1
|
Guignard S, Saifeddine M, Mihara K, Motahhary M, Savignac M, Guiraud L, Sagnat D, Sebbag M, Khou S, Rolland C, Edir A, Bournet B, Buscail L, Buscail E, Alric L, Camare C, Ambli M, Vergnolle N, Hollenberg MD, Deraison C, Bonnart C. Chymotrypsin activity signals to intestinal epithelium by protease-activated receptor-dependent mechanisms. Br J Pharmacol 2024; 181:2725-2749. [PMID: 38637276 DOI: 10.1111/bph.16341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND AND PURPOSE Chymotrypsin is a pancreatic protease secreted into the lumen of the small intestine to digest food proteins. We hypothesized that chymotrypsin activity may be found close to epithelial cells and that chymotrypsin signals to them via protease-activated receptors (PARs). We deciphered molecular pharmacological mechanisms and gene expression regulation for chymotrypsin signalling in intestinal epithelial cells. EXPERIMENTAL APPROACH The presence and activity of chymotrypsin were evaluated by Western blot and enzymatic activity tests in the luminal and mucosal compartments of murine and human gut samples. The ability of chymotrypsin to cleave the extracellular domain of PAR1 or PAR2 was assessed using cell lines expressing N-terminally tagged receptors. The cleavage site of chymotrypsin on PAR1 and PAR2 was determined by HPLC-MS analysis. The chymotrypsin signalling mechanism was investigated in CMT93 intestinal epithelial cells by calcium mobilization assays and Western blot analyses of (ERK1/2) phosphorylation. The transcriptional consequences of chymotrypsin signalling were analysed on colonic organoids. KEY RESULTS We found that chymotrypsin was present and active in the vicinity of the colonic epithelium. Molecular pharmacological studies have shown that chymotrypsin cleaves both PAR1 and PAR2 receptors. Chymotrypsin activated calcium and ERK1/2 signalling pathways through PAR2, and this pathway promoted interleukin-10 (IL-10) up-regulation in colonic organoids. In contrast, chymotrypsin disarmed PAR1, preventing further activation by its canonical agonist, thrombin. CONCLUSION AND IMPLICATIONS Our results highlight the ability of chymotrypsin to signal to intestinal epithelial cells via PARs, which may have important physiological consequences in gut homeostasis.
Collapse
|
2
|
Mihara K, Kanemoto I, Sato K, Yasuhira Y, Watanabe I, Misumi K. Corrigendum to 'Echocardiographic evaluation of deformity and enlargement of the canine mitral valve annulus associated with myxomatous degenerative mitral valve disease' [J Vet Cardiol (2021) 37, 8-17]. J Vet Cardiol 2023; 45:1-2. [PMID: 36512887 DOI: 10.1016/j.jvc.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Mihara K, Saifeddine M, Hollenberg MD. Metformin down‐regulates TGF beta signal transduction and production of PAR2 N‐terminus cleaving protease activity in an NR4a1 dependent manner in a PC3 prostate cancer cell line. FASEB J 2022. [DOI: 10.1096/fasebj.2022.36.s1.r2300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Williams D, Mahmoud M, Liu R, Andueza A, Kumar S, Kang DW, Zhang J, Tamargo I, Villa-Roel N, Baek KI, Lee H, An Y, Zhang L, Tate EW, Bagchi P, Pohl J, Mosnier LO, Diamandis EP, Mihara K, Hollenberg MD, Dai Z, Jo H. Stable flow-induced expression of KLK10 inhibits endothelial inflammation and atherosclerosis. eLife 2022; 11:e72579. [PMID: 35014606 PMCID: PMC8806187 DOI: 10.7554/elife.72579] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis preferentially occurs in arterial regions exposed to disturbed blood flow (d-flow), while regions exposed to stable flow (s-flow) are protected. The proatherogenic and atheroprotective effects of d-flow and s-flow are mediated in part by the global changes in endothelial cell (EC) gene expression, which regulates endothelial dysfunction, inflammation, and atherosclerosis. Previously, we identified kallikrein-related peptidase 10 (Klk10, a secreted serine protease) as a flow-sensitive gene in mouse arterial ECs, but its role in endothelial biology and atherosclerosis was unknown. Here, we show that KLK10 is upregulated under s-flow conditions and downregulated under d-flow conditions using in vivo mouse models and in vitro studies with cultured ECs. Single-cell RNA sequencing (scRNAseq) and scATAC sequencing (scATACseq) study using the partial carotid ligation mouse model showed flow-regulated Klk10 expression at the epigenomic and transcription levels. Functionally, KLK10 protected against d-flow-induced permeability dysfunction and inflammation in human artery ECs, as determined by NFκB activation, expression of vascular cell adhesion molecule 1 and intracellular adhesion molecule 1, and monocyte adhesion. Furthermore, treatment of mice in vivo with rKLK10 decreased arterial endothelial inflammation in d-flow regions. Additionally, rKLK10 injection or ultrasound-mediated transfection of Klk10-expressing plasmids inhibited atherosclerosis in Apoe-/- mice. Moreover, KLK10 expression was significantly reduced in human coronary arteries with advanced atherosclerotic plaques compared to those with less severe plaques. KLK10 is a flow-sensitive endothelial protein that serves as an anti-inflammatory, barrier-protective, and anti-atherogenic factor.
