1
|
Özcan AI, Aquino Lόpez A, Wolff AN, Ma A, Shaw AR, Suzuki M, Brenner MK, McKenna MK. Mesenchymal stromal cells protect combined oncolytic and helper-dependent adenoviruses from humoral immunity. Mol Ther Methods Clin Dev 2024; 32:101279. [PMID: 38993326 PMCID: PMC11238183 DOI: 10.1016/j.omtm.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/04/2024] [Indexed: 07/13/2024]
Abstract
Systemic delivery of oncolytic and immunomodulatory adenoviruses may be required for optimal effects on human malignancies. Mesenchymal stromal cells (MSCs) can serve as delivery systems for cancer therapeutics due to their ability to transport and shield these agents while homing to tumors. We now use MSCs to deliver a clinically validated binary oncolytic and helper-dependent adenovirus combination (CAdVEC) to tumor cells. We show successful oncolysis and helper-dependent virus function in tumor cells even in the presence of plasma from adenovirus-seropositive donors. In both two- and three-dimensional cultures, CAdVEC function is eliminated even at high dilutions of seropositive plasma but is well sustained when CAdVEC is delivered by MSCs. These results provide a robust in vitro model to measure oncolytic and helper-dependent virus spread and demonstrate a beneficial role of using MSCs for systemic delivery of CAdVEC even in the presence of a neutralizing humoral response.
Collapse
|
2
|
Toh HC, Yang MH, Wang HM, Hsieh CY, Chitapanarux I, Ho KF, Hong RL, Ang MK, Colevas AD, Sirachainan E, Lertbutsayanukul C, Ho GF, Nadler E, Algazi A, Lulla P, Wirth LJ, Wirasorn K, Liu YC, Ang SF, Low SHJ, Tho LM, Hasbullah HH, Brenner MK, Wang WW, Ong WS, Tan SH, Horak I, Ding C, Myo A, Samol J. Gemcitabine, carboplatin, and Epstein-Barr virus-specific autologous cytotoxic T lymphocytes for recurrent or metastatic nasopharyngeal carcinoma: VANCE, an international randomized phase III trial. Ann Oncol 2024:S0923-7534(24)03923-1. [PMID: 39241963 DOI: 10.1016/j.annonc.2024.08.2344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/21/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Epstein-Barr virus-specific cytotoxic T lymphocyte (EBV-CTL) is an autologous adoptive T-cell immunotherapy generated from the blood of individuals and manufactured without genetic modification. In a previous phase II trial of locally recurrent or metastatic nasopharyngeal carcinoma (R/M NPC) patients, first-line gemcitabine and carboplatin (GC) and EBV-CTL combination demonstrated objective antitumor EBV-CTL activity and a favorable safety profile. The present study explored whether this combined first-line chemo-immunotherapy strategy would produce superior clinical efficacy and better quality of life compared with conventional chemotherapy treatment. PATIENTS AND METHODS This multicenter, randomized, phase III trial evaluated the efficacy and safety of GC followed by EBV-CTL versus GC alone as first-line treatment of R/M NPC patients. Thirty clinical sites in Singapore, Malaysia, Taiwan, Thailand, and the USA were included. Subjects were randomized to first-line GC (four cycles) and EBV-CTL (six cycles) or GC (six cycles) in a 1 : 1 ratio. The primary outcome was overall survival (OS) and secondary outcomes included progression-free survival, objective response rate, clinical benefit rate, quality of life, and safety. CLINICALTRIALS gov identifier: NCT02578641. RESULTS A total of 330 subjects with NPC were enrolled. Most subjects in both treatment arms received four or more cycles of chemotherapy and most subjects in the GC + EBV-CTL group received two or more infusions of EBV-CTL. The central Good Manufacturing Practices (GMP) facility produced sufficient EBV-CTL for 94% of GC + EBV-CTL subjects. The median OS was 25.0 months in the GC + EBV-CTL group and 24.9 months in the GC group (hazard ratio = 1.19; 95% confidence interval 0.91-1.56; P = 0.194). Only one subject experienced a grade 2 serious adverse event related to EBV-CTL. CONCLUSIONS GC + EBV-CTL in subjects with R/M NPC demonstrated a favorable safety profile but no overall improvement in OS versus chemotherapy. This is the largest adoptive T-cell therapy trial reported in solid tumors to date.
Collapse
|
3
|
Lin FY, Stuckert A, Tat C, White M, Ruggieri L, Zhang H, Mehta B, Lapteva N, Mei Z, Major A, Thakkar S, Shum T, Parikh K, Wu MF, Lindsay HB, Scherer L, Shekar M, Baxter P, Wang T, Grilley B, Moeller K, Hicks J, Roy A, Anastas J, Malbari F, Aldave G, Chintagumpala M, Blaney S, Parsons DW, Brenner MK, Heslop HE, Rooney CM, Omer B. Phase I Trial of GD2.CART Cells Augmented With Constitutive Interleukin-7 Receptor for Treatment of High-Grade Pediatric CNS Tumors. J Clin Oncol 2024; 42:2769-2779. [PMID: 38771986 PMCID: PMC11305939 DOI: 10.1200/jco.23.02019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/26/2023] [Accepted: 02/12/2024] [Indexed: 05/23/2024] Open
Abstract
PURPOSE T cells modified with chimeric antigen receptors (CARTs) have demonstrated efficacy for hematologic malignancies; however, benefit for patients with CNS tumors has been limited. To enhance T cell activity against GD2+ CNS malignancies, we modified GD2-directed CART cells (GD2.CARTs) with a constitutively active interleukin (IL)-7 receptor (C7R-GD2.CARTs). METHODS Patients age 1-21 years with H3K27-altered diffuse midline glioma (DMG) or other recurrent GD2-expressing CNS tumors were eligible for this phase I trial (ClinicalTrials.gov identifier: NCT04099797). All subjects received standard-of-care adjuvant radiation therapy or chemotherapy before study enrollment. The first treatment cohort received GD2.CARTs alone (1 × 107 cells/m2), and subsequent cohorts received C7R-GD2.CARTs at two dose levels (1 × 107 cells/m2; 3 × 107 cells/m2). Standard lymphodepletion with cyclophosphamide and fludarabine was included at all dose levels. RESULTS Eleven patients (age 4-18 years) received therapy without dose-limiting toxicity. The GD2.CART cohort did not experience toxicity, but had disease progression after brief improvement of residual neurologic deficits (≤3 weeks). The C7R-GD2.CART cohort developed grade 1 tumor inflammation-associated neurotoxicity in seven of eight (88%) cases, controllable with anakinra. Cytokine release syndrome was observed in six of eight (75%, grade 1 in all but one patient) and associated with increased circulating IL-6 and IP-10 (P < .05). Patients receiving C7R-GD2.CARTs experienced temporary improvement from baseline neurologic deficits (range, 2 to >12 months), and seven of eight (88%) remained eligible for additional treatment cycles (range 2-4 cycles). Partial responses by iRANO criteria were observed in two of seven (29%) patients with DMG treated by C7R-GD2.CARTs. CONCLUSION Intravenous GD2.CARTs with and without C7R were well tolerated. Patients treated with C7R-GD2.CARTs exhibited transient improvement of neurologic deficits and increased circulating cytokines/chemokines. Treatment with C7R-GD2.CARTs represents a novel approach warranting further investigation for children with these incurable CNS cancers.
