1
|
Jones AC, Patki A, Srinivasasainagendra V, Tiwari HK, Armstrong ND, Chaudhary NS, Limdi NA, Hidalgo BA, Davis B, Cimino JJ, Khan A, Kiryluk K, Lange LA, Lange EM, Arnett DK, Young BA, Diamantidis CJ, Franceschini N, Wassertheil-Smoller S, Rich SS, Rotter JI, Mychaleckyj JC, Kramer HJ, Chen YDI, Psaty BM, Brody JA, de Boer IH, Bansal N, Bis JC, Irvin MR. Single-Ancestry versus Multi-Ancestry Polygenic Risk Scores for CKD in Black American Populations. J Am Soc Nephrol 2024; 35:1558-1569. [PMID: 39073889 DOI: 10.1681/asn.0000000000000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
Key Points
The predictive performance of an African ancestry–specific polygenic risk score (PRS) was comparable to a European ancestry–derived PRS for kidney traits.However, multi-ancestry PRSs outperform single-ancestry PRSs in Black American populations.Predictive accuracy of PRSs for CKD was improved with the use of race-free eGFR.
Background
CKD is a risk factor of cardiovascular disease and early death. Recently, polygenic risk scores (PRSs) have been developed to quantify risk for CKD. However, African ancestry populations are underrepresented in both CKD genetic studies and PRS development overall. Moreover, European ancestry–derived PRSs demonstrate diminished predictive performance in African ancestry populations.
Methods
This study aimed to develop a PRS for CKD in Black American populations. We obtained score weights from a meta-analysis of genome-wide association studies for eGFR in the Million Veteran Program and Reasons for Geographic and Racial Differences in Stroke Study to develop an eGFR PRS. We optimized the PRS risk model in a cohort of participants from the Hypertension Genetic Epidemiology Network. Validation was performed in subsets of Black participants of the Trans-Omics in Precision Medicine Consortium and Genetics of Hypertension Associated Treatment Study.
Results
The prevalence of CKD—defined as stage 3 or higher—was associated with the PRS as a continuous predictor (odds ratio [95% confidence interval]: 1.35 [1.08 to 1.68]) and in a threshold-dependent manner. Furthermore, including APOL1 risk status—a putative variant for CKD with higher prevalence among those of sub-Saharan African descent—improved the score's accuracy. PRS associations were robust to sensitivity analyses accounting for traditional CKD risk factors, as well as CKD classification based on prior eGFR equations. Compared with previously published PRS, the predictive performance of our PRS was comparable with a European ancestry–derived PRS for kidney traits. However, single-ancestry PRSs were less predictive than multi-ancestry–derived PRSs.
Conclusions
In this study, we developed a PRS that was significantly associated with CKD with improved predictive accuracy when including APOL1 risk status. However, PRS generated from multi-ancestry populations outperformed single-ancestry PRS in our study.
Collapse
|
2
|
Liu L, Zhu L, Monteiro-Martins S, Griffin A, Vlahos LJ, Fujita M, Berrouet C, Zanoni F, Marasa M, Zhang JY, Zhou XJ, Caliskan Y, Akchurin O, Al-Akash S, Jankauskiene A, Bodria M, Chishti A, Esposito C, Esposito V, Claes D, Tesar V, Davis TK, Samsonov D, Kaminska D, Hryszko T, Zaza G, Flynn JT, Iorember F, Lugani F, Rizk D, Julian BA, Hidalgo G, Kallash M, Biancone L, Amoroso A, Bono L, Mani LY, Vogt B, Lin F, Sreedharan R, Weng P, Ranch D, Xiao N, Quiroga A, Matar RB, Rheault MN, Wenderfer S, Selewski D, Lundberg S, Silva C, Mason S, Mahan JD, Vasylyeva TL, Mucha K, Foroncewicz B, Pączek L, Florczak M, Olszewska M, Gradzińska A, Szczepańska M, Machura E, Badeński A, Krakowczyk H, Sikora P, Kwella N, Miklaszewska M, Drożdż D, Zaniew M, Pawlaczyk K, SiniewiczLuzeńczyk K, Bomback AS, Appel GB, Izzi C, Scolari F, Materna-Kiryluk A, Mizerska-Wasiak M, Berthelot L, Pillebout E, Monteiro RC, Novak J, Green TJ, Smoyer WE, Hastings MC, Wyatt RJ, Nelson R, Martin J, González-Gay MA, De Jager PL, Köttgen A, Califano A, Gharavi AG, Zhang H, Kiryluk K. Genome-wide studies define new genetic mechanisms of IgA vasculitis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.10.24315041. [PMID: 39417133 PMCID: PMC11482997 DOI: 10.1101/2024.10.10.24315041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
IgA vasculitis (IgAV) is a pediatric disease with skin and systemic manifestations. Here, we conducted genome, transcriptome, and proteome-wide association studies in 2,170 IgAV cases and 5,928 controls, generated IgAV-specific maps of gene expression and splicing from blood of 255 pediatric cases, and reconstructed myeloid-specific regulatory networks to define disease master regulators modulated by the newly identified disease driver genes. We observed significant association at the HLA-DRB1 (OR=1.55, P=1.1×10-25) and fine-mapped specific amino-acid risk substitutions in DRβ1. We discovered two novel non-HLA loci: FCAR (OR=1.51, P=1.0×10-20) encoding a myeloid IgA receptor FcαR, and INPP5D (OR=1.34, P=2.2×10-9) encoding a known inhibitor of FcαR signaling. The FCAR risk locus co-localized with a cis-eQTL increasing FCAR expression; the risk alleles disrupted a PRDM1 binding motif within a myeloid enhancer of FCAR. Another risk locus was associated with a higher genetically predicted levels of plasma IL6R. The IL6R risk haplotype carried a missense variant contributing to accelerated cleavage of IL6R into a soluble form. Using systems biology approaches, we prioritized IgAV master regulators co-modulated by FCAR, INPP5D and IL6R in myeloid cells. We additionally identified 21 shared loci in a cross-phenotype analysis of IgAV with IgA nephropathy, including novel loci PAID4, WLS, and ANKRD55.