Collapse
|
5
|
Brownsey DK, Rowley BC, Gorobets E, Mihara K, Maity R, Papatzimas JW, Gelfand BS, Hollenberg MD, Bahlis NJ, Derksen DJ. Identification of ligand linkage vectors for the development of p300/CBP degraders. RSC Med Chem 2022; 13:726-730. [PMID: 35814928 PMCID: PMC9215131 DOI: 10.1039/d1md00070e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/12/2022] [Indexed: 01/10/2023] Open
Abstract
To develop new degrader molecules from an existing protein ligand a linkage vector must be identified and then joined with a suitable E3 ligase without disrupting binding to the respective...
Collapse
|
6
|
Fekete E, Allain T, Amat CB, Mihara K, Saifeddine M, Hollenberg MD, Chadee K, Buret AG. Giardia duodenalis cysteine proteases cleave proteinase-activated receptor-2 to regulate intestinal goblet cell mucin gene expression. Int J Parasitol 2022; 52:285-292. [DOI: 10.1016/j.ijpara.2021.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022]
|
7
|
Abji F, Rasti M, Gómez-Aristizábal A, Muytjens C, Saifeddine M, Mihara K, Motahhari M, Gandhi R, Viswanathan S, Hollenberg MD, Oikonomopoulou K, Chandran V. Corrigendum: Proteinase-Mediated Macrophage Signaling in Psoriatic Arthritis. Front Immunol 2021; 12:814072. [PMID: 34975926 PMCID: PMC8715513 DOI: 10.3389/fimmu.2021.814072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/14/2022] Open
|
8
|
Mihara K, Kanemoto I, Sato K, Yasuhira Y, Watanabe I, Misumi K. Echocardiographic evaluation of deformity and enlargement of the canine mitral valve annulus associated with myxomatous degenerative mitral valve disease. J Vet Cardiol 2021; 37:8-17. [PMID: 34507141 DOI: 10.1016/j.jvc.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION/OBJECTIVES Quantitative evaluation of the morphology of the mitral valve annulus (MVA) in dogs with myxomatous mitral valve disease (MMVD) may improve the techniques of mitral valve plasty. This study aimed to compare the MVA morphology on echocardiography in normal dogs and dogs with MMVD and to compare the echocardiographic and intraoperative measurements of the MVA in dogs with MMVD. ANIMALS, MATERIALS AND METHODS The study population comprised 59 healthy dogs (control group) and 371 dogs with MMVD (MMVD group). The anterior-posterior diameter and transversal diameter (TD) of the MVA and the aortic annulus diameter were measured by echocardiography to calculate the mitral valve flattening ratio, mitral annulus area (MAA), mitral annulus circumference (MAC), contraction ratio of the MAA and aortic annulus area. In the MMVD group, the mitral annulus diameter (MAD) was macroscopically measured during mitral valve plasty. Areas and lengths were divided by the body surface area (BSA) and √BSA, respectively, for comparative analyses. RESULTS The systolic and diastolic anterior-posterior diameter/√BSA, transversal diameter/√BSA, MAA/BSA converted to a natural logarithm (Ln(MAA/BSA)), and MAC/√BSA was significantly higher in the MMVD group than the control group, whereas flattening ratio values and contraction ratio of the MAA was significantly lower. Neither the aortic annulus diameter /√BSA nor the Ln(aortic annulus area/BSA) significantly differed between groups. In the MMVD group, diastolic MAC/√BSA and MAA/BSA correlated significantly with the MAD/√BSA. CONCLUSIONS The MVA is larger and rounder in dogs with MMVD than controls. Two-dimensional echocardiographic measures of MAA and MAC correlate well with intraoperative measures of MAD.