Collapse
|
4
|
Al Hadidi S, Heslop HE, Brenner MK, Suzuki M. Bispecific antibodies and autologous chimeric antigen receptor T cell therapies for treatment of hematological malignancies. Mol Ther 2024; 32:2444-2460. [PMID: 38822527 PMCID: PMC11405165 DOI: 10.1016/j.ymthe.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
In recent years, the therapeutic landscape for hematological malignancies has markedly advanced, particularly since the inaugural approval of autologous chimeric antigen receptor T cell (CAR-T) therapy in 2017 for relapsed/refractory acute lymphoblastic leukemia (ALL). Autologous CAR-T therapy involves the genetic modification of a patient's T cells to specifically identify and attack cancer cells, while bispecific antibodies (BsAbs) function by binding to both cancer cells and immune cells simultaneously, thereby triggering an immune response against the tumor. The subsequent approval of various CAR-T therapies and BsAbs have revolutionized the treatment of multiple hematological malignancies, highlighting high response rates and a subset of patients achieving prolonged disease control. This review explores the mechanisms underlying autologous CAR-T therapies and BsAbs, focusing on their clinical application in multiple myeloma, ALL, and non-Hodgkin lymphoma. We provide comprehensive insights into their individual efficacy, limitations concerning broad application, and the potential of combination therapies. These upcoming strategies aim to propel the field forward, paving the way for safer and more effective therapeutic interventions in hematological malignancies.
Collapse
MESH Headings
- Humans
- Antibodies, Bispecific/therapeutic use
- Hematologic Neoplasms/therapy
- Hematologic Neoplasms/immunology
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Animals
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Combined Modality Therapy
Collapse
|
5
|
Mo F, Tsai CT, Zheng R, Cheng C, Heslop HE, Brenner MK, Mamonkin M, Watanabe N. Human platelet lysate enhances in vivo activity of CAR-Vδ2 T cells by reducing cellular senescence and apoptosis. Cytotherapy 2024; 26:858-868. [PMID: 38506769 PMCID: PMC11269029 DOI: 10.1016/j.jcyt.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND AIMS Vγ9Vδ2 T cells are an attractive cell platform for the off-the-shelf cancer immunotherapy as the result of their lack of alloreactivity and inherent multi-pronged cytotoxicity, which could be further amplified with chimeric antigen receptors (CARs). In this study, we sought to enhance the in vivo longevity of CAR-Vδ2 T cells by modulating ex vivo manufacturing conditions and selecting an optimal CAR costimulatory domain. METHODS Specifically, we compared the anti-tumor activity of Vδ2 T cells expressing anti-CD19 CARs with costimulatory endodomains derived from CD28, 4-1BB or CD27 and generated in either standard fetal bovine serum (FBS)- or human platelet lysate (HPL)-supplemented medium. RESULTS We found that HPL supported greater expansion of CAR-Vδ2 T cells with comparable in vitro cytotoxicity and cytokine secretion to FBS-expanded CAR-Vδ2 T cells. HPL-expanded CAR-Vδ2 T cells showed enhanced in vivo anti-tumor activity with longer T-cell persistence compared with FBS counterparts, with 4-1BB costimulated CAR showing the greatest activity. Mechanistically, HPL-expanded CAR Vδ2 T cells exhibited reduced apoptosis and senescence transcriptional pathways compared to FBS-expanded CAR-Vδ2 T cells and increased telomerase activity. CONCLUSIONS This study supports enhancement of therapeutic potency of CAR-Vδ2 T cells through a manufacturing improvement.
Collapse
|
6
|
Ma R, Woods M, Burkhardt P, Crooks N, van Leeuwen DG, Shmidt D, Couturier J, Chaumette A, Popat D, Hill LC, Rouce RH, Thakkar S, Orozco AF, Carisey AF, Brenner MK, Mamonkin M. Chimeric antigen receptor-induced antigen loss protects CD5.CART cells from fratricide without compromising on-target cytotoxicity. Cell Rep Med 2024; 5:101628. [PMID: 38986621 PMCID: PMC11293353 DOI: 10.1016/j.xcrm.2024.101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/29/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024]
Abstract
Chimeric antigen receptor T cells (CART) targeting lymphocyte antigens can induce T cell fratricide and require additional engineering to mitigate self-damage. We demonstrate that the expression of a chimeric antigen receptor (CAR) targeting CD5, a prominent pan-T cell antigen, induces rapid internalization and complete loss of the CD5 protein on T cells, protecting them from self-targeting. Notably, exposure of healthy and malignant T cells to CD5.CART cells induces similar internalization of CD5 on target cells, transiently shielding them from cytotoxicity. However, this protection is short-lived, as sustained activity of CD5.CART cells in patients with T cell malignancies results in full ablation of CD5+ T cells while sparing healthy T cells naturally lacking CD5. These results indicate that continuous downmodulation of the target antigen in CD5.CART cells produces effective fratricide resistance without undermining their on-target cytotoxicity.
