERS-CoV). Coronavirus disease 2019 (COVID-19) autopsy material was used to validate ex vivo results. RESULTS We provide evidence that alveolar ACE2 expression must be considered scarce, thereby limiting SARS-CoV-2 propagation and virus-induced tissue damage in the human alveolus. Instead, ex vivo infected human lungs and COVID-19 autopsy samples showed that alveolar macrophages were frequently positive for SARS-CoV-2. Single-cell/-nucleus transcriptomics further revealed nonproductive virus uptake and a related inflammatory and anti-viral activation, especially in "inflammatory alveolar macrophages", comparable to those induced by SARS-CoV and MERS-CoV, but different from NL63 or influenza virus infection. CONCLUSIONS Collectively, our findings indicate that severe lung injury in COVID-19 probably results from a macrophage-triggered immune activation rather than direct viral damage of the alveolar compartment.
Collapse
|
6
|
Pakeerathan T, Havla J, Schwake C, Salmen A, Bigi S, Abegg M, Brügger D, Ferrazzini T, Runge AK, Breu M, Kornek B, Bsteh G, Felipe-Rucián A, Ringelstein M, Aktas O, Karenfort M, Wendel E, Kleiter I, Hellwig K, Kümpfel T, Thiels C, Lücke T, Gold R, Rostasy K, Ayzenberg I. Characteristic retinal atrophy pattern allows differentiation between pediatric MOGAD and MS after a single optic neuritis episode. J Neurol 2022; 269:6366-6376. [PMID: 35869995 PMCID: PMC9618526 DOI: 10.1007/s00415-022-11256-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Optic neuritis (ON) is the most prevalent manifestation of pediatric multiple sclerosis (MSped) and myelin-oligodendrocyte glycoprotein antibody-associated disease (MOGADped) in children > 6 years. In this study, we investigated retinal atrophy patterns and diagnostic accuracy of optical coherence tomography (OCT) in differentiating between both diseases after the first ON episode. METHODS Patients were retrospectively identified in eight tertial referral centers. OCT, VEP and high/low-contrast visual acuity (HCVA/LCVA) have been investigated > 6 months after the first ON. Prevalence of pathological OCT findings was identified based on data of 144 age-matched healthy controls. RESULTS Thirteen MOGADped (10.7 ± 4.2 years, F:M 8:5, 21 ON eyes) and 21 MSped (14.3 ± 2.4 years, F:M 19:2, 24 ON eyes) patients were recruited. We observed a significantly more profound atrophy of both peripapillary and macular retinal nerve fiber layer in MOGADped compared to MSped (pRNFL global: 68.2 ± 16.9 vs. 89.4 ± 12.3 µm, p < 0.001; mRNFL: 0.12 ± 0.01 vs. 0.14 ± 0.01 mm3, p < 0.001). Neither other macular layers nor P100 latency differed. MOGADped developed global atrophy affecting all peripapillary segments, while MSped displayed predominantly temporal thinning. Nasal pRNFL allowed differentiation between both diseases with the highest diagnostic accuracy (AUC = 0.902, cutoff < 62.5 µm, 90.5% sensitivity and 70.8% specificity for MOGADped). OCT was also substantially more sensitive compared to VEP in identification of ON eyes in MOGAD (pathological findings in 90% vs. 14%, p = 0.016). CONCLUSION First MOGAD-ON results in a more severe global peripapillary atrophy compared to predominantly temporal thinning in MS-ON. Nasal pRNFL allows differentiation between both diseases with the highest accuracy, supporting the additional diagnostic value of OCT in children with ON.
