1
|
Greenway R, De-Kayne R, Brown AP, Camarillo H, Delich C, McGowan KL, Nelson J, Arias-Rodriguez L, Kelley JL, Tobler M. Integrative analyses of convergent adaptation in sympatric extremophile fishes. Curr Biol 2024; 34:4968-4982.e7. [PMID: 39395416 DOI: 10.1016/j.cub.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/18/2024] [Accepted: 09/11/2024] [Indexed: 10/14/2024]
Abstract
The evolution of independent lineages along replicated environmental transitions frequently results in convergent adaptation, yet the degree to which convergence is present across multiple levels of biological organization is often unclear. Additionally, inherent biases associated with shared ancestry and variation in selective regimes across geographic replicates often pose challenges for confidently identifying patterns of convergence. We investigated a system in which three species of poeciliid fishes sympatrically occur in a toxic spring rich in hydrogen sulfide (H2S) and an adjacent nonsulfidic stream to examine patterns of adaptive evolution across levels of biological organization. We found convergence in morphological and physiological traits and genome-wide patterns of gene expression among all three species. In addition, there were shared signatures of selection on genes encoding H2S toxicity targets in the mitochondrial genomes of each species. However, analyses of nuclear genomes revealed neither evidence for substantial genomic islands of divergence around genes involved in H2S toxicity and detoxification nor substantial congruence of strongly differentiated regions across population pairs. These non-convergent, heterogeneous patterns of genomic divergence may indicate that sulfide tolerance is highly polygenic, with shared allele frequency shifts present at many loci with small effects along the genome. Alternatively, H2S tolerance may involve substantial genetic redundancy, with non-convergent, lineage-specific variation at multiple loci along the genome underpinning similar changes in phenotypes and gene expression. Overall, we demonstrate variability in the extent of convergence across organizational levels and highlight the challenges of linking patterns of convergence across scales.
Collapse
|
2
|
Preising GA, Gunn T, Baczenas JJ, Powell DL, Dodge TO, Sewell ST, Pollock A, Machin Kairuz JA, Savage M, Lu Y, Fitschen-Brown M, Meyer A, Schartl M, Cummings M, Thakur S, Inman CM, Ríos-Cardenas O, Morris M, Tobler M, Schumer M. Recurrent evolution of small body size and loss of the sword ornament in Northern swordtail fish. Evolution 2024:qpae124. [PMID: 39252584 DOI: 10.1093/evolut/qpae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Indexed: 09/11/2024]
Abstract
Across the tree of life, species have repeatedly evolved similar phenotypes. While well-studied for ecological traits, there is also evidence for recurrent evolution of sexually selected traits. Swordtail fish (Xiphophorus) are a classic model system for studying sexual selection, and female Xiphophorus exhibit strong mate preferences for large male body size and a range of sexually dimorphic ornaments. Interestingly, sexually selected traits have also been lost multiple times in the genus. However, there has been uncertainty over the number of losses of ornamentation and large body size because phylogenetic relationships between species in this group have historically been controversial, partially due to prevalent gene flow. Here, we use whole-genome sequencing approaches to re-examine phylogenetic relationships within a Xiphophorus clade that varies in the presence and absence of sexually selected traits. Using wild-caught individuals, we determine the phylogenetic placement of a small, unornamented species, X. continens, confirming an additional loss of ornamentation and large body size in the clade. With these revised phylogenetic relationships, we analyze evidence for coevolution between body size and other sexually selected traits using phylogenetic comparative methods. These results provide insights into the evolutionary pressures driving the recurrent loss of suites of sexually selected traits.