Collapse
|
7
|
Hegde M, Navai S, DeRenzo C, Joseph SK, Sanber K, Wu M, Gad AZ, Janeway KA, Campbell M, Mullikin D, Nawas Z, Robertson C, Mathew PR, Zhang H, Mehta B, Bhat RR, Major A, Shree A, Gerken C, Kalra M, Chakraborty R, Thakkar SG, Dakhova O, Salsman VS, Grilley B, Lapteva N, Gee A, Dotti G, Bao R, Salem AH, Wang T, Brenner MK, Heslop HE, Wels WS, Hicks MJ, Gottschalk S, Ahmed N. Autologous HER2-specific CAR T cells after lymphodepletion for advanced sarcoma: a phase 1 trial. NATURE CANCER 2024; 5:880-894. [PMID: 38658775 DOI: 10.1038/s43018-024-00749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/23/2024] [Indexed: 04/26/2024]
Abstract
In this prospective, interventional phase 1 study for individuals with advanced sarcoma, we infused autologous HER2-specific chimeric antigen receptor T cells (HER2 CAR T cells) after lymphodepletion with fludarabine (Flu) ± cyclophosphamide (Cy): 1 × 108 T cells per m2 after Flu (cohort A) or Flu/Cy (cohort B) and 1 × 108 CAR+ T cells per m2 after Flu/Cy (cohort C). The primary outcome was assessment of safety of one dose of HER2 CAR T cells after lymphodepletion. Determination of antitumor responses was the secondary outcome. Thirteen individuals were treated in 14 enrollments, and seven received multiple infusions. HER2 CAR T cells expanded after 19 of 21 infusions. Nine of 12 individuals in cohorts A and B developed grade 1-2 cytokine release syndrome. Two individuals in cohort C experienced dose-limiting toxicity with grade 3-4 cytokine release syndrome. Antitumor activity was observed with clinical benefit in 50% of individuals treated. The tumor samples analyzed showed spatial heterogeneity of immune cells and clustering by sarcoma type and by treatment response. Our results affirm HER2 as a CAR T cell target and demonstrate the safety of this therapeutic approach in sarcoma. ClinicalTrials.gov registration: NCT00902044 .
Collapse
|
8
|
Che-Hsing L, Sharma S, Heczey AA, Steffin DH, Louis CU, Grilley BJ, Thakkar SG, Wu M, Wang T, Rooney CM, Brenner MK, Heslop HE. Eighteen-year survival after GD2-directed Chimeric Antigen Receptor-Modified Immune Effector Cell Treatment for Neuroblastoma. RESEARCH SQUARE 2024:rs.3.rs-4232549. [PMID: 38659815 PMCID: PMC11042400 DOI: 10.21203/rs.3.rs-4232549/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We report long-term outcomes up to 18 years of a clinical trial treating children with neuroblastoma with EBV-specific T lymphocytes and CD3-activated T cells - each expressing a first-generation chimeric antigen receptor targeting GD2 with barcoded transgenes to allow tracking of each population. Of 11 patients with active disease at infusion, three patients achieved a complete response that was sustained in 2, one for 8 years until lost to follow up and one for 18+ years. Of eight patients with a history of relapse or at high risk of recurrence, five are disease-free at their last follow-up between 10-14 years post-infusion. Intermittent low levels of transgene were detected during the follow up period with significantly greater persistence in those who were long-term survivors. In conclusion, patients with relapsed/refractory neuroblastoma achieved long-term disease control after receiving GD2 CAR-T cell therapy including one patient now in remission of relapsed disease for >18 years.
Collapse
|
9
|
Steffin D, Ghatwai N, Montalbano A, Rathi P, Courtney AN, Arnett AB, Fleurence J, Sweidan R, Wang T, Zhang H, Masand P, Maris JM, Martinez D, Pogoriler J, Varadarajan N, Thakkar SG, Lyon D, Lapteva N, Mei Z, Patel K, Lopez-Terrada D, Ramos C, Lulla P, Armaghany T, Grilley BJ, Dotti G, Metelitsa LS, Heslop HE, Brenner MK, Sumazin P, Heczey A. Interleukin-15-armored GPC3-CAR T cells for patients with solid cancers. RESEARCH SQUARE 2024:rs.3.rs-4103623. [PMID: 38645165 PMCID: PMC11030543 DOI: 10.21203/rs.3.rs-4103623/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Interleukin-15 (IL15) promotes the survival of T lymphocytes and enhances the antitumor properties of CAR T cells in preclinical models of solid neoplasms in which CAR T cells have limited efficacy1-4. Glypican-3 (GPC3) is expressed in a group of solid cancers5-10, and here we report the first evaluation in humans of the effects of IL15 co-expression on GPC3-CAR T cells. Cohort 1 patients (NCT02905188/NCT02932956) received GPC3-CAR T cells, which were safe but produced no objective antitumor responses and reached peak expansion at two weeks. Cohort 2 patients (NCT05103631/NCT04377932) received GPC3-CAR T cells that co-expressed IL15 (15.CAR), which mediated significantly increased cell expansion and induced a disease control rate of 66% and antitumor response rate of 33%. Infusion of 15.CAR T cells was associated with increased incidence of cytokine release syndrome, which was rapidly ameliorated by activation of the inducible caspase 9 safety switch. Compared to non-responders, tumor-infiltrating 15.CAR T cells from responders showed repression of SWI/SNF epigenetic regulators and upregulation of FOS and JUN family members as well as genes related to type I interferon signaling. Collectively, these results demonstrate that IL15 increases the expansion, intratumoral survival, and antitumor activity of GPC3-CAR T cells in patients.
Collapse
|
10
|
Musher BL, Rowinsky EK, Smaglo BG, Abidi W, Othman M, Patel K, Jawaid S, Jing J, Brisco A, Leen AM, Wu M, Sandin LC, Wenthe J, Eriksson E, Ullenhag GJ, Grilley B, Leja-Jarblad J, Hilsenbeck SG, Brenner MK, Loskog ASI. LOAd703, an oncolytic virus-based immunostimulatory gene therapy, combined with chemotherapy for unresectable or metastatic pancreatic cancer (LOKON001): results from arm 1 of a non-randomised, single-centre, phase 1/2 study. Lancet Oncol 2024; 25:488-500. [PMID: 38547893 DOI: 10.1016/s1470-2045(24)00079-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma is characterised by low immunogenicity and an immunosuppressive tumour microenvironment. LOAd703, an oncolytic adenovirus with transgenes encoding TMZ-CD40L and 4-1BBL, lyses cancer cells selectively, activates cytotoxic T cells, and induces tumour regression in preclinical models. The aim of this study was to evaluate the safety and feasibility of combining LOAd703 with chemotherapy for advanced pancreatic ductal adenocarcinoma. METHODS LOKON001 was a non-randomised, phase 1/2 study conducted at the Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA, and consisted of two arms conducted sequentially; the results of arm 1 are presented here. In arm 1, patients 18 years or older with previously treated or treatment-naive unresectable or metastatic pancreatic ductal adenocarcinoma were treated with