Collapse
|
3
|
Wooden B, Beenken A, Martinelli E, Saida K, Knob AL, Ke J, Pisani I, Jin G, Lane B, Mitrotti A, Colby E, Lim TY, Guglielmi F, Osborne AJ, Ahram DF, Wang C, Armand F, Zanoni F, Bomback AS, Delsante M, Appel GB, Ferrari MRA, Martino J, Sahdeo S, Breckenridge D, Petrovski S, Paul DS, Hall G, Magistroni R, Murtas C, Feriozzi S, Rampino T, Esposito P, Helmuth ME, Sampson MG, Kretzler M, Kiryluk K, Shril S, Gesualdo L, Maggiore U, Fiaccadori E, Gbadegesin R, Santoriello D, D'Agati VD, Saleem MA, Gharavi AG, Hildebrandt F, Pollak MR, Goldstein DB, Sanna-Cherchi S. Natural History and Clinicopathological Associations of TRPC6-Associated Podocytopathy. J Am Soc Nephrol 2024:00001751-990000000-00433. [PMID: 39352759 DOI: 10.1681/asn.0000000501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Understanding the genetic basis of human diseases has become integral to drug development and precision medicine. Recent advancements have enabled the identification of molecular pathways driving diseases, leading to targeted treatment strategies. The increasing investment in rare diseases by the biotech industry underscores the importance of genetic evidence in drug discovery and approval processes. Here we studied a monogenic Mendelian kidney disease, TRPC6-associated podocytopathy (TRPC6-AP), to present its natural history, genetic spectrum, and clinicopathological associations in a large cohort of patients with causal variants in TRPC6, in order to help define the specific features of disease and further facilitate drug development and clinical trials design. METHODS the study involved 64 individuals from 39 families with TRPC6 causal missense variants. Clinical data, including age of onset, laboratory results, response to treatment, kidney biopsy findings, and genetic information, were collected from multiple centers nationally and internationally. Exome or targeted sequencing was performed and variant classification was based on strict criteria. Structural and functional analyses of TRPC6 variants were conducted to understand their impact on protein function. In depth re-analysis of light and electron microscopy specimens for 9 available kidney biopsies was conducted to identify pathological features and correlates of TRPC6-AP. RESULTS Large-scale sequencing data did not support causality for TRPC6 protein-truncating variants. We identified 21 unique TRPC6 missense variants, clustering in three distinct regions of the protein, and with different effects on TRPC6 3D protein structure. Kidney biopsy analysis revealed FSGS patterns of injury in most cases, along with distinctive podocyte features including diffuse foot process effacement and swollen cell bodies. The majority of patients presented in adolescence or early adulthood but with ample variation (average 22, SD ± 14 years), with frequent progression to kidney failure but with variability in time between presentation and ESKD. CONCLUSIONS This study provides insights into the genetic spectrum, clinicopathological associations, and natural history of TRPC6-AP.
Collapse
|
4
|
Guo J, Kiryluk K, Wang S. PheW 2P2V: a phenome-wide prediction framework with weighted patient representations using electronic health records. JAMIA Open 2024; 7:ooae084. [PMID: 39282083 PMCID: PMC11401611 DOI: 10.1093/jamiaopen/ooae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
Objective Electronic health records (EHRs) provide opportunities for the development of computable predictive tools. Conventional machine learning methods and deep learning methods have been widely used for this task, with the approach of usually designing one tool for one clinical outcome. Here we developed PheW2P2V, a Phenome-Wide prediction framework using Weighted Patient Vectors. PheW2P2V conducts tailored predictions for phenome-wide phenotypes using numeric representations of patients' past medical records weighted based on their similarities with individual phenotypes. Materials and Methods PheW2P2V defines clinical disease phenotypes using Phecode mapping based on International Classification of Disease codes, which reduces redundancy and case-control misclassification in real-life EHR datasets. Through upweighting medical records of patients that are more relevant to a phenotype of interest in calculating patient vectors, PheW2P2V achieves tailored incidence risk prediction of a phenotype. The calculation of weighted patient vectors is computationally efficient, and the weighting mechanism ensures tailored predictions across the phenome. We evaluated prediction performance of PheW2P2V and baseline methods with simulation studies and clinical applications using the MIMIC-III database. Results Across 942 phenome-wide predictions using the MIMIC-III database, PheW2P2V has median area under the receiver operating characteristic curve (AUC-ROC) 0.74 (baseline methods have values ≤0.72), median max F1-score 0.20 (baseline methods have values ≤0.19), and median area under the precision-recall curve (AUC-PR) 0.10 (baseline methods have values ≤0.10). Discussion PheW2P2V can predict phenotypes efficiently by using medical concept embeddings and upweighting relevant past medical histories. By leveraging both labeled and unlabeled data, PheW2P2V reduces overfitting and improves predictions for rare phenotypes, making it a useful screening tool for early diagnosis of high-risk conditions, though further research is needed to assess the transferability of embeddings across different databases. Conclusions PheW2P2V is fast, flexible, and has superior prediction performance for many clinical disease phenotypes across the phenome of the MIMIC-III database compared to that of several popular baseline methods.
Collapse
|
5
|
Batal I, Watts AJB, Gibier JB, Hamroun A, Top I, Provot F, Keller K, Ye X, Fernandez HE, Leal R, Andeen NK, Crew RJ, Dube GK, Vasilescu ER, Ratner LE, Bowman N, Bomback AS, Sanna-Cherchi S, Kiryluk K, Weins A. Pre-transplant anti-nephrin antibodies are specific predictors of recurrent diffuse podocytopathy in the kidney allograft. Kidney Int 2024; 106:749-752. [PMID: 39127225 PMCID: PMC11416305 DOI: 10.1016/j.kint.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/30/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
|
6
|
Khan A, Kiryluk K. Polygenic scores and their applications in kidney disease. Nat Rev Nephrol 2024:10.1038/s41581-024-00886-2. [PMID: 39271761 DOI: 10.1038/s41581-024-00886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/15/2024]
Abstract
Genome-wide association studies (GWAS) have uncovered thousands of risk variants that individually have small effects on the risk of human diseases, including chronic kidney disease, type 2 diabetes, heart diseases and inflammatory disorders, but cumulatively explain a substantial fraction of disease risk, underscoring the complexity and pervasive polygenicity of common disorders. This complexity poses unique challenges to the clinical translation of GWAS findings. Polygenic scores combine small effects of individual GWAS risk variants across the genome to improve personalized risk prediction. Several polygenic scores have now been developed that exhibit sufficiently large effects to be considered clinically actionable. However, their clinical use is limited by their partial transferability across ancestries and a lack of validated models that combine polygenic, monogenic, family history and clinical risk factors. Moreover, prospective studies are still needed to demonstrate the clinical utility and cost-effectiveness of polygenic scores in clinical practice. Here, we discuss evolving methods for developing polygenic scores, best practices for validating and reporting their performance, and the study designs that will empower their clinical implementation. We specifically focus on the polygenic scores relevant to nephrology and other chronic, complex diseases and review their key limitations, necessary refinements and potential clinical applications.