Collapse
|
7
|
Linschoten M, Uijl A, Schut A, Jakob CEM, Romão LR, Bell RM, McFarlane E, Stecher M, Zondag AGM, van Iperen EPA, Hermans-van Ast W, Lea NC, Schaap J, Jewbali LS, Smits PC, Patel RS, Aujayeb A, van der Harst P, Siebelink HJ, van Smeden M, Williams S, Pilgram L, van Gilst WH, Tieleman RG, Williams B, Asselbergs FW, Al-Ali AK, Al-Muhanna FA, Al-Rubaish AM, Al-Windy NYY, Alkhalil M, Almubarak YA, Alnafie AN, Alshahrani M, Alshehri AM, Anning C, Anthonio RL, Badings EA, Ball C, van Beek EA, ten Berg JM, von Bergwelt-Baildon M, Bianco M, Blagova OV, Bleijendaal H, Bor WL, Borgmann S, van Boxem AJM, van den Brink FS, Bucciarelli-Ducci C, van Bussel BCT, Byrom-Goulthorp R, Captur G, Caputo M, Charlotte N, vom Dahl J, Dark P, De Sutter J, Degenhardt C, Delsing CE, Dolff S, Dorman HGR, Drost JT, Eberwein L, Emans ME, Er AG, Ferreira JB, Forner MJ, Friedrichs A, Gabriel L, Groenemeijer BE, Groenendijk AL, Grüner B, Guggemos W, Haerkens-Arends HE, Hanses F, Hedayat B, Heigener D, van der Heijden DJ, Hellou E, Hellwig K, Henkens MTHM, Hermanides RS, Hermans WRM, van Hessen MWJ, Heymans SRB, Hilt AD, van der Horst ICC, Hower M, van Ierssel SH, Isberner N, Jensen B, Kearney MT, van Kesteren HAM, Kielstein JT, Kietselaer BLJH, Kochanek M, Kolk MZH, Koning AMH, Kopylov PY, Kuijper AFM, Kwakkel-van Erp JM, Lanznaster J, van der Linden MMJM, van der Lingen ACJ, Linssen GCM, Lomas D, Maarse M, Macías Ruiz R, Magdelijns FJH, Magro M, Markart P, Martens FMAC, Mazzilli SG, McCann GP, van der Meer P, Meijs MFL, Merle U, Messiaen P, Milovanovic M, Monraats PS, Montagna L, Moriarty A, Moss AJ, Mosterd A, Nadalin S, Nattermann J, Neufang M, Nierop PR, Offerhaus JA, van Ofwegen-Hanekamp CEE, Parker E, Persoon AM, Piepel C, Pinto YM, Poorhosseini H, Prasad S, Raafs AG, Raichle C, Rauschning D, Redón J, Reidinga AC, Ribeiro MIA, Riedel C, Rieg S, Ripley DP, Römmele C, Rothfuss K, Rüddel J, Rüthrich MM, Salah R, Saneei E, Saxena M, Schellings DAAM, Scholte NTB, Schubert J, Seelig J, Shafiee A, Shore AC, Spinner C, Stieglitz S, Strauss R, Sturkenboom NH, Tessitore E, Thomson RJ, Timmermans P, Tio RA, Tjong FVY, Tometten L, Trauth J, den Uil CA, Van Craenenbroeck EM, van Veen HPAA, Vehreschild MJGT, Veldhuis LI, Veneman T, Verschure DO, Voigt I, de Vries JK, van de Wal RMA, Walter L, van de Watering DJ, Westendorp ICD, Westendorp PHM, Westhoff T, Weytjens C, Wierda E, Wille K, de With K, Worm M, Woudstra P, Wu KW, Zaal R, Zaman AG, van der Zee PM, Zijlstra LE, Alling TE, Ahmed R, van Aken K, Bayraktar-Verver ECE, Bermúdez Jiménes FJ, Biolé CA, den Boer-Penning P, Bontje M, Bos M, Bosch L, Broekman M, Broeyer FJF, de Bruijn EAW, Bruinsma S, Cardoso NM, Cosyns B, van Dalen DH, Dekimpe E, Domange J, van Doorn JL, van Doorn P, Dormal F, Drost IMJ, Dunnink A, van Eck JWM, Elshinawy K, Gevers RMM, Gognieva DG, van der Graaf M, Grangeon S, Guclu A, Habib A, Haenen NA, Hamilton K, Handgraaf S, Heidbuchel H, Hendriks-van Woerden M, Hessels-Linnemeijer BM, Hosseini K, Huisman J, Jacobs TC, Jansen SE, Janssen A, Jourdan K, ten Kate GL, van Kempen MJ, Kievit CM, Kleikers P, Knufman N, van der Kooi SE, Koole BAS, Koole MAC, Kui KK, Kuipers-Elferink L, Lemoine I, Lensink E, van Marrewijk V, van Meerbeeck JP, Meijer EJ, Melein AJ, Mesitskaya DF, van Nes CPM, Paris FMA, Perrelli MG, Pieterse-Rots A, Pisters R, Pölkerman BC, van Poppel A, Reinders S, Reitsma MJ, Ruiter AH, Selder JL, van der Sluis A, Sousa AIC, Tajdini M, Tercedor Sánchez L, Van De Heyning CM, Vial H, Vlieghe E, Vonkeman HE, Vreugdenhil P, de Vries TAC, Willems AM, Wils AM, Zoet-Nugteren SK. Clinical presentation, disease course, and outcome of COVID-19 in hospitalized patients with and without pre-existing cardiac disease: a cohort study across 18 countries. Eur Heart J 2022; 43:1104-1120. [PMID: 34734634 DOI: 10.1093/eurheartj/ehab656] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/22/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022] Open
Abstract