Collapse
|
3
|
Perry BW, McGowan KL, Arias-Rodriguez L, Duttke SH, Tobler M, Kelley JL. Nascent transcription reveals regulatory changes in extremophile fishes inhabiting hydrogen sulfide-rich environments. Proc Biol Sci 2024; 291:20240412. [PMID: 38889788 PMCID: PMC11285508 DOI: 10.1098/rspb.2024.0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/03/2024] [Indexed: 06/20/2024] Open
Abstract
Regulating transcription allows organisms to respond to their environment, both within a single generation (plasticity) and across generations (adaptation). We examined transcriptional differences in gill tissues of fishes in the Poecilia mexicana species complex (family Poeciliidae), which have colonized toxic springs rich in hydrogen sulfide (H2S) in southern Mexico. There are gene expression differences between sulfidic and non-sulfidic populations, yet regulatory mechanisms mediating this gene expression variation remain poorly studied. We combined capped-small RNA sequencing (csRNA-seq), which captures actively transcribed (i.e. nascent) transcripts, and messenger RNA sequencing (mRNA-seq) to examine how variation in transcription, enhancer activity, and associated transcription factor binding sites may facilitate adaptation to extreme environments. csRNA-seq revealed thousands of differentially initiated transcripts between sulfidic and non-sulfidic populations, many of which are involved in H2S detoxification and response. Analyses of transcription factor binding sites in promoter and putative enhancer csRNA-seq peaks identified a suite of transcription factors likely involved in regulating H2S-specific shifts in gene expression, including several key transcription factors known to respond to hypoxia. Our findings uncover a complex interplay of regulatory processes that reflect the divergence of extremophile populations of P. mexicana from their non-sulfidic ancestors and suggest shared responses among evolutionarily independent lineages.
Collapse
|
4
|
De-Kayne R, Perry BW, McGowan KL, Landers J, Arias-Rodriguez L, Greenway R, Rodríguez Peña CM, Tobler M, Kelley JL. Evolutionary Rate Shifts in Coding and Regulatory Regions Underpin Repeated Adaptation to Sulfidic Streams in Poeciliid Fishes. Genome Biol Evol 2024; 16:evae087. [PMID: 38788745 PMCID: PMC11126329 DOI: 10.1093/gbe/evae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 05/26/2024] Open
Abstract
Adaptation to extreme environments often involves the evolution of dramatic physiological changes. To better understand how organisms evolve these complex phenotypic changes, the repeatability and predictability of evolution, and possible constraints on adapting to an extreme environment, it is important to understand how adaptive variation has evolved. Poeciliid fishes represent a particularly fruitful study system for investigations of adaptation to extreme environments due to their repeated colonization of toxic hydrogen sulfide-rich springs across multiple species within the clade. Previous investigations have highlighted changes in the physiology and gene expression in specific species that are thought to facilitate adaptation to hydrogen sulfide-rich springs. However, the presence of adaptive nucleotide variation in coding and regulatory regions and the degree to which convergent evolution has shaped the genomic regions underpinning sulfide tolerance across taxa are unknown. By sampling across seven independent lineages in which nonsulfidic lineages have colonized and adapted to sulfide springs, we reveal signatures of shared evolutionary rate shifts across the genome. We found evidence of genes, promoters, and putative enhancer regions associated with both increased and decreased convergent evolutionary rate shifts in hydrogen sulfide-adapted lineages. Our analysis highlights convergent evolutionary rate shifts in sulfidic lineages associated with the modulation of endogenous hydrogen sulfide production and hydrogen sulfide detoxification. We also found that regions with shifted evolutionary rates in sulfide spring fishes more often exhibited convergent shifts in either the coding region or the regulatory sequence of a given gene, rather than both.
Collapse
|
5
|
Gómez‐Blanco D, Tobler M, Hasselquist D. Why and when should organisms elongate their telomeres? Elaborations on the 'excess resources elongation' and 'last resort elongation' hypotheses. Ecol Evol 2023; 13:e10825. [PMID: 38099139 PMCID: PMC10719541 DOI: 10.1002/ece3.10825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/31/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
Telomere length and telomere shortening are thought to be critical cellular attributes and processes that are related to an individual's life span and fitness. The general pattern across most taxa is that after birth telomere length gradually decreases with age. Telomere protection and restoration mechanisms are usually assumed to reduce the rate of shortening or at most keep telomere length constant. However, here we have compiled a list of 26 articles showing that there is an increasing number of studies reporting apparent elongation of telomeres (i.e., a net increase in TL from timet to timet+1) often in a considerable proportion of the individuals studied. Moreover, the few studies which have studied telomere elongation in detail show that increases in telomere length are unlikely to be due to measurement error alone. In this article, we argue that episodes of telomere elongation deserve more attention as they could reflect individual strategies to optimise life histories and maximise fitness, which may not be reflected in the overall telomere dynamics patterns. We propose that patterns of telomere (net) elongation may be partly determined by other factors than those causing telomere shortening, and therefore deserve analyses specifically targeted to investigate the occurrence of telomere elongation. We elaborate on two ecological hypotheses that have been proposed to explain patterns of telomere elongation (the 'excess resources elongation' and the 'last resort elongation' hypothesis) and we discuss the current evidence for (or against) these hypotheses and propose ways to test them.