Collapse
|
7
|
Elliott MD, Vena N, Marasa M, Cocchi E, Bheda S, Bogyo K, Shang N, Zanoni F, Verbitsky M, Wang C, Kolupaeva V, Jin G, Sofer M, Gras Pena R, Canetta PA, Bomback AS, Guay-Woodford LM, Hou J, Gillespie BW, Robinson BM, Klein JB, Rheault MN, Smoyer WE, Greenbaum LA, Holzman LB, Falk RJ, Parsa A, Sanna-Cherchi S, Mariani LH, Kretzler M, Kiryluk K, Gharavi AG. Increased risk of kidney failure in patients with genetic kidney disorders. J Clin Invest 2024; 134:e178573. [PMID: 39225089 PMCID: PMC11364380 DOI: 10.1172/jci178573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUNDIt is unknown whether the risk of kidney disease progression and failure differs between patients with and without genetic kidney disorders.METHODSThree cohorts were evaluated: the prospective Cure Glomerulonephropathy Network (CureGN) and 2 retrospective cohorts from Columbia University, including 5,727 adults and children with kidney disease from any etiology who underwent whole-genome or exome sequencing. The effects of monogenic kidney disorders and APOL1 kidney-risk genotypes on the risk of kidney failure, estimated glomerular filtration rate (eGFR) decline, and disease remission rates were evaluated along with diagnostic yields and the impact of American College of Medical Genetics secondary findings (ACMG SFs).RESULTSMonogenic kidney disorders were identified in 371 patients (6.5%), high-risk APOL1 genotypes in 318 (5.5%), and ACMG SFs in 100 (5.2%). Family history of kidney disease was the strongest predictor of monogenic disorders. After adjustment for traditional risk factors, monogenic kidney disorders were associated with an increased risk of kidney failure (hazard ratio [HR] = 1.72), higher rate of eGFR decline (-3.06 vs. 0.25 mL/min/1.73 m2/year), and lower risk of complete remission (odds ratioNot achieving CR = 5.25). High-risk APOL1 genotypes were associated with an increased risk of kidney failure (HR = 1.67) and faster eGFR decline (-2.28 vs. 0.25 mL/min/1.73 m2), replicating prior findings. ACMG SFs were not associated with personal or family history of associated diseases, but were predicted to impact care in 70% of cases.CONCLUSIONSMonogenic kidney disorders were associated with an increased risk of kidney failure, faster eGFR decline, and lower rates of complete remission, suggesting opportunities for early identification and intervention based on molecular diagnosis.TRIAL REGISTRATIONNA.FUNDINGNational Institute of Diabetes and Digestive and Kidney Diseases grants U24DK100845 (formerly UM1DK100845), U01DK100846 (formerly UM1DK100846), U01DK100876 (formerly UM1DK100876), U01DK100866 (formerly UM1DK100866), U01DK100867 (formerly UM1DK100867), U24DK100845, DK081943, RC2DK116690, 2U01DK100876, 1R01DK136765, 5R01DK082753, and RC2-DK122397; NephCure Kidney International; Department of Defense Research Awards PR201425, W81XWH-16-1-0451, and W81XWH-22-1-0966; National Center for Advancing Translational Sciences grant UL1TR001873; National Library of Medicine grant R01LM013061; National Human Genome Research Institute grant 2U01HG008680.
Collapse
|
8
|
Kneifati-Hayek JZ, Zachariah T, Ahn W, Khan A, Kiryluk K, Mohan S, Weng C, Gharavi AG, Nestor JG. Bridging the Gap in Genomic Implementation: Identifying User Needs for Precision Nephrology. Kidney Int Rep 2024; 9:2420-2431. [PMID: 39156149 PMCID: PMC11328575 DOI: 10.1016/j.ekir.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Genomic medicine holds transformative potential for personalized nephrology care; however, its clinical integration poses challenges. Automated clinical decision support (CDS) systems in the electronic health record (EHR) offer a promising solution but have shown limited impact. This study aims to glean practical insights into nephrologists' challenges using genomic resources, informing precision nephrology decision support tools. Methods We conducted an anonymous electronic survey among US nephrologists from January 19, 2021 to May 19, 2021, guided by the Consolidated Framework for Implementation Research. It assessed practice characteristics, genomic resource utilization, attitudes, perceived knowledge, self-efficacy, and factors influencing genetic testing decisions. Survey links were primarily shared with National Kidney Foundation members. Results We analyzed 319 surveys, with most respondents specializing in adult nephrology. Although respondents generally acknowledged the clinical use of genomic resources, varying levels of perceived knowledge and self-efficacy were evident regarding precision nephrology workflows. Barriers to genetic testing included cost/insurance coverage and limited genomics experience. Conclusion The study illuminates specific hurdles nephrologists face using genomic resources. The findings are a valuable contribution to genomic implementation research, highlighting the significance of developing tailored interventions to support clinicians in using genomic resources effectively. These findings can guide the future development of CDS systems in the EHR. Addressing unmet informational and workflow support needs can enhance the integration of genomics into clinical practice, advancing personalized nephrology care and improving kidney disease outcomes. Further research should focus on interventions promoting seamless precision nephrology care integration.
Collapse
|
9
|
Wang C, Wang T, Kiryluk K, Wei Y, Aschard H, Ionita-Laza I. Genome-wide discovery for biomarkers using quantile regression at biobank scale. Nat Commun 2024; 15:6460. [PMID: 39085219 PMCID: PMC11291931 DOI: 10.1038/s41467-024-50726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Genome-wide association studies (GWAS) for biomarkers important for clinical phenotypes can lead to clinically relevant discoveries. Conventional GWAS for quantitative traits are based on simplified regression models modeling the conditional mean of a phenotype as a linear function of genotype. We draw attention here to an alternative, lesser known approach, namely quantile regression that naturally extends linear regression to the analysis of the entire conditional distribution of a phenotype of interest. Quantile regression can be applied efficiently at biobank scale, while having some unique advantages such as (1) identifying variants with heterogeneous effects across quantiles of the phenotype distribution; (2) accommodating a wide range of phenotype distributions including non-normal distributions, with invariance of results to trait transformations; and (3) providing more detailed information about genotype-phenotype associations even for those associations identified by conventional GWAS. We show in simulations that quantile regression is powerful across both homogeneous and various heterogeneous models. Applications to 39 quantitative traits in the UK Biobank demonstrate that quantile regression can be a helpful complement to linear regression in GWAS and can identify variants with larger effects on high-risk subgroups of individuals but with lower or no contribution overall.