AIMS Patients with cardiac disease are considered high risk for poor outcomes following hospitalization with COVID-19. The primary aim of this study was to evaluate heterogeneity in associations between various heart disease subtypes and in-hospital mortality. METHODS AND RESULTS We used data from the CAPACITY-COVID registry and LEOSS study. Multivariable Poisson regression models were fitted to assess the association between different types of pre-existing heart disease and in-hospital mortality. A total of 16 511 patients with COVID-19 were included (21.1% aged 66-75 years; 40.2% female) and 31.5% had a history of heart disease. Patients with heart disease were older, predominantly male, and often had other comorbid conditions when compared with those without. Mortality was higher in patients with cardiac disease (29.7%; n = 1545 vs. 15.9%; n = 1797). However, following multivariable adjustment, this difference was not significant [adjusted risk ratio (aRR) 1.08, 95% confidence interval (CI) 1.02-1.15; P = 0.12 (corrected for multiple testing)]. Associations with in-hospital mortality by heart disease subtypes differed considerably, with the strongest association for heart failure (aRR 1.19, 95% CI 1.10-1.30; P < 0.018) particularly for severe (New York Heart Association class III/IV) heart failure (aRR 1.41, 95% CI 1.20-1.64; P < 0.018). None of the other heart disease subtypes, including ischaemic heart disease, remained significant after multivariable adjustment. Serious cardiac complications were diagnosed in <1% of patients. CONCLUSION Considerable heterogeneity exists in the strength of association between heart disease subtypes and in-hospital mortality. Of all patients with heart disease, those with heart failure are at greatest risk of death when hospitalized with COVID-19. Serious cardiac complications are rare during hospitalization.
Collapse
|
8
|
Hellwig K. Pregnancy in the new treatment era. J Neurol Sci 2019. [DOI: 10.1016/j.jns.2019.10.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Glaser A, Stahmann A, Meissner T, Flachenecker P, Horáková D, Zaratin P, Brichetto G, Pugliatti M, Rienhoff O, Vukusic S, de Giacomoni A, Battaglia M, Brola W, Butzkueven H, Casey R, Drulovic J, Eichstädt K, Hellwig K, Iaffaldano P, Ioannidou E, Kuhle J, Lycke K, Magyari M, Malbaša T, Middleton R, Myhr K, Notas K, Orologas A, Otero-Romero S, Pekmezovic T, Sastre-Garriga J, Seeldrayers P, Soilu-Hänninen M, Stawiarz L, Trojano M, Ziemssen T, Hillert J, Thalheim C. Multiple sclerosis registries in Europe – An updated mapping survey. Mult Scler Relat Disord 2019; 27:171-178. [DOI: 10.1016/j.msard.2018.09.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/30/2018] [Indexed: 01/25/2023]
|
10
|
Hellwig K, Geissbuehler Y, Sabidó M, Popescu C, Adamo A, Klinger J, Huppke P, Ornoy A, Korhonen P, Myhr K, Montgomery S, Burkill S. Pregnancy and Infant Outcomes with Interferon Beta: Data from the European Interferon Beta Pregnancy Registry and Population Based Registries in Finland and Sweden. Mult Scler Relat Disord 2018. [DOI: 10.1016/j.msard.2018.10.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Hellwig K, Kröger C, Franke S, Wehrmeyer M, Heinrichs N. [Minor Victims of Violent Acts in the Context of the Victim Reparation Law]. ZEITSCHRIFT FUR KINDER- UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2018; 46:123-132. [PMID: 28165300 DOI: 10.1024/1422-4917/a000508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
OBJECTIVE A descriptive analysis of victim compensation applications for children and adolescents as well as sociodemographic and trauma-specific information concerning victims and perpetrators. METHOD We did analysis of 100 victim-compensation application files based on a self-developed category system. RESULTS The files included solely interpersonal trauma, 59 % of which are type II trauma. The most frequent form is sexual violence. The perpetrators stem mostly from children’s homes or peripherals. 79 % of the victims received a diagnosis of a mental disorder, most often posttraumatic stress disorder. CONCLUSIONS Sexually abused children and adolescents make up the majority of the target population in OEG-related trauma outpatient units. Such outpatient units should therefore offer a specific expertise in treating sexually abused children and adolescents.