Collapse
|
6
|
Ryan K, Greenway R, Landers J, Arias-Rodriguez L, Tobler M, Kelley JL. Selection on standing genetic variation mediates convergent evolution in extremophile fish. Mol Ecol 2023; 32:5042-5054. [PMID: 37548336 DOI: 10.1111/mec.17081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Hydrogen sulfide is a toxic gas that disrupts numerous biological processes, including energy production in the mitochondria, yet fish in the Poecilia mexicana species complex have independently evolved sulfide tolerance several times. Despite clear evidence for convergence at the phenotypic level in these fishes, it is unclear if the repeated evolution of hydrogen sulfide tolerance is the result of similar genomic changes. To address this gap, we used a targeted capture approach to sequence genes associated with sulfide processes and toxicity from five sulfidic and five nonsulfidic populations in the species complex. By comparing sequence variation in candidate genes to a reference set, we identified similar population structure and differentiation, suggesting that patterns of variation in most genes associated with sulfide processes and toxicity are due to demographic history and not selection. But the presence of tree discordance for a subset of genes suggests that several loci are evolving divergently between ecotypes. We identified two differentiation outlier genes that are associated with sulfide detoxification in the mitochondria that have signatures of selection in all five sulfidic populations. Further investigation into these regions identified long, shared haplotypes among sulfidic populations. Together, these results reveal that selection on standing genetic variation in putatively adaptive genes may be driving phenotypic convergence in this species complex.
Collapse
|
7
|
Xiong Y, Tobler M, Hegemann A, Hasselquist DL. Assessment of avian health status: suitability and constraints of the Zoetis VetScan VS2 blood analyser for ecological and evolutionary studies. Biol Open 2023; 12:bio060009. [PMID: 37485865 PMCID: PMC10399204 DOI: 10.1242/bio.060009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Biochemical analyses of blood can decipher physiological conditions of living animals and unravel mechanistic underpinnings of life-history strategies and trade-offs. Yet, researchers in ecology and evolution often face constraints in which methods to apply, not least due to blood volume restrictions or field settings. Here, we test the suitability of a portable biochemical analyser (Zoetis VetScan VS2) for ecological and evolutionary studies that may help solve those problems. Using as little as 80 µl of whole-bird blood from free-living Jackdaws (Corvus monedula) and captive Zebra Finches (Taeniopygia guttata), we show that eight (out of 10) blood analytes show high repeatability after short-term storage (approximately 2 h) and six after 12 h storage time. Handling stress had a clear impact on all except two analytes by 16 min after catching. Finally, six analytes showed consistency within individuals over a period of 30 days, and three even showed individual consistency over a year. Taken together, we conclude that the VetScan VS2 captures biologically relevant variation in blood analytes using just 80 µl of whole blood and, thus, provides valuable physiological measurements of (small) birds sampled in semi-field and field conditions.
Collapse
|
8
|
Tobler M, Gómez-Blanco D, Hegemann A, Lapa M, Neto JM, Tarka M, Xiong Y, Hasselquist D. Telomeres in ecology and evolution: A review and classification of hypotheses. Mol Ecol 2022; 31:5946-5965. [PMID: 34865259 DOI: 10.1111/mec.16308] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 01/31/2023]
Abstract
Research on telomeres in the fields of ecology and evolution has been rapidly expanding over the last two decades. This has resulted in the formulation of a multitude of, often name-given, hypotheses related to the associations between telomeres and life-history traits or fitness-facilitating processes (and the mechanisms underlying them). However, the differences (or similarities) between the various hypotheses, which can originate from different research fields, are often not obvious. Our aim here is therefore to give an overview of the hypotheses that are of interest in ecology and evolution and to provide two frameworks that help discriminate among them. We group the hypotheses (i) based on their association with different research questions, and (ii) using a hierarchical approach that builds on the assumptions they make, such as about causality of telomere length/shortening and/or the proposed functional consequences of telomere shortening on organism performance. Both our frameworks show that there exist parallel lines of thoughts in different research fields. Moreover, they also clearly illustrate that there are in many cases competing hypotheses within clusters, and that some of these even have contradictory assumptions and/or predictions. We also touch upon two topics in telomere research that would benefit from further conceptualization. This review should help researchers, both those familiar with and those new to the subject, to identify future avenues of research.