standard 28-day cycles of intravenous nab-paclitaxel 125 mg/m2 plus gemcitabine 1000 mg/m2 (up to 12 cycles) and intratumoural injections of LOAd703 every 2 weeks. Patients were assigned using Bayesian optimal interval design to receive 500 μL of LOAd703 at 5 × 1010 (dose 1), 1 × 1011 (dose 2), or 5 × 1011 (dose 3) viral particles per injection, injected endoscopically or percutaneously into the pancreatic tumour or a metastasis for six injections. The primary endpoints were safety and treatment-emergent immune response in patients who received at least one dose of LOAd703, and antitumour activity was a secondary endpoint. This study was registered with ClinicalTrials.gov, NCT02705196, arm 2 is ongoing and open to new participants. FINDINGS Between Dec 2, 2016, and Oct 17, 2019, 23 patients were assessed for eligibility, leading to 22 patients being enrolled. One patient withdrew consent, resulting in 21 patients (13 [62%] men and eight [38%] women) assigned to a dose group (three to dose 1, four to dose 2, and 14 to dose 3). 21 patients were evaluable for safety. Median follow-up time was 6 months (IQR 4-10), and data cutoff was Jan 5, 2023. The most common treatment-emergent adverse events overall were anaemia (96 [8%] of 1237 events), lymphopenia (86 [7%] events), hyperglycaemia (70 [6%] events), leukopenia (63 [5%] events), hypertension (62 [5%] events), and hypoalbuminaemia (61 [5%] events). The most common adverse events attributed to LOAd703 were fever (14 [67%] of 21 patients), fatigue (eight [38%]), chills (seven [33%]), and elevated liver enzymes (alanine aminotransferase in five [24%], alkaline phosphatase in four [19%], and aspartate aminotransferase in four [19%]), all of which were grade 1-2, except for a transient grade 3 aminotransferase elevation occurring at dose 3. A maximum tolerated dose was not reached, thereby establishing dose 3 as the highest-evaluated safe dose when combined with nab-paclitaxel plus gemcitabine. Proportions of CD8+ effector memory cells and adenovirus-specific T cells increased after LOAd703 injections in 15 (94%) of 16 patients for whom T-cell assays could be performed. Eight (44%, 95% CI 25-66) of 18 patients evaluable for activity had an objective response. INTERPRETATION Combining LOAd703 with nab-paclitaxel plus gemcitabine in patients with advanced pancreatic ductal adenocarcinoma was feasible and safe. To build upon this novel chemoimmunotherapeutic approach, arm 2 of LOKON001, which combines LOAd703, nab-paclitaxel plus gemcitabine, and atezolizumab, is ongoing. FUNDING Lokon Pharma, the Swedish Cancer Society, and the Swedish Research Council.
Collapse
|
11
|
Hill LC, Rouce RH, Wu MJ, Wang T, Ma R, Zhang H, Mehta B, Lapteva N, Mei Z, Smith TS, Yang L, Srinivasan M, Burkhardt PM, Ramos CA, Lulla P, Arredondo M, Grilley B, Heslop HE, Brenner MK, Mamonkin M. Antitumor efficacy and safety of unedited autologous CD5.CAR T cells in relapsed/refractory mature T-cell lymphomas. Blood 2024; 143:1231-1241. [PMID: 38145560 PMCID: PMC10997912 DOI: 10.1182/blood.2023022204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023] Open
Abstract
ABSTRACT Despite newer targeted therapies, patients with primary refractory or relapsed (r/r) T-cell lymphoma have a poor prognosis. The development of chimeric antigen receptor (CAR) T-cell platforms to treat T-cell malignancies often requires additional gene modifications to overcome fratricide because of shared T-cell antigens on normal and malignant T cells. We developed a CD5-directed CAR that produces minimal fratricide by downmodulating CD5 protein levels in transduced T cells while retaining strong cytotoxicity against CD5+ malignant cells. In our first-in-human phase 1 study (NCT0308190), second-generation autologous CD5.CAR T cells were manufactured from patients with r/r T-cell malignancies. Here, we report safety and efficacy data from a cohort of patients with mature T-cell lymphoma (TCL). Among the 17 patients with TCL enrolled, CD5 CAR T cells were successfully manufactured for 13 out of 14 attempted lines (93%) and administered to 9 (69%) patients. The overall response rate (complete remission or partial response) was 44%, with complete responses observed in 2 patients. The most common grade 3 or higher adverse events were cytopenias. No grade 3 or higher cytokine release syndrome or neurologic events occurred. Two patients died during the immediate toxicity evaluation period due to rapidly progressive disease. These results demonstrated that CD5.CAR T cells are safe and can induce clinical responses in patients with r/r CD5-expressing TCLs without eliminating endogenous T cells or increasing infectious complications. More patients and longer follow-up are needed for validation. This trial was registered at www.clinicaltrials.gov as #NCT0308190.
Collapse
|
12
|
Vasileiou S, Hill L, Kuvalekar M, Workineh AG, Watanabe A, Velazquez Y, Lulla S, Mooney K, Lapteva N, Grilley BJ, Heslop HE, Rooney CM, Brenner MK, Eagar TN, Carrum G, Grimes KA, Leen AM, Lulla P. Allogeneic, off-the-shelf, SARS-CoV-2-specific T cells (ALVR109) for the treatment of COVID-19 in high-risk patients. Haematologica 2023; 108:1840-1850. [PMID: 36373249 PMCID: PMC10316279 DOI: 10.3324/haematol.2022.281946] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/31/2022] [Indexed: 07/22/2023] Open
Abstract
Defects in T-cell immunity to SARS-CoV-2 have been linked to an increased risk of severe COVID-19 (even after vaccination), persistent viral shedding and the emergence of more virulent viral variants. To address this T-cell deficit, we sought to prepare and cryopreserve banks of virus-specific T cells, which would be available as a partially HLA-matched, off-the-shelf product for immediate therapeutic use. By interrogating the peripheral blood of healthy convalescent donors, we identified immunodominant and protective T-cell target antigens, and generated and characterized polyclonal virus-specific T-cell lines with activity against multiple clinically important SARS-CoV-2 variants (including 'delta' and 'omicron'). The feasibility of making and safely utilizing such virus-specific T cells clinically was assessed by administering partially HLA-matched, third-party, cryopreserved SARS-CoV-2-specific T cells (ALVR109) in combination with other antiviral agents to four individuals who were hospitalized with COVID-19. This study establishes the feasibility of preparing and delivering off-the-shelf, SARS-CoV-2-directed, virus-specific T cells to patients with COVID-19 and supports the clinical use of these products outside of the profoundly immune compromised setting (ClinicalTrials.gov number, NCT04401410).