Collapse
|
9
|
Venu VKP, Saifeddine M, Mihara K, Faiza M, Gorobets E, Flewelling AJ, Derksen DJ, Hirota SA, Marei I, Al-Majid D, Motahhary M, Ding H, Triggle CR, Hollenberg MD. Metformin Prevents Hyperglycemia-Associated, Oxidative Stress-Induced Vascular Endothelial Dysfunction: Essential Role for the Orphan Nuclear Receptor Human Nuclear Receptor 4A1 (Nur77). Mol Pharmacol 2021; 100:428-455. [PMID: 34452975 DOI: 10.1124/molpharm.120.000148] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/17/2021] [Indexed: 01/22/2023] Open
Abstract
Vascular pathology is increased in diabetes because of reactive-oxygen-species (ROS)-induced endothelial cell damage. We found that in vitro and in a streptozotocin diabetes model in vivo, metformin at diabetes-therapeutic concentrations (1-50 µM) protects tissue-intact and cultured vascular endothelial cells from hyperglycemia/ROS-induced dysfunction typified by reduced agonist-stimulated endothelium-dependent, nitric oxide-mediated vasorelaxation in response to muscarinic or proteinase-activated-receptor 2 agonists. Metformin not only attenuated hyperglycemia-induced ROS production in aorta-derived endothelial cell cultures but also prevented hyperglycemia-induced endothelial mitochondrial dysfunction (reduced oxygen consumption rate). These endothelium-protective effects of metformin were absent in orphan-nuclear-receptor Nr4a1-null murine aorta tissues in accord with our observing a direct metformin-Nr4a1 interaction. Using in silico modeling of metformin-NR4A1 interactions, Nr4a1-mutagenesis, and a transfected human embryonic kidney 293T cell functional assay for metformin-activated Nr4a1, we identified two Nr4a1 prolines, P505/P549 (mouse sequences corresponding to human P501/P546), as key residues for enabling metformin to affect mitochondrial function. Our data indicate a critical role for Nr4a1 in metformin's endothelial-protective effects observed at micromolar concentrations, which activate AMPKinase but do not affect mitochondrial complex-I or complex-III oxygen consumption rates, as does 0.5 mM metformin. Thus, therapeutic metformin concentrations requiring the expression of Nr4a1 protect the vasculature from hyperglycemia-induced dysfunction in addition to metformin's action to enhance insulin action in patients with diabetes. SIGNIFICANCE STATEMENT: Metformin improves diabetic vasodilator function, having cardioprotective effects beyond glycemic control, but its mechanism to do so is unknown. We found that metformin at therapeutic concentrations (1-50µM) prevents hyperglycemia-induced endothelial dysfunction by attenuating reactive oxygen species-induced damage, whereas high metformin (>250 µM) impairs vascular function. However, metformin's action requires the expression of the orphan nuclear receptor NR4A1/Nur77. Our data reveal a novel mechanism whereby metformin preserves diabetic vascular endothelial function, with implications for developing new metformin-related therapeutic agents.