Collapse
|
10
|
Luo Y, Khan A, Liu L, Lee CH, Perreault GJ, Pomenti SF, Gourh P, Kiryluk K, Bernstein EJ. Cross-Phenotype GWAS Supports Shared Genetic Susceptibility to Systemic Sclerosis and Primary Biliary Cholangitis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.01.24309721. [PMID: 39006426 PMCID: PMC11245064 DOI: 10.1101/2024.07.01.24309721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Objective An increased risk of primary biliary cholangitis (PBC) has been reported in patients with systemic sclerosis (SSc). Our study aims to investigate the shared genetic susceptibility between the two disorders and to define candidate causal genes using cross-phenotype GWAS meta-analysis. Methods We performed cross-phenotype GWAS meta-analysis and colocalization analysis for SSc and PBC. We performed both genome-wide and locus-based analysis, including tissue and pathway enrichment analyses, fine-mapping, colocalization analyses with expression quantitative trait loci (eQTL) and protein quantitative trait loci (pQTL) datasets, and phenome-wide association studies (PheWAS). Finally, we used an integrative approach to prioritize candidate causal genes from the novel loci. Results We detected a strong genetic correlation between SSc and PBC (rg = 0.84, p = 1.7 × 10-6). In the cross-phenotype GWAS meta-analysis, we identified 44 non-HLA loci that reached genome-wide significance (p < 5 × 10-8). Evidence of shared causal variants between SSc and PBC was found for nine loci, five of which were novel. Integrating multiple sources of evidence, we prioritized CD40, ERAP1, PLD4, SPPL3, and CCDC113 as novel candidate causal genes. The CD40 risk locus colocalized with trans-pQTLs of multiple plasma proteins involved in B cell function. Conclusion Our study supports a strong shared genetic susceptibility between SSc and PBC. Through cross-phenotype analyses, we have prioritized several novel candidate causal genes and pathways for these disorders.
Collapse
|
11
|
Beenken A, Kiryluk K. Blood Proteomics for Biomarkers of Kidney Pathology. J Am Soc Nephrol 2024; 35:835-837. [PMID: 38819933 PMCID: PMC11230708 DOI: 10.1681/asn.0000000000000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024] Open
|
12
|
Ma BM, Elefant N, Tedesco M, Bogyo K, Vena N, Murthy SK, Bheda SA, Yang S, Tomar N, Zhang JY, Husain SA, Mohan S, Kiryluk K, Rasouly HM, Gharavi AG. Developing a genetic testing panel for evaluation of morbidities in kidney transplant recipients. Kidney Int 2024; 106:115-125. [PMID: 38521406 PMCID: PMC11410071 DOI: 10.1016/j.kint.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/18/2024] [Accepted: 02/13/2024] [Indexed: 03/25/2024]
Abstract
Cardiovascular disease, infection, malignancy, and thromboembolism are major causes of morbidity and mortality in kidney transplant recipients (KTR). Prospectively identifying monogenic conditions associated with post-transplant complications may enable personalized management. Therefore, we developed a transplant morbidity panel (355 genes) associated with major post-transplant complications including cardiometabolic disorders, immunodeficiency, malignancy, and thrombophilia. This gene panel was then evaluated using exome sequencing data from 1590 KTR. Additionally, genes associated with monogenic kidney and genitourinary disorders along with American College of Medical Genetics (ACMG) secondary findings v3.2 were annotated. Altogether, diagnostic variants in 37 genes associated with Mendelian kidney and genitourinary disorders were detected in 9.9% (158/1590) of KTR; 25.9% (41/158) had not been clinically diagnosed. Moreover, the transplant morbidity gene panel detected diagnostic variants for 56 monogenic disorders in 9.1% KTRs (144/1590). Cardiovascular disease, malignancy, immunodeficiency, and thrombophilia variants were detected in 5.1% (81), 2.1% (34), 1.8% (29) and 0.2% (3) among 1590 KTRs, respectively. Concordant phenotypes were present in half of these cases. Reviewing implications for transplant care, these genetic findings would have allowed physicians to set specific risk factor targets in 6.3% (9/144), arrange intensive surveillance in 97.2% (140/144), utilize preventive measures in 13.2% (19/144), guide disease-specific therapy in 63.9% (92/144), initiate specialty referral in 90.3% (130/144) and alter immunosuppression in 56.9% (82/144). Thus, beyond diagnostic testing for kidney disorders, sequence annotation identified monogenic disorders associated with common post-transplant complications in 9.1% of KTR, with important clinical implications. Incorporating genetic diagnostics for transplant morbidities would enable personalized management in pre- and post-transplant care.
Collapse
|
13
|
Zanoni F, Neugut YD, Obayemi JE, Liu L, Zhang JY, Ratner LE, Cohen DJ, Mohan S, Gharavi AG, Keating B, Kiryluk K. Genetic versus self-reported African ancestry of the recipient and neighborhood predictors of kidney transplantation outcomes in 2 multiethnic urban cohorts. Am J Transplant 2024; 24:1003-1015. [PMID: 38331047 PMCID: PMC11144562 DOI: 10.1016/j.ajt.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
African American (AA) kidney recipients have a higher risk of allograft rejection and failure compared to non-AAs, but to what extent these outcomes are due to genetic versus environmental effects is currently unknown. Herein, we tested the effects of recipient self-reported race versus genetic proportion of African ancestry (pAFR), and neighborhood socioeconomic status (SES) on kidney allograft outcomes in multiethnic kidney transplant recipients from Columbia University (N = 1083) and the University of Pennsylvania (N = 738). All participants were genotyped with SNP arrays to estimate genetic admixture proportions. US census tract variables were used to analyze the effect of neighborhood factors. In both cohorts, self-reported recipient AA race and pAFR were individually associated with increased risk of rejection and failure after adjustment for known clinical risk factors and neighborhood SES factors. Joint analysis confirmed that self-reported recipient AA race and pAFR were both associated with a higher risk of allograft rejection (AA: HR 1.61 (1.31-1.96), P = 4.05E-06; pAFR: HR 1.90 (1.46-2.48), P = 2.40E-06) and allograft failure (AA: HR 1.52 (1.18-1.97), P = .001; pAFR: HR 1.70 (1.22-2.35), P = .002). Further research is needed to disentangle the role of genetics versus environmental, social, and structural factors contributing to poor transplantation outcomes in kidney recipients of African ancestry.