Collapse
|
13
|
Sharma S, Woods M, Mehta NU, Sauer T, Parikh KS, Schmuck-Henneresse M, Zhang H, Mehta B, Brenner MK, Heslop HE, Rooney CM. Naive T cells inhibit the outgrowth of intractable antigen-activated memory T cells: implications for T-cell immunotherapy. J Immunother Cancer 2023; 11:e006267. [PMID: 37072346 PMCID: PMC10124261 DOI: 10.1136/jitc-2022-006267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND The wider application of T cells targeting viral tumor-antigens via their native receptors is hampered by the failure to expand potent tumor-specific T cells from patients. Here, we examine reasons for and solutions to this failure, taking as our model the preparation of Epstein-Barr virus (EBV)-specific T cells (EBVSTs) for the treatment of EBV-positive lymphoma. EBVSTs could not be manufactured from almost one-third of patients, either because they failed to expand, or they expanded, but lacked EBV specificity. We identified an underlying cause of this problem and established a clinically feasible approach to overcome it. METHODS CD45RO+CD45RA- memory compartment residing antigen-specific T cells were enriched by depleting CD45RA positive (+) peripheral blood mononuclear cells (PBMCs) that include naïve T cells, among other subsets, prior to EBV antigen stimulation. We then compared the phenotype, specificity, function and T-cell receptor (TCR) Vβ repertoire of EBVSTs expanded from unfractionated whole (W)-PBMCs and CD45RA-depleted (RAD)-PBMCs on day 16. To identify the CD45RA component that inhibited EBVST outgrowth, isolated CD45RA+ subsets were added back to RAD-PBMCs followed by expansion and characterization. The in vivo potency of W-EBVSTs and RAD-EBVSTs was compared in a murine xenograft model of autologous EBV+ lymphoma. RESULTS Depletion of CD45RA+ PBMCs before antigen stimulation increased EBVST expansion, antigen-specificity and potency in vitro and in vivo. TCR sequencing revealed a selective outgrowth in RAD-EBVSTs of clonotypes that expanded poorly in W-EBVSTs. Inhibition of antigen-stimulated T cells by CD45RA+ PBMCs could be reproduced only by the naïve T-cell fraction, while CD45RA+ regulatory T cells, natural killer cells, stem cell memory and effector memory subsets lacked inhibitory activity. Crucially, CD45RA depletion of PBMCs from patients with lymphoma enabled the outgrowth of EBVSTs that failed to expand from W-PBMCs. This enhanced specificity extended to T cells specific for other viruses. CONCLUSION Our findings suggest that naïve T cells inhibit the outgrowth of antigen-stimulated memory T cells, highlighting the profound effects of intra-T-cell subset interactions. Having overcome our inability to generate EBVSTs from many patients with lymphoma, we have introduced CD45RA depletion into three clinical trials: NCT01555892 and NCT04288726 using autologous and allogeneic EBVSTs to treat lymphoma and NCT04013802 using multivirus-specific T cells to treat viral infections after hematopoietic stem cell transplantation.
Collapse
|
14
|
Wang D, Porter CE, Lim B, Rosewell Shaw A, Robertson CS, Woods ML, Xu Y, Biegert GG, Morita D, Wang T, Grilley BJ, Heslop H, Brenner MK, Suzuki M. Ultralow-dose binary oncolytic/helper-dependent adenovirus promotes antitumor activity in preclinical and clinical studies. SCIENCE ADVANCES 2023; 9:eade6790. [PMID: 36989357 PMCID: PMC10058234 DOI: 10.1126/sciadv.ade6790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
We show that a binary oncolytic/helper-dependent adenovirus (CAdVEC) that both lyses tumor cells and locally expresses the proinflammatory cytokine IL-12 and PD-L1 blocking antibody has potent antitumor activity in humanized mouse models. On the basis of these preclinical studies, we treated four patients with a single intratumoral injection of an ultralow dose of CAdVEC (NCT03740256), representing a dose of oncolytic adenovirus more than 100-fold lower than used in previous trials. While CAdVEC caused no significant toxicities, it repolarized the tumor microenvironment with increased infiltration of CD8 T cells. A single administration of CAdVEC was associated with both locoregional and abscopal effects on metastases and, in combination with systemic administration of immune checkpoint antibodies, induced sustained antitumor responses, including one complete and two partial responses. Hence, in both preclinical and clinical studies, CAdVEC is safe and even at extremely low doses is sufficiently potent to induce significant tumor control through oncolysis and immune repolarization.
Collapse
|
15
|
Mo F, Watanabe N, Omdahl KI, Burkhardt PM, Ding X, Hayase E, Panoskaltsis-Mortari A, Jenq RR, Heslop HE, Kean LS, Brenner MK, Tkachev V, Mamonkin M. Engineering T cells to suppress acute GVHD and leukemia relapse after allogeneic hematopoietic stem cell transplantation. Blood 2023; 141:1194-1208. [PMID: 36044667 PMCID: PMC10023730 DOI: 10.1182/blood.2022016052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/15/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
Acute graft-versus-host disease (aGVHD) limits the therapeutic benefit of allogeneic hematopoietic stem cell transplantation (allo-HSCT) and requires immunosuppressive prophylaxis that compromises antitumor and antipathogen immunity. OX40 is a costimulatory receptor upregulated on circulating T cells in aGVHD and plays a central role in driving the expansion of alloreactive T cells. Here, we show that OX40 is also upregulated on T cells infiltrating GVHD target organs in a rhesus macaque model, supporting the hypothesis that targeted ablation of OX40+ T cells will mitigate GVHD pathogenesis. We thus created an OX40-specific cytotoxic receptor that, when expressed on human T cells, enables selective elimination of OX40+ T cells. Because OX40 is primarily upregulated on CD4+ T cells upon activation, engineered OX40-specific T cells mediated potent cytotoxicity against activated CD4+ T cells and suppressed alloreactive T-cell expansion in a mixed lymphocyte reaction model. OX40 targeting did not inhibit antiviral activity of memory T cells specific to Epstein-Barr virus, cytomegalovirus, and adenoviral antigens. Systemic administration of OX40-targeting T cells fully protected mice from fatal xenogeneic GVHD mediated by human peripheral blood mononuclear cells. Furthermore, combining OX40 targeting with a leukemia-specific chimeric antigen receptor in a single T cell product provides simultaneous protection against leukemia and aGVHD in a mouse xenograft model of residual disease posttransplant. These results underscore the central role of OX40+ T cells in mediating aGVHD pathogenesis and support the feasibility of a bifunctional engineered T-cell product derived from the stem cell donor to suppress both disease relapse and aGVHD following allo-HSCT.