Collapse
|
12
|
Borisow N, Hellwig K, Paul F. [Neuromyelitis optica spectrum disorder and pregnancy]. DER NERVENARZT 2018; 89:666-673. [PMID: 29383411 DOI: 10.1007/s00115-018-0486-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorders (NMOSD) are autoimmune inflammatory diseases of the central nervous system that mainly affect women. In some of these patients NMOSD occurs during fertile age. For this reason, treating physicians may be confronted with questions concerning family planning, pregnancy and birth. OBJECTIVE This study provides an overview on the influence of NMOSD on fertility, pregnancy complications and pregnancy outcome. The effect of pregnancy on NMOSD course and therapy options during pregnancy are discussed. MATERIAL AND METHODS A search of the current literature was carried out using the PubMed database. RESULTS AND CONCLUSION Animal studies have shown lower fertility rates in NMOSD; however, studies investigating fertility in NMOSD patients are lacking. Pregnancy in NMOSD patients are associated with an increase in postpartum disease activity and a higher grade of disability after pregnancy. Some studies showed higher risks of pregnancy complications e. g. spontaneous abortions and preeclampsia. With a few limitations, acute relapses during pregnancy can be treated with methylprednisolone and/or plasma exchange/immunoadsorption. Stopping or continuing immunosuppressive therapy with azathioprine or rituximab during pregnancy should be critically weighed considering previous and current disease activity. Therefore, a joint supervision by a specialized center is recommended, particularly in specific situations such as pregnancy.
Collapse
|
13
|
Klotz L, Berthele A, Brück W, Chan A, Flachenecker P, Gold R, Haghikia A, Hellwig K, Hemmer B, Hohlfeld R, Korn T, Kümpfel T, Lang M, Limmroth V, Linker RA, Meier U, Meuth SG, Paul F, Salmen A, Stangel M, Tackenberg B, Tumani H, Warnke C, Weber MS, Ziemssen T, Zipp F, Wiendl H. [Monitoring of blood parameters under course-modified MS therapy : Substance-specific relevance and current recommendations for action]. DER NERVENARZT 2017; 87:645-59. [PMID: 26927677 DOI: 10.1007/s00115-016-0077-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the approval of various substances for the immunotherapy of multiple sclerosis (MS), treatment possibilities have improved significantly over the last few years. Indeed, the choice of individually tailored preparations and treatment monitoring for the treating doctor is becoming increasingly more complex. This is particularly applicable for monitoring for a treatment-induced compromise of the immune system. The following article by members of the German Multiple Sclerosis Skills Network (KKNMS) and the task force "Provision Structures and Therapeutics" summarizes the practical recommendations for approved immunotherapy for mild to moderate and for (highly) active courses of MS. The focus is on elucidating the substance-specific relevance of particular laboratory parameters with regard to the mechanism of action and the side effects profile. To enable appropriate action to be taken in clinical practice, any blood work changes that can be expected, in addition to any undesirable laboratory findings and their causes and relevance, should be elucidated.