Collapse
|
14
|
Krishna Murthy SB, Yang S, Bheda S, Tomar N, Li H, Yaghoobi A, Khan A, Kiryluk K, Motelow JE, Ren N, Gharavi AG, Milo Rasouly H. Assisting the analysis of insertions and deletions using regional allele frequencies. Funct Integr Genomics 2024; 24:104. [PMID: 38764005 PMCID: PMC11414712 DOI: 10.1007/s10142-024-01358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 05/21/2024]
Abstract
Accurate estimation of population allele frequency (AF) is crucial for gene discovery and genetic diagnostics. However, determining AF for frameshift-inducing small insertions and deletions (indels) faces challenges due to discrepancies in mapping and variant calling methods. Here, we propose an innovative approach to assess indel AF. We developed CRAFTS-indels (Calculating Regional Allele Frequency Targeting Small indels), an algorithm that combines AF of distinct indels within a given region and provides "regional AF" (rAF). We tested and validated CRAFTS-indels using three independent datasets: gnomAD v2 (n=125,748 samples), an internal dataset (IGM; n=39,367), and the UK BioBank (UKBB; n=469,835). By comparing rAF against standard AF, we identified rare indels with rAF exceeding standard AF (sAF≤10-4 and rAF>10-4) as "rAF-hi" indels. Notably, a high percentage of rare indels were "rAF-hi", with a higher proportion in gnomAD v2 (11-20%) and IGM (11-22%) compared to the UKBB (5-9% depending on the CRAFTS-indels' parameters). Analysis of the overlap of regions based on their rAF with low complexity regions and with ClinVar classification supported the pertinence of rAF. Using the internal dataset, we illustrated the utility of CRAFTS-indel in the analysis of de novo variants and the potential negative impact of rAF-hi indels in gene discovery. In summary, annotation of indels with cohort specific rAF can be used to handle some of the limitations of current annotation pipelines and facilitate detection of novel gene disease associations. CRAFTS-indels offers a user-friendly approach to providing rAF annotation. It can be integrated into public databases such as gnomAD, UKBB and used by ClinVar to revise indel classifications.
Collapse
|
15
|
Hu X, Xu J, Wang W, Liu L, Jing Y, Gao C, Yu X, Li Y, Lin L, Tong J, Weng Q, Pan X, Zhang W, Ren H, Li G, Kiryluk K, Chen N, Xie J. Combined Serologic and Genetic Risk Score and Prognostication of Phospholipase A2 receptor-Associated Membranous Nephropathy. Clin J Am Soc Nephrol 2024; 19:573-582. [PMID: 38423528 PMCID: PMC11108243 DOI: 10.2215/cjn.0000000000000422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION The aim of this study was to test whether a combined risk score on the basis of genetic risk and serology can improve the prediction of kidney failure in phospholipase A2 receptor (PLA2R)-associated primary membranous nephropathy. METHODS We performed a retrospective analysis of 519 biopsy-proven PLA2R-associated primary membranous nephropathy patients with baseline eGFR ≥25 ml/min per 1.73 m 2 . The combined risk score was calculated by combining the genetic risk score with PLA2R ELISA antibody titers. The primary end point was kidney disease progression defined as a 50% reduction in eGFR or kidney failure. Cox proportional hazard regression analysis and C-statistics were applied to compare the performance of PLA2R antibody, genetic risk score, and combined risk score, as compared with clinical factors alone, in predicting primary outcomes. RESULTS The median age was 56 years (range, 15-82 years); the male-to-female ratio was 1:0.6, the median eGFR at biopsy was 99 ml/min per 1.73 m 2 (range: 26-167 ml/min per 1.73 m 2 ), and the median proteinuria was 5.3 g/24 hours (range: 1.5-25.8 g/24 hours). During a median follow-up of 67 (5-200) months, 66 (13%) had kidney disease progression. In Cox proportional hazard regression models, PLA2R antibody titers, genetic risk score, and combined risk score were all individually associated with kidney disease progression with and without adjustments for age, sex, proteinuria, eGFR, and tubulointerstitial lesions. The best-performing clinical model to predict kidney disease progression included age, eGFR, proteinuria, serum albumin, diabetes, and tubulointerstitial lesions (C-statistic 0.76 [0.69-0.82], adjusted R 2 0.51). Although the addition of PLA2R antibody titer improved the performance of this model (C-statistic: 0.78 [0.72-0.84], adjusted R 2 0.61), replacing PLA2R antibody with the combined risk score improved the model further (C-statistic: 0.82 [0.77-0.87], adjusted R 2 0.69, difference of C-statistics with clinical model=0.06 [0.03-0.10], P < 0.001; difference of C-statistics with clinical-serologic model=0.04 [0.01-0.06], P < 0.001). CONCLUSIONS In patients with PLA2R-associated membranous nephropathy, the combined risk score incorporating inherited risk alleles and PLA2R antibody enhanced the prediction of kidney disease progression compared with PLA2R serology and clinical factors alone.
Collapse
|
16
|
Sabatello M, Bakken S, Chung WK, Cohn E, Crew KD, Kiryluk K, Kukafka R, Weng C, Appelbaum PS. Return of polygenic risk scores in research: Stakeholders' views on the eMERGE-IV study. HGG ADVANCES 2024; 5:100281. [PMID: 38414240 PMCID: PMC10950748 DOI: 10.1016/j.xhgg.2024.100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
Research on polygenic risk scores (PRSs) for common, genetically complex chronic diseases aims to improve health-related predictions, tailor risk-reducing interventions, and improve health outcomes. Yet, the study and use of PRSs in clinical settings raise equity, clinical, and regulatory challenges that can be greater for individuals from historically marginalized racial, ethnic, and other minoritized communities. As part of the National Human Genome Research Institute-funded Electronic Medical Records and Genomics IV Network, we conducted online focus groups with patients/community members, clinicians, and members of institutional review boards to explore their views on key issues, including PRS research, return of PRS results, clinical translation, and barriers and facilitators to health behavioral changes in response to PRS results. Across stakeholder groups, our findings indicate support for PRS development and a strong interest in having PRS results returned to research participants. However, we also found multi-level barriers and significant differences in stakeholders' views about what is needed and possible for successful implementation. These include researcher-participant interaction formats, health and genomic literacy, and a range of structural barriers, such as financial instability, insurance coverage, and the absence of health-supporting infrastructure and affordable healthy food options in poorer neighborhoods. Our findings highlight the need to revisit and implement measures in PRS studies (e.g., incentives and resources for follow-up care), as well as system-level policies to promote equity in genomic research and health outcomes.