Collapse
|
16
|
Chen N, Wang D, Porter CE, Shaw AR, Robertson CR, Woods ML, Xu Y, Biegert G, Kuriakose A, Wang T, Grilley BJ, Heslop H, Brenner MK, Suzuki M, Lim B. Abstract P3-06-04: Treatment of Metastatic Breast Cancer with Multipotent Oncolytic/Helper Adenovirus CAdVEC. Cancer Res 2023. [DOI: 10.1158/1538-7445.sabcs22-p3-06-04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Abstract
Background: Metastatic breast cancer (MBC) which causes significant morbidity and mortality worldwide is in need of more effective treatment regimens. In combination with chemotherapy, anti-PD1 antibody pembrolizumab has been shown to prolong progression-free survival (PFS) of patients with triple-negative subtype MBC (TN-MBC), however, its efficacy remains low for the other 80% of patients with MBC. MBC’s heterogenous pattern of immune infiltration and expression make it challenging to treat with single immunotherapeutic agents such as pembrolizumab and successful immunotherapy must therefore target multiple pathways. To augment antitumor host immune responses during treatment, studies have examined adjunct agents such as “oncolytic” adenovirus (OAds), which are vectors that preferentially replicate in and lyse tumor cells leading to the activation of host immunity. OAds have been tested in a myriad of clinical trials with the hope to enhance host immune activation but those trials have shown limited successes. Methods: To overcome the multiple immunogenic barriers in solid tumors, our group developed a binary oncolytic/helper-dependent adeno-immunotherapy (CAdVEC). The first generation CAdVEC (CAdTrio) contains an OAd and a “helper-dependent” adenovirus (HDAd) that produces immunostimulant molecules including interleukin (IL)-12p70 and anti-PD-L1 antibody. Based on successful results using animal models, a first-in-human Phase 1 study with CAdTrio was conducted among patients with all solid tumors (NCT03740256). Four patients with MBC were enrolled in the virus dose-escalation phase of the trial and received an intra-tumor injection of CAdTrio. Given the novelty of this binary agent, starting dose of CAdTrio was more than 2-logs lower than that used in other OAd trials. Three patients received dose level (DL) 1 and one patient received DL2. All patients also received pembrolizumab 6 weeks after the virus injection. The primary endpoint for this phase I dose escalation was dose-limiting toxicities (DLT). Secondary outcomes included overall response rates (ORR), disease control rate (DCR), PFS, overall survival (OS), and treatment-related adverse events. Results: No patients developed DLT. The most common toxicities were fever, fatigue and pain around the injection site, but none were greater than grade 2. No significant elevation in liver enzymes were observed. Three of the four patients had partial response (PR). One patient progressed after ten weeks of stable disease and passed away. The three patients with PR received pembrolizumab within 7 weeks of CAdVEC injection. Analysis of injected tissues prior to pembrolizumab treatment showed that CAdTrio repolarized the tumor microenvironment toward immune activity by increasing the number of infiltrating Th1 immune cells, leading to responses in some treated tumors and even in one distant metastasis, demonstrating the potent systemic immune response to local CAdTrio treatment in patients with MBC. Conclusions: Our study demonstrated that intra-tumor injection with CAdTrio was safe and effective in patients with MBC but the significance of the results was limited by the small sample size. An MBC dedicated phase II trial is planned to be conducted to fully evaluate the efficacy and safety of CAdVEC treatment and to further elucidate mechanisms of resistance/sensitivity among patients with MBC.
Citation Format: Natalie Chen, Daniel Wang, Caroline E. Porter, Amanda Rosewell Shaw, Catherine R. Robertson, Mae L. Woods, Ya Xu, Greyson Biegert, Alphi Kuriakose, Tao Wang, Bambi J. Grilley, Helen Heslop, Malcolm K. Brenner, Masataka Suzuki, Bora Lim. Treatment of Metastatic Breast Cancer with Multipotent Oncolytic/Helper Adenovirus CAdVEC [abstract]. In: Proceedings of the 2022 San Antonio Breast Cancer Symposium; 2022 Dec 6-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2023;83(5 Suppl):Abstract nr P3-06-04.
Collapse
|
17
|
Watanabe N, Mo F, Zheng R, Ma R, Bray VC, van Leeuwen DG, Sritabal-Ramirez J, Hu H, Wang S, Mehta B, Srinivasan M, Scherer LD, Zhang H, Thakkar SG, Hill LC, Heslop HE, Cheng C, Brenner MK, Mamonkin M. Feasibility and preclinical efficacy of CD7-unedited CD7 CAR T cells for T cell malignancies. Mol Ther 2023; 31:24-34. [PMID: 36086817 PMCID: PMC9840107 DOI: 10.1016/j.ymthe.2022.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/20/2022] [Accepted: 09/06/2022] [Indexed: 01/27/2023] Open
Abstract
Chimeric antigen receptor (CAR)-mediated targeting of T lineage antigens for the therapy of blood malignancies is frequently complicated by self-targeting of CAR T cells or their excessive differentiation driven by constant CAR signaling. Expression of CARs targeting CD7, a pan-T cell antigen highly expressed in T cell malignancies and some myeloid leukemias, produces robust fratricide and often requires additional mitigation strategies, such as CD7 gene editing. In this study, we show fratricide of CD7 CAR T cells can be fully prevented using ibrutinib and dasatinib, the pharmacologic inhibitors of key CAR/CD3ζ signaling kinases. Supplementation with ibrutinib and dasatinib rescued the ex vivo expansion of unedited CD7 CAR T cells and allowed regaining full CAR-mediated cytotoxicity in vitro and in vivo on withdrawal of the inhibitors. The unedited CD7 CAR T cells persisted long term and mediated sustained anti-leukemic activity in two mouse xenograft models of human T cell acute lymphoblastic leukemia (T-ALL) by self-selecting for CD7-, fratricide-resistant CD7 CAR T cells that were transcriptionally similar to control CD7-edited CD7 CAR T cells. Finally, we showed feasibility of cGMP manufacturing of unedited autologous CD7 CAR T cells for patients with CD7+ malignancies and initiated a phase I clinical trial (ClinicalTrials.gov: NCT03690011) using this approach. These results indicate pharmacologic inhibition of CAR signaling enables generating functional CD7 CAR T cells without additional engineering.