Collapse
|
9
|
Coffin JL, Kelley JL, Jeyasingh PD, Tobler M. Impacts of heavy metal pollution on the ionomes and transcriptomes of Western mosquitofish (Gambusia affinis). Mol Ecol 2022; 31:1527-1542. [PMID: 35000238 DOI: 10.1111/mec.16342] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022]
Abstract
Our understanding of the mechanisms mediating the resilience of organisms to environmental change remains lacking. Heavy metals negatively affect processes at all biological scales, yet organisms inhabiting contaminated environments must maintain homeostasis to survive. Tar Creek in Oklahoma, USA, contains high concentrations of heavy metals and an abundance of Western mosquitofish (Gambusia affinis), though several fish species persist at lower frequency. To test hypotheses about the mechanisms mediating the persistence and abundance of mosquitofish in Tar Creek, we integrated ionomic data from seven resident fish species and transcriptomic data from mosquitofish to test hypotheses about the mechanisms mediating the persistence of mosquitofish in Tar Creek. We predicted that mosquitofish minimize uptake of heavy metals more than other Tar Creek fish inhabitants and induce transcriptional responses to detoxify metals that enter the body, allowing them to persist in Tar Creek at higher density than species that may lack these responses. Tar Creek populations of all seven fish species accumulated heavy metals, suggesting mosquitofish cannot block uptake more efficiently than other species. We found population-level gene expression changes between mosquitofish in Tar Creek and nearby unpolluted sites. Gene expression differences primarily occurred in the gill, where we found upregulation of genes involved with lowering transfer of metal ions from the blood into cells and mitigating free radicals. However, many differentially expressed genes were not in known metal response pathways, suggesting multifarious selective regimes and/or previously undocumented pathways could impact tolerance in mosquitofish. Our systems-level study identified well characterized and putatively new mechanisms that enable mosquitofish to inhabit heavy metal-contaminated environments.
Collapse
|
10
|
Owens GL, Veen T, Moxley DR, Arias-Rodriguez L, Tobler M, Rennison DJ. Parallel shifts of visual sensitivity and body coloration in replicate populations of extremophile fish. Mol Ecol 2021; 31:946-958. [PMID: 34784095 DOI: 10.1111/mec.16279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022]
Abstract
Visual sensitivity and body pigmentation are often shaped by both natural selection from the environment and sexual selection from mate choice. One way of quantifying the impact of the environment is by measuring how traits have changed after colonization of a novel habitat. To do this, we studied Poecilia mexicana populations that have repeatedly adapted to extreme sulphidic (H2 S-containing) environments. We measured visual sensitivity using opsin gene expression, as well as body pigmentation, for populations in four independent drainages. Both visual sensitivity and body pigmentation showed significant parallel shifts towards greater medium-wavelength sensitivity and reflectance in sulphidic populations. Altogether we found that sulphidic habitats select for differences in visual sensitivity and pigmentation. Shifts between habitats may be due to both differences in the water's spectral properties and correlated ecological changes.
Collapse
|
11
|
Hasselquist D, Tobler M. The Accumulating Costs Hypothesis—to Better Understand Delayed “Hidden” Costs of Seemingly Mild Disease and Other Moderate Stressors. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.685057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mild diseases and moderate stressors are seemingly harmless and are therefore often assumed to have negligible impact on Darwinian fitness. Here we argue that the effects of “benign” parasites and other moderate stressors may have a greater impact on lifespan and other fitness traits than generally thought. We outline the “accumulating costs” hypothesis which proposes that moderate strains on the body caused by mild diseases and other moderate stressors that occur throughout life will result in small irreversible “somatic lesions” that initially are invisible (i.e., induce “hidden” costs). However, over time these somatic lesions accumulate until their summed effect reaches a critical point when cell senescence and malfunction begin to affect organ functionality and lead to the onset of degenerative diseases and aging. We briefly discuss three potential mechanisms through which the effects of moderate strains (e.g., mild diseases) could accumulate: Accelerated telomere shortening, loss of repetitious cell compartments and other uncorrected DNA damage in the genome. We suggest that telomere shortening may be a key candidate for further research with respect to the accumulating costs hypothesis. Telomeres can acquire lesions from moderate strains without immediate negative effects, lesions can be accumulated over time and lead to a critically short telomere length, which may eventually cause severe somatic malfunctioning, including aging. If effects of mild diseases, benign parasites and moderate stressors accrued throughout life can have severe delayed consequences, this might contribute to our understanding of life history strategies and trade-offs, and have important implications for medicine, including consideration of treatment therapies for mild (chronic) infections such as malaria.