Collapse
|
10
|
Fekete E, Amat C, Allain T, Mihara K, Hollenberg M, Chadee K, Buret A. Structural and Chemical Alterations to the Intestinal Mucus Barrier during
Giardia duodenalis
Infection. FASEB J 2021. [DOI: 10.1096/fasebj.2021.35.s1.02078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Renouf M, Mihara K, Saifeddine M, Hollenberg M. Microglial cell secretion of serpin‐like trypsin‐inhibitory activity: potential regulation of proteinase‐activated receptor‐2 (PAR2)‐mediated inflammatory signalling. FASEB J 2021. [DOI: 10.1096/fasebj.2021.35.s1.05081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Hollenberg M, Mihara K. Proteolytic Signal Crosstalk in the Prostate Cancer Microenvironment: PC3 Cell Metalloproteinases and Autocrine‐paracrine‐fibroblast Regulation of Proteinase‐activated Receptors (PARs). FASEB J 2021. [DOI: 10.1096/fasebj.2021.35.s1.05158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Abji F, Rasti M, Gómez-Aristizábal A, Muytjens C, Saifeddine M, Mihara K, Motahhari M, Gandhi R, Viswanathan S, Hollenberg MD, Oikonomopoulou K, Chandran V. Proteinase-Mediated Macrophage Signaling in Psoriatic Arthritis. Front Immunol 2021; 11:629726. [PMID: 33763056 PMCID: PMC7982406 DOI: 10.3389/fimmu.2020.629726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022] Open
Abstract
Objective Multiple proteinases are present in the synovial fluid (SF) of an arthritic joint. We aimed to identify inflammatory cell populations present in psoriatic arthritis (PsA) SF compared to osteoarthritis (OA) and rheumatoid arthritis (RA), identify their proteinase-activated receptor 2 (PAR2) signaling function and characterize potentially active SF serine proteinases that may be PAR2 activators. Methods Flow cytometry was used to characterize SF cells from PsA, RA, OA patients; PsA SF cells were further characterized by single cell 3’-RNA-sequencing. Active serine proteinases were identified through cleavage of fluorogenic trypsin- and chymotrypsin-like substrates, activity-based probe analysis and proteomics. Fluo-4 AM was used to monitor intracellular calcium cell signaling. Cytokine expression was evaluated using a multiplex Luminex panel. Results PsA SF cells were dominated by monocytes/macrophages, which consisted of three populations representing classical, non-classical and intermediate cells. The classical monocytes/macrophages were reduced in PsA compared to OA/RA, whilst the intermediate population was increased. PAR2 was elevated in OA vs. PsA/RA SF monocytes/macrophages, particularly in the intermediate population. PAR2 expression and signaling in primary PsA monocytes/macrophages significantly impacted the production of monocyte chemoattractant protein-1 (MCP-1). Trypsin-like serine proteinase activity was elevated in PsA and RA SF compared to OA, while chymotrypsin-like activity was elevated in RA compared to PsA. Tryptase-6 was identified as an active serine proteinase in SF that could trigger calcium signaling partially via PAR2. Conclusion PAR2 and its activating proteinases, including tryptase-6, can be important mediators of inflammation in PsA. Components within this proteinase-receptor axis may represent novel therapeutic targets.
Collapse
|
14
|
Fekete E, Amat CB, Allain T, Hollenberg M, Mihara K, Chadee K, Buret A. A50 MODULATION OF GOBLET CELL ACTIVITY DURING GIARDIA DUODENALIS INFECTION: A ROLE FOR PAR2. J Can Assoc Gastroenterol 2021. [DOI: 10.1093/jcag/gwab002.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Background
Giardia duodenalis has been shown to alter the structure of the intestinal mucus layers during infection via obscure mechanisms. We hypothesize that goblet cell activity may be disrupted in part due to proteolytic activation of protease-activated receptor 2 (PAR2) by Giardia proteases, resulting in disruption of mucus production and secretion by intestinal goblet cells.
Aims
Characterize alterations in goblet cell activity during Giardia infection, focusing on the roles of Giardia protease activity and PAR2.
Methods
Chinese hamster ovary cells transfected with nano-luciferase tagged PAR2 were incubated with Giardia NF or GSM trophozoites. Cleavage within the activation domain results in release of enzymes into the supernatant. Luminescence in the supernatant was measured as an indication of PAR cleavage by Giardia.
LS174T, a human colonic mucus-producing cell line, was infected with Giardia trophozoites (isolates NF, WB, S2, and GSM). Prior to infection, trophozoites were treated with E64, a broad-spectrum cysteine protease inhibitor, and LS174T were treated with a PAR2 antagonist, a calcium chelator, or an ERK1/2 inhibitor. Quantitative PCR (qPCR) was performed for the MUC2 mucin gene.