Collapse
|
18
|
McKenna MK, Ozcan A, Brenner D, Watanabe N, Legendre M, Thomas DG, Ashwood C, Cummings RD, Bonifant C, Markovitz DM, Brenner MK. Novel banana lectin CAR-T cells to target pancreatic tumors and tumor-associated stroma. J Immunother Cancer 2023; 11:e005891. [PMID: 36653070 PMCID: PMC9853244 DOI: 10.1136/jitc-2022-005891] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Cell therapies for solid tumors are thwarted by the hostile tumor microenvironment (TME) and by heterogeneous expression of tumor target antigens. We address both limitations with a novel class of chimeric antigen receptors based on plant lectins, which recognize the aberrant sugar residues that are a 'hallmark' of both malignant and associated stromal cells. We have expressed in T cells a modified lectin from banana, H84T BanLec, attached to a chimeric antigen receptor (H84T-CAR) that recognizes high-mannose (asparagine residue with five to nine mannoses). Here, we tested the efficacy of our novel H84T CAR in models of pancreatic ductal adenocarcinoma (PDAC), intractable tumors with aberrant glycosylation and characterized by desmoplastic stroma largely contributed by pancreatic stellate cells (PSCs). METHODS We transduced human T cells with a second-generation retroviral construct expressing the H84T BanLec chimeric receptor, measured T-cell expansion, characterized T-cell phenotype, and tested their efficacy against PDAC tumor cells lines by flow cytometry quantification. In three-dimensional (3D) spheroid models, we measured H84T CAR T-cell disruption of PSC architecture, and T-cell infiltration by live imaging. We tested the activity of H84T CAR T cells against tumor xenografts derived from three PDAC cell lines. Antitumor activity was quantified by caliper measurement and bioluminescence signal and used anti-human vimentin to measure residual PSCs. RESULTS H84T BanLec CAR was successfully transduced and expressed by T cells which had robust expansion and retained central memory phenotype in both CD4 and CD8 compartments. H84T CAR T cells targeted and eliminated PDAC tumor cell lines. They also disrupted PSC architecture in 3D models in vitro and reduced total tumor and stroma cells in mixed co-cultures. H84T CAR T cells exhibited improved T-cell infiltration in multicellular spheroids and had potent antitumor effects in the xenograft models. We observed no adverse effects against normal tissues. CONCLUSIONS T cells expressing H84T CAR target malignant cells and their stroma in PDAC tumor models. The incorporation of glycan-targeting lectins within CARs thus extends their activity to include both malignant cells and their supporting stromal cells, disrupting the TME that otherwise diminishes the activity of cellular therapies against solid tumors.
Collapse
|
19
|
Raglow Z, McKenna MK, Bonifant CL, Wang W, Pasca di Magliano M, Stadlmann J, Penninger JM, Cummings RD, Brenner MK, Markovitz DM. Targeting glycans for CAR therapy: The advent of sweet CARs. Mol Ther 2022; 30:2881-2890. [PMID: 35821636 PMCID: PMC9481985 DOI: 10.1016/j.ymthe.2022.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/23/2022] [Accepted: 07/09/2022] [Indexed: 01/18/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has created a paradigm shift in the treatment of hematologic malignancies but has not been as effective toward solid tumors. For such tumors, the primary obstacles facing CAR T cells are scarcity of tumor-specific antigens and the hostile and complex tumor microenvironment. Glycosylation, the process by which sugars are post-translationally added to proteins or lipids, is profoundly dysregulated in cancer. Abnormally glycosylated glycoproteins expressed on cancer cells offer unique targets for CAR T therapy as they are specific to tumor cells. Tumor stromal cells also express abnormal glycoproteins and thus also have the potential to be targeted by glycan-binding CAR T cells. This review will discuss the state of CAR T cells in the therapy of solid tumors, the cancer glycoproteome and its potential for use as a therapeutic target, and the landscape and future of glycan-binding CAR T cell therapy.
Collapse
|
20
|
Steffin DHM, Muhsen IN, Hill LC, Ramos CA, Ahmed N, Hegde M, Wang T, Wu M, Gottschalk S, Whittle SB, Lulla PD, Mamonkin M, Omer B, Rouce RH, Heczey A, Metelitsa LS, Grilley BJ, Robertson C, Torrano V, Lapteva N, Gee AP, Rooney CM, Brenner MK, Heslop HE. Long-term follow-up for the development of subsequent malignancies in patients treated with genetically modified IECs. Blood 2022; 140:16-24. [PMID: 35325065 PMCID: PMC9346960 DOI: 10.1182/blood.2022015728] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Subsequent malignancies are well-documented complications in long-term follow-up of cancer patients. Recently, genetically modified immune effector (IE) cells have shown benefit in hematologic malignancies and are being evaluated in clinical trials for solid tumors. Although the short-term complications of IE cells are well described, there is limited literature summarizing long-term follow-up, including subsequent malignancies. We retrospectively reviewed data from 340 patients treated across 27 investigator-initiated pediatric and adult clinical trials at our center. All patients received IE cells genetically modified with γ-retroviral vectors to treat relapsed and/or refractory hematologic or solid malignancies. In a cumulative 1027 years of long-term follow-up, 13 patients (3.8%) developed another cancer with a total of 16 events (4 hematologic malignancies and 12 solid tumors). The 5-year cumulative incidence of a first subsequent malignancy in the recipients of genetically modified IE cells was 3.6% (95% confidence interval, 1.8% to 6.4%). For 11 of the 16 subsequent tumors, biopsies were available, and no sample was transgene positive by polymerase chain reaction. Replication-competent retrovirus testing of peripheral blood mononuclear cells was negative in the 13 patients with subsequent malignancies tested. Rates of subsequent malignancy were low and comparable to standard chemotherapy. These results suggest that the administration of IE cells genetically modified with γ retroviral vectors does not increase the risk for subsequent malignancy.
Collapse
|
21
|
Musher BL, Smaglo BG, Abidi W, Othman M, Patel K, Jawaid S, Jing J, Brisco A, Wenthe J, Eriksson E, Ullenhag GJ, Sandin L, Grilley B, Leja-Jarblad J, Hilsenbeck SG, Brenner MK, Rowinsky EK, Loskog ASI. A phase I/II study of LOAd703, a TMZ-CD40L/4-1BBL-armed oncolytic adenovirus, combined with nab-paclitaxel and gemcitabine in advanced pancreatic cancer. J Clin Oncol 2022. [DOI: 10.1200/jco.2022.40.16_suppl.4138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
4138 Background: Due to its low tumor immunogenicity and immunosuppressive microenvironment, pancreatic ductal adenocarcinoma (PDAC) remains an immunotherapeutic challenge. LOAd703, an oncolytic adenovirus with transgenes encoding TMZ-CD40L and 4-1BBL, has been shown to lyse tumor cells selectively, induce anti-tumor cytotoxic T-cell responses, reduce myeloid-derived suppressor cell (MDSC) infiltration, and induce tumor regression in preclinical studies. Methods: In this phase I/II trial, patients with unresectable or metastatic PDAC were treated with intratumoral injections of LOAd703 and standard intravenous nab-paclitaxel/gemcitabine (nPG) chemotherapy. Starting on cycle 1 day 15 of nPG, LOAd703 was injected with image guidance into the primary pancreatic tumor or a metastasis every 2 weeks for 6 injections. In the event of sustained tumor control, subjects were eligible to receive up to 6 more injections. Three dose levels of LOAd703 were investigated using a BOIN dose escalation design. Primary endpoints were safety and feasibility. Results: Of the 22 subjects enrolled, 21 received at least 1 LOAd703 injection, and 18 received at least 3 LOAd703 injections (the a priori definitions of evaluability for dose limiting toxicity [DLT] and efficacy, respectively). Of the 21 subjects injected, median age was 61, 81% had stage IV disease, and 57% had already received chemotherapy for advanced disease. Median CA 19-9 was 1494. Of the 18 response evaluable subjects, 3 were treated at dose level 1 (5x10e10 VP), 4 at dose level 2 (1x10e11 VP), and 11 at dose level 3 (5x10e11 VP). The most common adverse events (AEs) attributable to LOAd703 were fever, chills, nausea, and increased liver enzymes. AEs were short-lived and grade 1/2, except for a grade 3 transaminase elevation in one subject receiving dose level 3 (the only DLT). Objective response rate (ORR) among those treated at the highest dose level was 55% (5/11 subjects), thus meeting the predefined criterion for efficacy. Among all response evaluable patients, overall response rate (ORR) was 44%, and disease control rate (DCR) was 94%. CA 19-9 decreased by ≥50% in 61% of evaluable patients. Median overall survival (OS) among the 21 subjects receiving at least 1 LOAd703 injection was 8.7 months. The proportion of T effector memory cells increased after initiation of on-protocol treatment (p = 0.0232) while the proportion of T regulatory cells and myeloid-derived suppressor cells decreased (p = 0.0410, p = 0.0256, respectively). Conclusions: Combining intratumoral injections of LOAd703 with standard nPG chemotherapy was safe and feasible. The target response rate at the highest dose level was met, and treatment-emergent immune responses were observed. A follow-up clinical trial combining LOAd703, nPG, and the anti-PDL-1 inhibitor atezolizumab is underway. Clinical trial information: NCT02705196.