Collapse
|
12
|
Kelley JL, Desvignes T, McGowan KL, Perez M, Rodriguez LA, Brown AP, Culumber Z, Tobler M. microRNA expression variation as a potential molecular mechanism contributing to adaptation to hydrogen sulphide. J Evol Biol 2020; 34:977-988. [PMID: 33124163 DOI: 10.1111/jeb.13727] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022]
Abstract
microRNAs (miRNAs) are post-transcriptional regulators of gene expression and can play an important role in modulating organismal development and physiology in response to environmental stress. However, the role of miRNAs in mediating adaptation to diverse environments in natural study systems remains largely unexplored. Here, we characterized miRNAs and their expression in Poecilia mexicana, a species of small fish that inhabits both normal streams and extreme environments in the form of springs rich in toxic hydrogen sulphide (H2 S). We found that P. mexicana has a similar number of miRNA genes as other teleosts. In addition, we identified a large population of mature miRNAs that were differentially expressed between locally adapted populations in contrasting habitats, indicating that miRNAs may contribute to P. mexicana adaptation to sulphidic environments. In silico identification of differentially expressed miRNA-mRNA pairs revealed, in the sulphidic environment, the downregulation of miRNAs predicted to target mRNAs involved in sulphide detoxification and cellular homeostasis, which are pathways essential for life in H2 S-rich springs. In addition, we found that predicted targets of upregulated miRNAs act in the mitochondria (16.6% of predicted annotated targets), which is the main site of H2 S toxicity and detoxification, possibly modulating mitochondrial function. Together, the differential regulation of miRNAs between these natural populations suggests that miRNAs may be involved in H2 S adaptation by promoting functions needed for survival and reducing functions affected by H2 S. This study lays the groundwork for further research to directly demonstrate the role of miRNAs in adaptation to H2 S. Overall, this study provides a critical stepping-stone towards a comprehensive understanding of the regulatory mechanisms underlying the adaptive variation in gene expression in a natural system.
Collapse
|
13
|
Greenway R, Barts N, Henpita C, Brown AP, Arias Rodriguez L, Rodríguez Peña CM, Arndt S, Lau GY, Murphy MP, Wu L, Lin D, Tobler M, Kelley JL, Shaw JH. Convergent evolution of conserved mitochondrial pathways underlies repeated adaptation to extreme environments. Proc Natl Acad Sci U S A 2020; 117:16424-16430. [PMID: 32586956 PMCID: PMC7368198 DOI: 10.1073/pnas.2004223117] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Extreme environments test the limits of life; yet, some organisms thrive in harsh conditions. Extremophile lineages inspire questions about how organisms can tolerate physiochemical stressors and whether the repeated colonization of extreme environments is facilitated by predictable and repeatable evolutionary innovations. We identified the mechanistic basis underlying convergent evolution of tolerance to hydrogen sulfide (H2S)-a toxicant that impairs mitochondrial function-across evolutionarily independent lineages of a fish (Poecilia mexicana, Poeciliidae) from H2S-rich springs. Using comparative biochemical and physiological analyses, we found that mitochondrial function is maintained in the presence of H2S in sulfide spring P. mexicana but not ancestral lineages from nonsulfidic habitats due to convergent adaptations in the primary toxicity target and a major detoxification enzyme. Genome-wide local ancestry analyses indicated that convergent evolution of increased H2S tolerance in different populations is likely caused by a combination of selection on standing genetic variation and de novo mutations. On a macroevolutionary scale, H2S tolerance in 10 independent lineages of sulfide spring fishes across multiple genera of Poeciliidae is correlated with the convergent modification and expression changes in genes associated with H2S toxicity and detoxification. Our results demonstrate that the modification of highly conserved physiological pathways associated with essential mitochondrial processes mediates tolerance to physiochemical stress. In addition, the same pathways, genes, and-in some instances-codons are implicated in H2S adaptation in lineages that span 40 million years of evolution.