Wild-type (WT) and PAR2 knockout (KO) mice were infected with Giardia. Colonic mucus was stained using fluorescein-coupled wheat-germ agglutinin (WGA), and qPCR was performed for Muc2 and Muc5ac.
Results
Giardia trophozoites cleaved PAR2 within the N-terminal activation domain in a cysteine protease-dependent manner. Cleavage was isolate dependent, with isolates that show higher protease activity cleaving at a higher rate.
High protease activity Giardia isolates increased MUC2 gene expression in LS714T. This increase was attenuated by inhibition of Giardia cysteine protease activity, and by antagonism of PAR2, inhibition of calcium release, or inhibition of ERK1/2 activity in LS174T cells.
Both Muc2 and Muc5ac expression were upregulated in the colons of WT mice in response to Giardia infection, while in the jejunum Muc2 expression decreased and Muc5ac expression increased. In KO, no changes in gene expression were seen in the colon in response to Giardia infection, while in the jejunum, Muc2 expression was unchanged and Muc5ac expression decreased. Both WT infected and KO noninfected mice showed thinning of the colonic mucus layer compared to WT controls. There was some recovery in thickness in KO infected mice.
Conclusions
PAR2 plays a significant role in the regulation of mucin gene expression in mice and in a human colonic cell line. Results suggest that Giardia cysteine proteases cleave and activate PAR2, leading to calcium release and activation of the MAPK pathway in goblet cells, ultimately leading to altered mucin gene expression. Findings identify a novel regulatory pathway for mucus production by intestinal goblet cells.
Funding Agencies
CAG, CCC
Collapse
|
15
|
de Lima SG, Eskaros A, Mihara K, Saifeddine M, Zijlstra A, Hyndman ME, Hollenberg MD. Organotypic & in vitro monolayer modeling of urothelial carcinoma gives different cellular responses to proteinase activated receptor (PAR) agonism/antagonism. Urol Oncol 2020. [DOI: 10.1016/j.urolonc.2020.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Kondo T, Tanaka M, Yamataka K, Kikuchi Y, Mihara K, Shito M. Laparoscopic reversal of Hartmann's procedure using the reverse transrectal stapling technique. Tech Coloproctol 2020; 24:1309-1310. [PMID: 32683597 DOI: 10.1007/s10151-020-02302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/12/2020] [Indexed: 10/23/2022]
|
17
|
Petrushina I, Litvinenko VN, Jing Y, Ma J, Pinayev I, Shih K, Wang G, Wu YH, Altinbas Z, Brutus JC, Belomestnykh S, Di Lieto A, Inacker P, Jamilkowski J, Mahler G, Mapes M, Miller T, Narayan G, Paniccia M, Roser T, Severino F, Skaritka J, Smart L, Smith K, Soria V, Than Y, Tuozzolo J, Wang E, Xiao B, Xin T, Ben-Zvi I, Boulware C, Grimm T, Mihara K, Kayran D, Rao T. High-Brightness Continuous-Wave Electron Beams from Superconducting Radio-Frequency Photoemission Gun. PHYSICAL REVIEW LETTERS 2020; 124:244801. [PMID: 32639812 DOI: 10.1103/physrevlett.124.244801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Continuous-wave photoinjectors operating at high accelerating gradients promise to revolutionize many areas of science and applications. They can establish the basis for a new generation of monochromatic x-ray free electron lasers, high-brightness hadron beams, or a new generation of microchip production. In this Letter we report on the record-performing superconducting rf electron gun with CsK_{2}Sb photocathode. The gun is generating high charge electron bunches (up to 10 nC/bunch) and low transverse emittances, while operating for months with a single photocathode. This achievement opens a new era in generating high-power beams with a very high average brightness.