Collapse
|
14
|
Grupe KH, Hellwig K, Kolditz L. Massenspektrometrische Untersuchungen an Clusterverbindungen der Elemente Schwefel, Selen und Tellur. Z PHYS CHEM 2017. [DOI: 10.1515/zpch-1974-255118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Bayas A, Baum K, Bitsch A, Haas J, Hellwig K, Lang M, Lee DH, Rosenkranz T, Schreiber M, Ulzheimer J, Ziemssen T. Ein Jahr Alemtuzumab – was haben wir in der Praxis gelernt? Experten-Erfahrungsaustausch zur Therapie der Multiplen Sklerose. AKTUELLE NEUROLOGIE 2015. [DOI: 10.1055/s-0035-1555891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Berg J, Hellwig K, Stoll D, Becher A, Wolff T, Tönnies M, Bauer TT, Schneider P, Neudecker J, Rückert JC, Kershaw O, Gruber AD, Suttorp N, Hippenstiel S, Hocke AC. IVA induced IFNs facilitate development of secondary pneumococcal pneumonia in human lung tissue. Pneumologie 2015. [DOI: 10.1055/s-0035-1548631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Gutbier B, Veith-Berger C, Berg J, Hellwig K, Mieth M, Neuhauß AK, Bauer TT, Tönnies M, Witzenrath M, Hocke AC. Zelluläre und subzelluläre Lokalisation von Angiopoietin-2 in der Lunge. Pneumologie 2015. [DOI: 10.1055/s-0035-1548662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Gutbier B, Veith-Berger C, Berg J, Hellwig K, Neuhauß AK, Witzenrath M, Hocke AC. Zelluläre und subzelluläre Lokalisation von Angiopoietin-2 in der Lunge. Pneumologie 2015. [DOI: 10.1055/s-0035-1544858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Müller-Redetzky HC, Felten M, Hellwig K, Wienhold SM, Naujoks J, Opitz B, Kershaw O, Gruber AD, Suttorp N, Witzenrath M. Increasing the inspiratory time and I:E ratio during mechanical ventilation aggravates ventilator-induced lung injury in mice. Crit Care 2015; 19:23. [PMID: 25888164 PMCID: PMC4336519 DOI: 10.1186/s13054-015-0759-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/20/2015] [Indexed: 11/10/2022] Open
Abstract
Introduction Lung-protective ventilation reduced acute respiratory distress syndrome (ARDS) mortality. To minimize ventilator-induced lung injury (VILI), tidal volume is limited, high plateau pressures are avoided, and positive end-expiratory pressure (PEEP) is applied. However, the impact of specific ventilatory patterns on VILI is not well defined. Increasing inspiratory time and thereby the inspiratory/expiratory ratio (I:E ratio) may improve oxygenation, but may also be harmful as the absolute stress and strain over time increase. We thus hypothesized that increasing inspiratory time and I:E ratio aggravates VILI. Methods VILI was induced in mice by high tidal-volume ventilation (HVT 34 ml/kg). Low tidal-volume ventilation (LVT 9 ml/kg) was used in control groups. PEEP was set to 2 cm H2O, FiO2 was 0.5 in all groups. HVT and LVT mice were ventilated with either I:E of 1:2 (LVT 1:2, HVT 1:2) or 1:1 (LVT 1:1, HVT 1:1) for 4 hours or until an alternative end point, defined as mean arterial blood pressure below 40 mm Hg. Dynamic hyperinflation due to the increased I:E ratio was excluded in a separate group of animals. Survival, lung compliance, oxygenation, pulmonary permeability, markers of pulmonary and systemic inflammation (leukocyte differentiation in lung and blood, analyses of pulmonary interleukin-6, interleukin-1β, keratinocyte-derived chemokine, monocyte chemoattractant protein-1), and histopathologic pulmonary changes were analyzed. Results LVT 1:2 or LVT 1:1 did not result in VILI, and all individuals survived the ventilation period. HVT 1:2 decreased lung compliance, increased pulmonary neutrophils and cytokine expression, and evoked marked histologic signs of lung injury. All animals survived. HVT 1:1 caused further significant worsening of oxygenation, compliance and increased pulmonary proinflammatory cytokine expression, and pulmonary and blood neutrophils. In the HVT 1:1 group, significant mortality during mechanical ventilation was observed. Conclusion According to the “baby lung” concept, mechanical ventilation-associated stress and strain in overinflated regions of ARDS lungs was simulated by using high tidal-volume ventilation. Increase of inspiratory time and I:E ratio significantly aggravated VILI in mice, suggesting an impact of a “stress/strain × time product” for the pathogenesis of VILI. Thus