Collapse
|
14
|
Tobler M, Barts N, Greenway R. Mitochondria and the Origin of Species: Bridging Genetic and Ecological Perspectives on Speciation Processes. Integr Comp Biol 2020; 59:900-911. [PMID: 31004483 DOI: 10.1093/icb/icz025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria have been known to be involved in speciation through the generation of Dobzhansky-Muller incompatibilities, where functionally neutral co-evolution between mitochondrial and nuclear genomes can cause dysfunction when alleles are recombined in hybrids. We propose that adaptive mitochondrial divergence between populations can not only produce intrinsic (Dobzhansky-Muller) incompatibilities, but could also contribute to reproductive isolation through natural and sexual selection against migrants, post-mating prezygotic isolation, as well as by causing extrinsic reductions in hybrid fitness. We describe how these reproductive isolating barriers can potentially arise through adaptive divergence of mitochondrial function in the absence of mito-nuclear coevolution, a departure from more established views. While a role for mitochondria in the speciation process appears promising, we also highlight critical gaps of knowledge: (1) many systems with a potential for mitochondrially-mediated reproductive isolation lack crucial evidence directly linking reproductive isolation and mitochondrial function; (2) it often remains to be seen if mitochondrial barriers are a driver or a consequence of reproductive isolation; (3) the presence of substantial gene flow in the presence of mito-nuclear incompatibilities raises questions whether such incompatibilities are strong enough to drive speciation to completion; and (4) it remains to be tested how mitochondrial effects on reproductive isolation compare when multiple mechanisms of reproductive isolation coincide. We hope this perspective and the proposed research plans help to inform future studies of mitochondrial adaptation in a manner that links genotypic changes to phenotypic adaptations, fitness, and reproductive isolation in natural systems, helping to clarify the importance of mitochondria in the formation and maintenance of biological diversity.
Collapse
|
15
|
Camarillo H, Arias Rodriguez L, Tobler M. Functional consequences of phenotypic variation between locally adapted populations: Swimming performance and ventilation in extremophile fish. J Evol Biol 2020; 33:512-523. [DOI: 10.1111/jeb.13586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/30/2022]
|
16
|
McGowan KL, Passow CN, Arias-Rodriguez L, Tobler M, Kelley JL. Expression analyses of cave mollies ( Poecilia mexicana) reveal key genes involved in the early evolution of eye regression. Biol Lett 2019; 15:20190554. [PMID: 31640527 DOI: 10.1098/rsbl.2019.0554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Eye regression occurs across cave-dwelling populations of many species and is often coupled with a decrease or loss in eye function. Teleost fishes are among the few vertebrates to undergo widespread colonization of caves and often exhibit eye regression with blindness. Cave populations of the poeciliid fish Poecilia mexicana (cave molly) exhibit reduced-albeit functional-eyes, offering the opportunity to investigate partial eye regression. We sequenced eye transcriptomes of cave and surface populations of P. mexicana to identify differentially expressed genes that potentially underlie eye regression in cave mollies. We identified 28 significantly differentially expressed genes, 20 of which were directly related to light sensitivity, eye structure and visual signaling. Twenty-six of these genes were downregulated in cave compared to surface populations. Functional enrichment analysis revealed eye-related gene ontologies that were under-represented in cave mollies. In addition, a set of co-expressed genes related to vision and circadian rhythm was correlated with habitat type (cave versus surface). Our study suggests that differential gene expression plays a key role in the beginning evolutionary stages of eye regression in P. mexicana, shedding further light on regressive evolution in cavefish.