Collapse
|
18
|
Fekete ER, Amat C, Allain T, Mihara K, Hollenberg M, Chadee K, Buret A. Alterations to Mucus Production and Secretion during
Giardia
Infection Involve
Giardia
Protease Activity and PAR2 Activation. FASEB J 2020. [DOI: 10.1096/fasebj.2020.34.s1.02365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Venu VKP, Saifeddine M, Mihara K, Kamal B, Lantela D, Hollenberg MD. NON‐PSYCHOACTIVE CANNABINOIDS (CBD/CBG) ACT VIA CANNABINOID CB2/CB1 RECEPTORS TO REGULATE INTESTINAL MYOFIBROBLAST METABOLIC ACTIVITY AND TO INHIBIT FORSKOLIN‐MEDIATED ELEVATION OF CYCLIC‐AMP. FASEB J 2020. [DOI: 10.1096/fasebj.2020.34.s1.02225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Otterbein H, Mihara K, Hollenberg MD, Lehnert H, Witte D, Ungefroren H. RAC1B Suppresses TGF-β-Dependent Chemokinesis and Growth Inhibition through an Autoregulatory Feed-Forward Loop Involving PAR2 and ALK5. Cancers (Basel) 2019; 11:cancers11081211. [PMID: 31434318 PMCID: PMC6721813 DOI: 10.3390/cancers11081211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023] Open
Abstract
The small GTPase RAC1B functions as a powerful inhibitor of transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition, cell motility, and growth arrest in pancreatic epithelial cells. Previous work has shown that RAC1B downregulates the TGF-β type I receptor ALK5, but the molecular details of this process have remained unclear. Here, we hypothesized that RAC1B-mediated suppression of activin receptor-like kinase 5 (ALK5) involves proteinase-activated receptor 2 (PAR2), a G protein-coupled receptor encoded by F2RL1 that is crucial for sustaining ALK5 expression. We found in pancreatic carcinoma Panc1 cells that PAR2 is upregulated by TGF-β1 in an ALK5-dependent manner and that siRNA-mediated knockdown of RAC1B increased both basal and TGF-β1-induced expression of PAR2. Further, the simultaneous knockdown of PAR2 and RAC1B rescued Panc1 cells from a RAC1B knockdown-induced increase in ALK5 abundance and the ALK5-mediated increase in TGF-β1-induced migratory activity. Conversely, Panc1 cells with stable ectopic expression of RAC1B displayed reduced ALK5 expression, an impaired upregulation of PAR2, and a reduced migratory responsiveness to TGF-β1 stimulation. However, these effects could be reversed by ectopic overexpression of PAR2. Moreover, the knockdown of PAR2 alone in Panc1 cells and HaCaT keratinocytes phenocopied RAC1B's ability to suppress ALK5 abundance and TGF-β1-induced chemokinesis and growth inhibition. Lastly, we found that the RAC1B knockdown-induced increase in TGF-β1-induced PAR2 mRNA expression was sensitive to pharmacological inhibition of MEK-ERK signaling. Our data show that in pancreatic and skin epithelial cells, downregulation of ALK5 activity by RAC1B is secondary to suppression of F2RL1/PAR2 expression. Since F2RL1 itself is a TGF-β target gene and its upregulation by TGF-β1 is mediated by ALK5 and MEK-ERK signaling, we suggest the existence of a feed-forward signaling loop involving ALK5 and PAR2 that is efficiently suppressed by RAC1B to restrict TGF-β-driven cell motility and growth inhibition.