Collapse
|
22
|
Ma R, Popat D, Chaumette A, Carisey A, Brenner MK, Mamonkin M. T-cells resist CD5 CAR mediated fratricide by continuously degrading CD5 protein. THE JOURNAL OF IMMUNOLOGY 2022. [DOI: 10.4049/jimmunol.208.supp.122.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Developing chimeric antigen receptor (CAR) T cells for patients with T cell malignancies remains challenging as most CARs targeting T-lineage antigens induce T cell fratricide. A notable exception is a CD5-specific CAR, which does not produce extensive fratricide, coinciding with a loss of detectable surface CD5 by an unknown mechanism.
In this study, we used live imaging fluorescent microscopy, Western Blot, and flow cytometry to show CD5 protein is rapidly internalized and degraded in transduced T cells following CD5 CAR expression. Experiments with C-and N-tagged CD5 confirmed complete degradation of the entire protein in CD5 CAR T cells. Physical ligation of CD5 antigen by the CAR in cis is sufficient to drive loss of CD5 protein, independently of either CAR or CD5 signaling, resulting in full protection from CD5-directed fratricide.
In an ongoing Phase I clinical trial (NCT03081910), CD5 CAR T cells expand and produce robust anti-tumor activity in patients with T cell malignancies. However, patients exhibit incomplete aplasia of non-transduced normal T-cells and a population of circulating T cells remain resistant to CD5-directed elimination and persistalongside CAR T cells. These resistant T cells are surface CD5-negative suggesting that in the presence of CD5 CAR T cells there can be removal of the target antigen as a means of evading killing. Indeed, in vitro experiments showed normal T cells degrade CD5 protein upon coculture with CD5 CAR T cells indicating antigen down modulation occurs on target cells not only in cis but also in trans. These data identify a possible mechanism of resistance of normal T cells to CD5-directed CAR T-cell elimination.
Supported by CAGT T32 Training Grant NIH NCI SPORE P2
Collapse
|
23
|
Mo F, Watanabe N, Burkhardt PM, Heslop HE, Brenner MK, Mamonkin M. Engineering T cells to prevent graft-versus-host disease and leukemia relapse following allogeneic stem cell transplantation. THE JOURNAL OF IMMUNOLOGY 2022. [DOI: 10.4049/jimmunol.208.supp.175.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
Acute graft-versus-host disease (aGvHD) and leukemia relapse remain major causes of mortality after allogeneic hematopoietic stem cell transplantation (alloHSCT). Prophylaxis and treatment of aGvHD rely on generalized immunosuppression, increasing the risk of tumor relapse and opportunistic infections and emphasizing the need for more targeted therapies.
Alloreactive donor CD4+ T cells play a central role in aGvHD pathogenesis, we thus hypothesized that elimination of activated CD4+ T cells with engineered T cells would mitigate aGvHD while preserving protective CD8+ T cell immunity post alloHSCT. We developed an alloimmune defense receptor (ADR) targeting OX40, a surface marker predominantly upregulated on activated CD4+ T cells. OX40 ADR-expressing T cells eliminated activated CD4+ T cells during coculture but spared the majority of activated CD8+ T cells, including virus-specific T cells, and had no discernible activity against resting lymphocytes. A single infusion of ADR T cells fully protected mice from fatal xenogeneic aGvHD induced by intravenous injection of human PBMC, minimizing signs of aGvHD and maximizing survival. To enable simultaneous activity of engineered T cells against aGvHD and leukemia relapse, we further armed ADR T cells with a CD19-directed chimeric antigen receptor (CAR). In a mouse model of residual leukemia post alloHSCT, administration of T cells co-expressing OX40 ADR and CD19 CAR mediated dual protection against tumor relapse and aGvHD. These results support the feasibility of a bi-functional CAR.ADR T cell product to improve outcomes post alloHSCT and reduce transplant-related mortality.
Supported by grant from Leukemia & Lymphoma Society.
Collapse
|
24
|
Steffin DH, Muhsen IN, Ahmed NM, Hegde M, Dakhova O, Wang T, Wu J, Gottschalk S, Whittle S, Lulla PD, Mamonkin M, Omer B, Rouce RH, Heczey A, Metelitsa LS, Hill L, Ramos CA, Rooney CM, Brenner MK, Heslop HE. Long Term Follow up for the Development of Subsequent Malignancies in Patients Treated with Genetically Modified Immune Effectors. Transplant Cell Ther 2022. [DOI: 10.1016/s2666-6367(22)00406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Quach DH, Ramos CA, Lulla PD, Sharma S, Ganesh HR, Hadidi YF, Thakkar SG, Becerra-Dominguez L, Mehta B, Perconti S, Anderson ET, Hsieh EM, Dakhova O, Zhang H, Grilley BJ, Brenner MK, Heslop HE, Rouce RH, Lapteva N, Rooney CM. Evaluating the Safety and Clinical Efficacy of Off-the-Shelf CD30.CAR-Modified Epstein-Barr Virus-Specific T Cells in Patients with CD30-Positive Lymphoma. Transplant Cell Ther 2022. [DOI: 10.1016/s2666-6367(22)00187-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|