Collapse
|
17
|
Hui D, Dudek S, Kiryluk K, Walunas TL, Kullo IJ, Wei WQ, Tiwari HK, Peterson JF, Chung WK, Davis B, Khan A, Kottyan L, Limdi NA, Feng Q, Puckelwartz MJ, Weng C, Smith JL, Karlson EW, Jarvik GP, Ritchie MD. Risk factors affecting polygenic score performance across diverse cohorts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.05.10.23289777. [PMID: 38645167 PMCID: PMC11030495 DOI: 10.1101/2023.05.10.23289777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Apart from ancestry, personal or environmental covariates may contribute to differences in polygenic score (PGS) performance. We analyzed effects of covariate stratification and interaction on body mass index (BMI) PGS (PGSBMI) across four cohorts of European (N=491,111) and African (N=21,612) ancestry. Stratifying on binary covariates and quintiles for continuous covariates, 18/62 covariates had significant and replicable R2 differences among strata. Covariates with the largest differences included age, sex, blood lipids, physical activity, and alcohol consumption, with R2 being nearly double between best and worst performing quintiles for certain covariates. 28 covariates had significant PGSBMI-covariate interaction effects, modifying PGSBMI effects by nearly 20% per standard deviation change. We observed overlap between covariates that had significant R2 differences among strata and interaction effects - across all covariates, their main effects on BMI were correlated with their maximum R2 differences and interaction effects (0.56 and 0.58, respectively), suggesting high-PGSBMI individuals have highest R2 and increase in PGS effect. Using quantile regression, we show the effect of PGSBMI increases as BMI itself increases, and that these differences in effects are directly related to differences in R2 when stratifying by different covariates. Given significant and replicable evidence for context-specific PGSBMI performance and effects, we investigated ways to increase model performance taking into account non-linear effects. Machine learning models (neural networks) increased relative model R2 (mean 23%) across datasets. Finally, creating PGSBMI directly from GxAge GWAS effects increased relative R2 by 7.8%. These results demonstrate that certain covariates, especially those most associated with BMI, significantly affect both PGSBMI performance and effects across diverse cohorts and ancestries, and we provide avenues to improve model performance that consider these effects.
Collapse
|
18
|
Rivedal M, Mikkelsen H, Marti HP, Liu L, Kiryluk K, Knoop T, Bjørneklett R, Haaskjold YL, Furriol J, Leh S, Paunas F, Bábíčková J, Scherer A, Serre C, Eikrem O, Strauss P. Glomerular transcriptomics predicts long term outcome and identifies therapeutic strategies for patients with assumed benign IgA nephropathy. Kidney Int 2024; 105:717-730. [PMID: 38154557 DOI: 10.1016/j.kint.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023]
Abstract
Some patients diagnosed with benign IgA nephropathy (IgAN) develop a progressive clinical course, not predictable by known clinical or histopathological parameters. To assess if gene expression can differentiate between progressors and non-progressors with assumed benign IgAN, we tested microdissected glomeruli from archival kidney biopsy sections from adult patients with stable clinical remission (21 non-progressors) or from 15 patients that had undergone clinical progression within a 25-year time frame. Based on 1 240 differentially expressed genes from patients with suitable sequencing results, we identified eight IgAN progressor and nine non-progressor genes using a two-component classifier. These genes, including APOL5 and ZXDC, predicted disease progression with 88% accuracy, 75% sensitivity and 100% specificity on average 21.6 years before progressive disease was clinically documented. APOL lipoproteins are associated with inflammation, autophagy and kidney disease while ZXDC is a zinc-finger transcription factor modulating adaptive immunity. Ten genes from our transcriptomics data overlapped with an external genome wide association study dataset, although the gene set enrichment test was not statistically significant. We also identified 45 drug targets in the DrugBank database, including angiotensinogen, a target of sparsentan (dual antagonist of the endothelin type A receptor and the angiotensin II type 1 receptor) currently investigated for IgAN treatment. Two validation cohorts were used for substantiating key results, one by immunohistochemistry and the other by nCounter technology. Thus, glomerular mRNA sequencing from diagnostic kidney biopsies from patients with assumed benign IgAN can differentiate between future progressors and non-progressors at the time of diagnosis.
Collapse
|
19
|
Fujita M, Gao Z, Zeng L, McCabe C, White CC, Ng B, Green GS, Rozenblatt-Rosen O, Phillips D, Amir-Zilberstein L, Lee H, Pearse RV, Khan A, Vardarajan BN, Kiryluk K, Ye CJ, Klein HU, Wang G, Regev A, Habib N, Schneider JA, Wang Y, Young-Pearse T, Mostafavi S, Bennett DA, Menon V, De Jager PL. Cell subtype-specific effects of genetic variation in the Alzheimer's disease brain. Nat Genet 2024; 56:605-614. [PMID: 38514782 DOI: 10.1038/s41588-024-01685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/08/2024] [Indexed: 03/23/2024]
Abstract
The relationship between genetic variation and gene expression in brain cell types and subtypes remains understudied. Here, we generated single-nucleus RNA sequencing data from the neocortex of 424 individuals of advanced age; we assessed the effect of genetic variants on RNA expression in cis (cis-expression quantitative trait loci) for seven cell types and 64 cell subtypes using 1.5 million transcriptomes. This effort identified 10,004 eGenes at the cell type level and 8,099 eGenes at the cell subtype level. Many eGenes are only detected within cell subtypes. A new variant influences APOE expression only in microglia and is associated with greater cerebral amyloid angiopathy but not Alzheimer's disease pathology, after adjusting for APOEε4, providing mechanistic insights into both pathologies. Furthermore, only a TMEM106B variant affects the proportion of cell subtypes. Integration of these results with genome-wide association studies highlighted the targeted cell type and probable causal gene within Alzheimer's disease, schizophrenia, educational attainment and Parkinson's disease loci.