Collapse
|
21
|
Pulakazhi Venu VK, Saifeddine M, Mihara K, Tsai YC, Nieves K, Alston L, Mani S, McCoy KD, Hollenberg MD, Hirota SA. The pregnane X receptor and its microbiota-derived ligand indole 3-propionic acid regulate endothelium-dependent vasodilation. Am J Physiol Endocrinol Metab 2019; 317:E350-E361. [PMID: 31211619 PMCID: PMC6732469 DOI: 10.1152/ajpendo.00572.2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We proposed that circulating metabolites generated by the intestinal microbiota can affect vascular function. One such metabolite, indole 3-propionic acid (IPA), can activate the pregnane X receptor(PXR), a xenobiotic-activated nuclear receptor present in many tissues, including the vascular endothelium. We hypothesized that IPA could regulate vascular function by modulating PXR activity. To test this, Pxr+/+ mice were administered broad-spectrum antibiotics for 2 wk with IPA supplementation. Vascular function was evaluated by bioassay using aorta and pulmonary artery ring tissue from antibiotic-treated Pxr+/+ and Pxr-/-mice, supplemented with IPA, and using aorta tissue maintained in organ culture for 24 h in the presence of IPA. Endothelium-dependent, nitric oxide(NO)-mediated muscarinic and proteinase-activated receptor 2(PAR2)-stimulated vasodilation was assessed. Endothelial nitric oxide synthase (eNOS) abundance was evaluated in intact tissue or in aorta-derived endothelial cell cultures from Pxr+/+ and Pxr-/- mice, and vascular Pxr levels were assessed in tissues obtained from Pxr+/+ mice treated with antibiotics and supplemented with IPA. Antibiotic-treated Pxr+/+ mice exhibited enhanced agonist-induced endothelium-dependent vasodilation, which was phenocopied by tissues from either Pxr-/- or germ-free mice. IPA exposure reduced the vasodilatory responses in isolated and cultured vessels. No effects of IPA were observed for tissues obtained from Pxr-/- mice. Serum nitrate levels were increased in antibiotic-treated Pxr+/+and Pxr-/- mice. eNOS abundance was increased in aorta tissues and cultured endothelium from Pxr-/- mice. PXR stimulation reduced eNOS expression in cultured endothelial cells from Pxr+/+ but not Pxr-/- mice. The microbial metabolite IPA, via the PXR, plays a key role in regulating endothelial function. Furthermore, antibiotic treatment changes PXR-mediated vascular endothelial responsiveness by upregulating eNOS.
Collapse
|
22
|
Eftekhari R, de Lima SG, Liu Y, Mihara K, Saifeddine M, Noorbakhsh F, Scarisbrick IA, Hollenberg MD. Microenvironment proteinases, proteinase-activated receptor regulation, cancer and inflammation. Biol Chem 2019; 399:1023-1039. [PMID: 29924723 DOI: 10.1515/hsz-2018-0001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/08/2018] [Indexed: 12/17/2022]
Abstract
We propose that in the microenvironment of inflammatory tissues, including tumours, extracellular proteinases can modulate cell signalling in part by regulating proteinase-activated receptors (PARs). We have been exploring this mechanism in a variety of inflammation and tumour-related settings that include tumour-derived cultured cells from prostate and bladder cancer, as well as immune inflammatory cells that are involved in the pathology of inflammatory diseases including multiple sclerosis. Our work showed that proteinase signalling via the PARs affects prostate and bladder cancer-derived tumour cell behaviour and can regulate calcium signalling in human T-cell and macrophage-related inflammatory cells as well as in murine splenocytes. Further, we found that the tumour-derived prostate cancer cells and immune-related cells (Jurkat, THP1, mouse splenocytes) can produce PAR-regulating proteinases (including kallikreins: kallikrein-related peptidases), that can control tissue function by both a paracrine and autocrine mechanism. We suggest that this PAR-driven signalling process involving secreted microenvironment proteinases can play a key role in cancer and inflammatory diseases including multiple sclerosis.