Collapse
|
17
|
Brown AP, McGowan KL, Schwarzkopf EJ, Greenway R, Rodriguez LA, Tobler M, Kelley JL. Local ancestry analysis reveals genomic convergence in extremophile fishes. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180240. [PMID: 31154969 DOI: 10.1098/rstb.2018.0240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The molecular basis of convergent phenotypes is often unknown. However, convergence at a genomic level is predicted when there are large population sizes, gene flow among diverging lineages or strong genetic constraints. We used whole-genome resequencing to investigate genomic convergence in fishes ( Poecilia spp.) that have repeatedly colonized hydrogen sulfide (H2S)-rich environments in Mexico. We identified genomic similarities in both single nucleotide polymorphisms (SNPs) and structural variants (SVs) among independently derived sulfide spring populations, with approximately 1.2% of the genome being shared among sulfidic ecotypes. We compared these convergent genomic regions to candidate genes for H2S adaptation identified from transcriptomic analyses and found that a significant proportion of these candidate genes (8%) were also in regions where sulfidic individuals had similar SNPs, while only 1.7% were in regions where sulfidic individuals had similar SVs. Those candidate genes included genes involved in sulfide detoxification, the electron transport chain (the main toxicity target of H2S) and other processes putatively important for adaptation to sulfidic environments. Regional genomic similarity across independent populations exposed to the same source of selection is consistent with selection on standing variation or introgression of adaptive alleles across divergent lineages. However, combined with previous analyses, our data also support that adaptive changes in mitochondrially encoded subunits arose independently via selection on de novo mutations. Pressing questions remain on what conditions ultimately facilitate the independent rise of adaptive alleles at the same loci in separate populations, and thus, the degree to which evolution is repeatable or predictable. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.
Collapse
|
18
|
Lau GY, Barts N, Hartley RC, Tobler M, Richards JG, Murphy MP, Arndt S. Detection of changes in mitochondrial hydrogen sulfide i n vivo in the fish model Poecilia mexicana (Poeciliidae). Biol Open 2019; 8:8/5/bio041467. [PMID: 31072908 PMCID: PMC6550084 DOI: 10.1242/bio.041467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In this paper, we outline the use of a mitochondria-targeted ratiometric mass spectrometry probe, MitoA, to detect in vivo changes in mitochondrial hydrogen sulfide (H2S) in Poecilia mexicana (family Poeciliidae). MitoA is introduced via intraperitoneal injection into the animal and is taken up by mitochondria, where it reacts with H2S to form the product MitoN. The MitoN/MitoA ratio can be used to assess relative changes in the amounts of mitochondrial H2S produced over time. We describe the use of MitoA in the fish species P. mexicana to illustrate the steps for adopting the use of MitoA in a new organism, including extraction and purification of MitoA and MitoN from tissues followed by tandem mass spectrometry. In this proof-of-concept study we exposed H2S tolerant P. mexicana to 59 µM free H2S for 5 h, which resulted in increased MitoN/MitoA in brain and gills, but not in liver or muscle, demonstrating increased mitochondrial H2S levels in select tissues following whole-animal H2S exposure. This is the first time that accumulation of H2S has been observed in vivo during whole-animal exposure to free H2S using MitoA. This article has an associated First Person interview with the first author of the paper.
Collapse
|
19
|
Greenway R, McNemee R, Okamoto A, Plath M, Arias‐Rodriguez L, Tobler M. Correlated divergence of female and male genitalia in replicated lineages with ongoing ecological speciation. Evolution 2019; 73:1200-1212. [DOI: 10.1111/evo.13742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 12/26/2022]
|
20
|
Hotaling S, Quackenbush CR, Bennett-Ponsford J, New DD, Arias-Rodriguez L, Tobler M, Kelley JL. Bacterial Diversity in Replicated Hydrogen Sulfide-Rich Streams. MICROBIAL ECOLOGY 2019; 77:559-573. [PMID: 30105506 DOI: 10.1007/s00248-018-1237-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
Extreme environments typically require costly adaptations for survival, an attribute that often translates to an elevated influence of habitat conditions on biotic communities. Microbes, primarily bacteria, are successful colonizers of extreme environments worldwide, yet in many instances, the interplay between harsh conditions, dispersal, and microbial biogeography remains unclear. This lack of clarity is particularly true for habitats where extreme temperature is not the overarching stressor, highlighting a need for studies that focus on the role other primary stressors (e.g., toxicants) play in shaping biogeographic patterns. In this study, we leveraged a naturally paired stream system in southern Mexico to explore how elevated hydrogen sulfide (H2S) influences microbial diversity. We sequenced a portion of the 16S rRNA gene using bacterial primers for water sampled from three geographically proximate pairings of streams with high (> 20 μM) or low (~ 0 μM) H2S concentrations. After exploring bacterial diversity within and among sites, we compared our results to a previous study of macroinvertebrates and fish for the same sites. By spanning multiple organismal groups, we were able to illuminate how H2S may differentially affect biodiversity. The presence of elevated H2S had no effect on overall bacterial diversity (p = 0.21), a large effect on community composition (25.8% of variation explained, p < 0.0001), and variable influence depending upon the group-whether fish, macroinvertebrates, or bacteria-being considered. For bacterial diversity, we recovered nine abundant operational taxonomic units (OTUs) that comprised a core H2S-rich stream microbiome in the region. Many H2S-associated OTUs were members of the Epsilonproteobacteria and Gammaproteobacteria, which both have been implicated in endosymbiotic relationships between sulfur-oxidizing bacteria and eukaryotes, suggesting the potential for symbioses that remain to be discovered in these habitats.