Collapse
|
20
|
Batal I, Nasr SH, Dasari S, Weins A, Vena N, Stokes MB, Kiryluk K, Appel GB. Pathologic-genomic correlation identified a novel variant in FN1 and established the diagnosis of recurrent fibronectin glomerulopathy in the kidney allograft. Am J Transplant 2024; 24:498-502. [PMID: 37852577 PMCID: PMC10922351 DOI: 10.1016/j.ajt.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Fibronectin glomerulopathy is a rare inherited kidney disease, characterized by abnormal accumulation of fibronectin in the glomeruli. We report an exceptional case of recurrent fibronectin glomerulopathy first diagnosed in the kidney allograft. The presence of IgA staining in the native kidney biopsy and the reported family history of IgA nephropathy had led to initial pretransplant diagnosis of IgA nephropathy. At 4.5 years posttransplant, the patient presented with kidney insufficiency and minimal proteinuria. The allograft biopsy revealed glomerular deposits with very weak staining for immunoglobulins and vague filamentous material. Immunostaining for fibronectin was positive, and genetic studies showed a variant of unknown significance in the fibronectin 1 gene. Proteomic analyses of the glomeruli in the native kidney biopsy demonstrated large amount of fibronectin with abundant accumulation of the peptide synthesized by the detected variant. These findings established the diagnosis of recurrent fibronectin glomerulopathy secondary to a novel variant in the fibronectin 1 gene. This report sheds light on recurrent fibronectin glomerulopathy in the allograft, highlights the diagnostic pitfalls of the disease, and underscores the importance of pathologic-genomic correlation to establish the correct diagnosis.
Collapse
|
21
|
Lennon NJ, Kottyan LC, Kachulis C, Abul-Husn NS, Arias J, Belbin G, Below JE, Berndt SI, Chung WK, Cimino JJ, Clayton EW, Connolly JJ, Crosslin DR, Dikilitas O, Velez Edwards DR, Feng Q, Fisher M, Freimuth RR, Ge T, Glessner JT, Gordon AS, Patterson C, Hakonarson H, Harden M, Harr M, Hirschhorn JN, Hoggart C, Hsu L, Irvin MR, Jarvik GP, Karlson EW, Khan A, Khera A, Kiryluk K, Kullo I, Larkin K, Limdi N, Linder JE, Loos RJF, Luo Y, Malolepsza E, Manolio TA, Martin LJ, McCarthy L, McNally EM, Meigs JB, Mersha TB, Mosley JD, Musick A, Namjou B, Pai N, Pesce LL, Peters U, Peterson JF, Prows CA, Puckelwartz MJ, Rehm HL, Roden DM, Rosenthal EA, Rowley R, Sawicki KT, Schaid DJ, Smit RAJ, Smith JL, Smoller JW, Thomas M, Tiwari H, Toledo DM, Vaitinadin NS, Veenstra D, Walunas TL, Wang Z, Wei WQ, Weng C, Wiesner GL, Yin X, Kenny EE. Selection, optimization and validation of ten chronic disease polygenic risk scores for clinical implementation in diverse US populations. Nat Med 2024; 30:480-487. [PMID: 38374346 PMCID: PMC10878968 DOI: 10.1038/s41591-024-02796-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/02/2024] [Indexed: 02/21/2024]
Abstract
Polygenic risk scores (PRSs) have improved in predictive performance, but several challenges remain to be addressed before PRSs can be implemented in the clinic, including reduced predictive performance of PRSs in diverse populations, and the interpretation and communication of genetic results to both providers and patients. To address these challenges, the National Human Genome Research Institute-funded Electronic Medical Records and Genomics (eMERGE) Network has developed a framework and pipeline for return of a PRS-based genome-informed risk assessment to 25,000 diverse adults and children as part of a clinical study. From an initial list of 23 conditions, ten were selected for implementation based on PRS performance, medical actionability and potential clinical utility, including cardiometabolic diseases and cancer. Standardized metrics were considered in the selection process, with additional consideration given to strength of evidence in African and Hispanic populations. We then developed a pipeline for clinical PRS implementation (score transfer to a clinical laboratory, validation and verification of score performance), and used genetic ancestry to calibrate PRS mean and variance, utilizing genetically diverse data from 13,475 participants of the All of Us Research Program cohort to train and test model parameters. Finally, we created a framework for regulatory compliance and developed a PRS clinical report for return to providers and for inclusion in an additional genome-informed risk assessment. The initial experience from eMERGE can inform the approach needed to implement PRS-based testing in diverse clinical settings.
Collapse
|
22
|
Casillan A, Florido ME, Galarza-Cornejo J, Bakken S, Lynch JA, Chung WK, Mittendorf KF, Berner ES, Connolly JJ, Weng C, Holm IA, Khan A, Kiryluk K, Limdi NA, Petukhova L, Sabatello M, Wynn J. Participant-guided development of bilingual genomic educational infographics for Electronic Medical Records and Genomics Phase IV study. J Am Med Inform Assoc 2024; 31:306-316. [PMID: 37860921 PMCID: PMC10797276 DOI: 10.1093/jamia/ocad207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/11/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
OBJECTIVE Developing targeted, culturally competent educational materials is critical for participant understanding of engagement in a large genomic study that uses computational pipelines to produce genome-informed risk assessments. MATERIALS AND METHODS Guided by the Smerecnik framework that theorizes understanding of multifactorial genetic disease through 3 knowledge types, we developed English and Spanish infographics for individuals enrolled in the Electronic Medical Records and Genomics Network. Infographics were developed to explain concepts in lay language and visualizations. We conducted iterative sessions using a modified "think-aloud" process with 10 participants (6 English, 4 Spanish-speaking) to explore comprehension of and attitudes towards the infographics. RESULTS We found that all but one participant had "awareness knowledge" of genetic disease risk factors upon viewing the infographics. Many participants had difficulty with "how-to" knowledge of applying genetic risk factors to specific monogenic and polygenic risks. Participant attitudes towards the iteratively-refined infographics indicated that design saturation was reached. DISCUSSION There were several elements that contributed to the participants' comprehension (or misunderstanding) of the infographics. Visualization and iconography techniques best resonated with those who could draw on prior experiences or knowledge and were absent in those without. Limited graphicacy interfered with the understanding of absolute and relative risks when presented in graph format. Notably, narrative and storytelling theory that informed the creation of a vignette infographic was most accessible to all participants. CONCLUSION Engagement with the intended audience who can identify strengths and points for improvement of the intervention is necessary to the development of effective infographics.