Collapse
|
23
|
Fekete E, Amat C, Allain T, Mihara K, Hollenberg M, Chadee K, Buret A. Giardia
‐Induced Alterations to Intestinal Mucus Production Involve Protease‐Activated Receptor‐2‐Mediated Activation of MAPK and Calcium Release. FASEB J 2019. [DOI: 10.1096/fasebj.2019.33.1_supplement.38.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Carr BJ, Mihara K, Ramachandran R, Saifeddine M, Nathanson NM, Stell WK, Hollenberg MD. Myopia-Inhibiting Concentrations of Muscarinic Receptor Antagonists Block Activation of Alpha2A-Adrenoceptors In Vitro. Invest Ophthalmol Vis Sci 2019; 59:2778-2791. [PMID: 29860464 DOI: 10.1167/iovs.17-22562] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Myopia is a refractive disorder that degrades vision. It can be treated with atropine, a muscarinic acetylcholine receptor (mAChR) antagonist, but the mechanism is unknown. Atropine may block α-adrenoceptors at concentrations ≥0.1 mM, and another potent myopia-inhibiting ligand, mamba toxin-3 (MT3), binds equally well to human mAChR M4 and α1A- and α2A-adrenoceptors. We hypothesized that mAChR antagonists could inhibit myopia via α2A-adrenoceptors, rather than mAChR M4. Methods Human mAChR M4 (M4), chicken mAChR M4 (cM4), or human α2A-adrenergic receptor (hADRA2A) clones were cotransfected with CRE/promoter-luciferase (CRE-Luc; agonist-induced luminescence) and Renilla luciferase (RLuc; normalizing control) into human cells. Inhibition of normalized agonist-induced luminescence by antagonists (ATR: atropine; MT3; HIM: himbacine; PRZ: pirenzepine; TRP: tropicamide; OXY: oxyphenonium; QNB: 3-quinuclidinyl benzilate; DIC: dicyclomine; MEP: mepenzolate) was measured using the Dual-Glo Luciferase Assay System. Results Relative inhibitory potencies of mAChR antagonists at mAChR M4/cM4, from most to least potent, were QNB > OXY ≥ ATR > MEP > HIM > DIC > PRZ > TRP. MT3 was 56× less potent at cM4 than at M4. Relative potencies of mAChR antagonists at hADRA2A, from most to least potent, were MT3 > HIM > ATR > OXY > PRZ > TRP > QNB > MEP; DIC did not antagonize. Conclusions Muscarinic antagonists block hADRA2A signaling at concentrations comparable to those used to inhibit chick myopia (≥0.1 mM) in vivo. Relative potencies at hADRA2A, but not M4/cM4, correlate with reported abilities to inhibit chick form-deprivation myopia. mAChR antagonists might inhibit myopia via α2-adrenoceptors, instead of through the mAChR M4/cM4 receptor subtype.
Collapse
|
25
|
Sachan V, Lodge R, Mihara K, Hamelin J, Power C, Gelman BB, Hollenberg MD, Cohen ÉA, Seidah NG. HIV-induced neuroinflammation: impact of PAR1 and PAR2 processing by Furin. Cell Death Differ 2019; 26:1942-1954. [PMID: 30683917 DOI: 10.1038/s41418-018-0264-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023] Open
Abstract
HIV-associated neurocognitive disorders (HAND) is a syndrome defined by neurocognitive deficits that are driven by viral neurotoxins, cytokines, free radicals, and proteases expressed in the brain. This neurological disease has also been linked to activation of Protease-Activated Receptors 1 and 2 (PAR1,2). These receptors are highly expressed in the central nervous system and are upregulated in HAND. Secretory basic-amino-acid-specific Proprotein Convertases (PCs), which cleave precursor proteins at basic residues, are also induced in HAND. They are vital for many biological processes including HIV-1 entry into cells. The cytoprotective role of Furin, PC5, and PACE4 has been linked to the presence of a potential PC-cleavage site R41XXXXR46↓ in PAR1. Furthermore, Furin binds PAR1 and both are trapped in the trans-Golgi-network (TGN) as inactive proteins, likely due to the intermediary trafficking role of phospho-Furin acidic cluster sorting protein 1 (PACS1). Nothing is known about PAR2 and its possible recognition by PCs at its putative R31XXXXR36↓ processing site. The present study implicates PACS1 in the retrograde trafficking of PAR1 to the TGN and demonstrates that the cytosolic extreme C-terminal tail of PAR1 contains an acidic phosphorylatable PACS1-sensitive domain. We further show the requirement of Asn47 in PAR1 for its Furin-dependent TGN localization. Our data revealed that Furin is the only convertase that efficiently cleaves PAR2 at Arg36↓. N-glycosylation of PAR2 at Asn30 reduces the efficacy, but enhances selectivity of the Furin cleavage. Finally, in co-cultures comprised of human neuroblastoma SK-N-SH cells (stably expressing PAR1/2 and/or Furin) and HIV-1-infected primary macrophages, we demonstrate that the expression of Furin enhances neuronal cell viability in the context of PAR1- or PAR2-induced neuronal cytotoxicity. The present study provides insights into early stages of HIV-1 induced neuronal injury and the protective role of Furin in neurons co-expressing PAR1 and/or PAR2, as observed in HAND.
Collapse
|