increasing the inspiratory time and I:E ratio should be critically considered. Electronic supplementary material The online version of this article (doi:10.1186/s13054-015-0759-2) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Müller-Redetzky HC, Wienhold SM, Berg J, Hocke AC, Hippenstiel S, Hellwig K, Gutbier B, Opitz B, Neudecker J, Rückert J, Gruber AD, Kershaw O, Mayer K, Suttorp N, Witzenrath M. Moxifloxacin is not anti-inflammatory in experimental pneumococcal pneumonia. J Antimicrob Chemother 2014; 70:830-40. [DOI: 10.1093/jac/dku446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Herbstritt S, Gold R, Hellwig K. Kinderwunsch und Multiple Sklerose. AKTUELLE NEUROLOGIE 2014. [DOI: 10.1055/s-0033-1337051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Herbstritt S, Gold R, Hellwig K. Kinderwunsch und Multiple Sklerose. AKTUELLE NEUROLOGIE 2014. [DOI: 10.1055/s-0034-1387219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Müller-Redetzky HC, Will D, Hellwig K, Kummer W, Tschernig T, Pfeil U, Paddenberg R, Menger MD, Kershaw O, Gruber AD, Weissmann N, Hippenstiel S, Suttorp N, Witzenrath M. Mechanical ventilation drives pneumococcal pneumonia into lung injury and sepsis in mice: protection by adrenomedullin. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:R73. [PMID: 24731244 PMCID: PMC4056010 DOI: 10.1186/cc13830] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 04/03/2014] [Indexed: 01/04/2023]
Abstract
Introduction Ventilator-induced lung injury (VILI) contributes to morbidity and mortality in acute respiratory distress syndrome (ARDS). Particularly pre-injured lungs are susceptible to VILI despite protective ventilation. In a previous study, the endogenous peptide adrenomedullin (AM) protected murine lungs from VILI. We hypothesized that mechanical ventilation (MV) contributes to lung injury and sepsis in pneumonia, and that AM may reduce lung injury and multiple organ failure in ventilated mice with pneumococcal pneumonia. Methods We analyzed in mice the impact of MV in established pneumonia on lung injury, inflammation, bacterial burden, hemodynamics and extrapulmonary organ injury, and assessed the therapeutic potential of AM by starting treatment at intubation. Results In pneumococcal pneumonia, MV increased lung permeability, and worsened lung mechanics and oxygenation failure. MV dramatically increased lung and blood cytokines but not lung leukocyte counts in pneumonia. MV induced systemic leukocytopenia and liver, gut and kidney injury in mice with pneumonia. Lung and blood bacterial burden was not affected by MV pneumonia and MV increased lung AM expression, whereas receptor activity modifying protein (RAMP) 1–3 expression was increased in pneumonia and reduced by MV. Infusion of AM protected against MV-induced lung injury (66% reduction of pulmonary permeability p < 0.01; prevention of pulmonary restriction) and against VILI-induced liver and gut injury in pneumonia (91% reduction of AST levels p < 0.05, 96% reduction of alanine aminotransaminase (ALT) levels p < 0.05, abrogation of histopathological changes and parenchymal apoptosis in liver and gut). Conclusions MV paved the way for the progression of pneumonia towards ARDS and sepsis by aggravating lung injury and systemic hyperinflammation leading to liver, kidney and gut injury. AM may be a promising therapeutic option to protect against development of lung injury, sepsis and extrapulmonary organ injury in mechanically ventilated individuals with severe pneumonia.
Collapse
|
24
|
Müller-Redetzky H, Felten M, Polikarpova M, Hellwig K, Wienhold S, Naujoks J, Opitz B, Kershaw O, Gruber AD, Suttorp N, Witzenrath M. Increasing the inspiratory time and I:E ratio during mechanical ventilation aggravates Ventilator-induced lung injury in mice. Pneumologie 2014. [DOI: 10.1055/s-0034-1367767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Müller-Redetzky H, Henke-Kellermann U, Tschernig T, Wienhold S, Polikarpova M, Hellwig K, Vater A, Maasch C, Klussman S, Menger MD, Suttorp N, Witzenrath M. Neutralizing the complement component C5a protects against lung injury and extrapulmonary organ injury in pneumococcal pneumonia induced sepsis. Pneumologie 2014. [DOI: 10.1055/s-0034-1367904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|