Collapse
|
23
|
Gisch DL, Brennan M, Lake BB, Basta J, Keller MS, Melo Ferreira R, Akilesh S, Ghag R, Lu C, Cheng YH, Collins KS, Parikh SV, Rovin BH, Robbins L, Stout L, Conklin KY, Diep D, Zhang B, Knoten A, Barwinska D, Asghari M, Sabo AR, Ferkowicz MJ, Sutton TA, Kelly KJ, De Boer IH, Rosas SE, Kiryluk K, Hodgin JB, Alakwaa F, Winfree S, Jefferson N, Türkmen A, Gaut JP, Gehlenborg N, Phillips CL, El-Achkar TM, Dagher PC, Hato T, Zhang K, Himmelfarb J, Kretzler M, Mollah S, Jain S, Rauchman M, Eadon MT. The chromatin landscape of healthy and injured cell types in the human kidney. Nat Commun 2024; 15:433. [PMID: 38199997 PMCID: PMC10781985 DOI: 10.1038/s41467-023-44467-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
There is a need to define regions of gene activation or repression that control human kidney cells in states of health, injury, and repair to understand the molecular pathogenesis of kidney disease and design therapeutic strategies. Comprehensive integration of gene expression with epigenetic features that define regulatory elements remains a significant challenge. We measure dual single nucleus RNA expression and chromatin accessibility, DNA methylation, and H3K27ac, H3K4me1, H3K4me3, and H3K27me3 histone modifications to decipher the chromatin landscape and gene regulation of the kidney in reference and adaptive injury states. We establish a spatially-anchored epigenomic atlas to define the kidney's active, silent, and regulatory accessible chromatin regions across the genome. Using this atlas, we note distinct control of adaptive injury in different epithelial cell types. A proximal tubule cell transcription factor network of ELF3, KLF6, and KLF10 regulates the transition between health and injury, while in thick ascending limb cells this transition is regulated by NR2F1. Further, combined perturbation of ELF3, KLF6, and KLF10 distinguishes two adaptive proximal tubular cell subtypes, one of which manifested a repair trajectory after knockout. This atlas will serve as a foundation to facilitate targeted cell-specific therapeutics by reprogramming gene regulatory networks.
Collapse
|
24
|
Khan A, Shang N, Nestor JG, Weng C, Hripcsak G, Harris PC, Gharavi AG, Kiryluk K. Polygenic risk alters the penetrance of monogenic kidney disease. Nat Commun 2023; 14:8318. [PMID: 38097619 PMCID: PMC10721887 DOI: 10.1038/s41467-023-43878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Chronic kidney disease (CKD) is determined by an interplay of monogenic, polygenic, and environmental risks. Autosomal dominant polycystic kidney disease (ADPKD) and COL4A-associated nephropathy (COL4A-AN) represent the most common forms of monogenic kidney diseases. These disorders have incomplete penetrance and variable expressivity, and we hypothesize that polygenic factors explain some of this variability. By combining SNP array, exome/genome sequence, and electronic health record data from the UK Biobank and All-of-Us cohorts, we demonstrate that the genome-wide polygenic score (GPS) significantly predicts CKD among ADPKD monogenic variant carriers. Compared to the middle tertile of the GPS for noncarriers, ADPKD variant carriers in the top tertile have a 54-fold increased risk of CKD, while ADPKD variant carriers in the bottom tertile have only a 3-fold increased risk of CKD. Similarly, the GPS significantly predicts CKD in COL4A-AN carriers. The carriers in the top tertile of the GPS have a 2.5-fold higher risk of CKD, while the risk for carriers in the bottom tertile is not different from the average population risk. These results suggest that accounting for polygenic risk improves risk stratification in monogenic kidney disease.
Collapse
|
25
|
Martino J, Liu Q, Vukojevic K, Ke J, Lim TY, Khan A, Gupta Y, Perez A, Yan Z, Milo Rasouly H, Vena N, Lippa N, Giordano JL, Saraga M, Saraga-Babic M, Westland R, Bodria M, Piaggio G, Bendapudi PK, Iglesias AD, Wapner RJ, Tasic V, Wang F, Ionita-Laza I, Ghiggeri GM, Kiryluk K, Sampogna RV, Mendelsohn CL, D'Agati VD, Gharavi AG, Sanna-Cherchi S. Mouse and human studies support DSTYK loss of function as a low-penetrance and variable expressivity risk factor for congenital urinary tract anomalies. Genet Med 2023; 25:100983. [PMID: 37746849 DOI: 10.1016/j.gim.2023.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023] Open
Abstract
PURPOSE Previous work identified rare variants in DSTYK associated with human congenital anomalies of the kidney and urinary tract (CAKUT). Here, we present a series of mouse and human studies to clarify the association, penetrance, and expressivity of DSTYK variants. METHODS We phenotypically characterized Dstyk knockout mice of 3 separate inbred backgrounds and re-analyzed the original family segregating the DSTYK c.654+1G>A splice-site variant (referred to as "SSV" below). DSTYK loss of function (LOF) and SSVs were annotated in individuals with CAKUT, epilepsy, or amyotrophic lateral sclerosis vs controls. A phenome-wide association study analysis was also performed using United Kingdom Biobank (UKBB) data. RESULTS Results demonstrate ∼20% to 25% penetrance of obstructive uropathy, at least, in C57BL/6J and FVB/NJ Dstyk-/- mice. Phenotypic penetrance increased to ∼40% in C3H/HeJ mutants, with mild-to-moderate severity. Re-analysis of the original family segregating the rare SSV showed low penetrance (43.8%) and no alternative genetic causes for CAKUT. LOF DSTYK variants burden showed significant excess for CAKUT and epilepsy vs controls and an exploratory phenome-wide association study supported association with neurological disorders. CONCLUSION These data support causality for DSTYK LOF variants and highlights the need for large-scale sequencing studies (here >200,000 cases) to accurately assess causality for genes and variants to lowly penetrant traits with common population prevalence.
Collapse
|