Collapse
|
21
|
Frenette BD, Bruckerhoff LA, Tobler M, Gido KB. Temperature effects on performance and physiology of two prairie stream minnows. CONSERVATION PHYSIOLOGY 2019; 7:coz063. [PMID: 31687142 PMCID: PMC6822539 DOI: 10.1093/conphys/coz063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 04/10/2019] [Accepted: 07/28/2019] [Indexed: 05/10/2023]
Abstract
Earth's atmosphere has warmed by ~1°C over the past century and continues to warm at an increasing rate. Effects of atmospheric warming are already visible in most major ecosystems and are evident across all levels of biological organization. Linking functional responses of individuals to temperature is critical for predicting responses of populations and communities to global climate change. The southern redbelly dace Chrosomus erythrogaster and the central stoneroller Campostoma anomalum are two minnows (Cyprinidae) that commonly occur in the Flint Hills region of the USA but show different patterns of occurrence, with dace largely occupying headwater reaches and stonerollers persisting in both headwater and intermediate-sized streams. We tested for differences between species in critical thermal maximum, energy metabolism, sustained swimming and activity over an ecologically relevant temperature gradient of acclimation temperatures. Typically, metrics increased with acclimation temperature for both species, although stoneroller activity decreased with temperature. We observed a significant interaction between species and temperature for critical thermal maxima, where stonerollers only had higher critical thermal maxima at the coldest temperature and at warm temperatures compared to the dace. We did not find evidence suggesting differences in the energy metabolism of dace and stonerollers. We detected interspecific differences in sustained swimming performance, with dace having higher swimming speed than stonerollers regardless of acclimation temperature. Finally, there was a significant interaction between temperature and species for activity; dace activity was higher at intermediate and warm temperatures compared to stonerollers. We observed subtle interspecific differences in how performance metrics responded to temperature that did not always align with observed patterns of distribution for these species. Thus, other ecological factors likely are important drivers of distributional patterns in these species.
Collapse
|
22
|
Brown AP, Arias-Rodriguez L, Yee MC, Tobler M, Kelley JL. Concordant Changes in Gene Expression and Nucleotides Underlie Independent Adaptation to Hydrogen-Sulfide-Rich Environments. Genome Biol Evol 2018; 10:2867-2881. [PMID: 30215710 PMCID: PMC6225894 DOI: 10.1093/gbe/evy198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2018] [Indexed: 12/23/2022] Open
Abstract
The colonization of novel environments often involves changes in gene expression, protein coding sequence, or both. Studies of how populations adapt to novel conditions, however, often focus on only one of these two processes, potentially missing out on the relative importance of different parts of the evolutionary process. In this study, our objectives were 1) to better understand the qualitative concordance between conclusions drawn from analyses of differential expression and changes in genic sequence and 2) to quantitatively test whether differentially expressed genes were enriched for sites putatively under positive selection within gene regions. To achieve this, we compared populations of fish (Poecilia mexicana) that have independently adapted to hydrogen-sulfide-rich environments in southern Mexico to adjacent populations residing in nonsulfidic waters. Specifically, we used RNA-sequencing data to compare both gene expression and DNA sequence differences between populations. Analyzing these two different data types led to similar conclusions about which biochemical pathways (sulfide detoxification and cellular respiration) were involved in adaptation to sulfidic environments. Additionally, we found a greater overlap between genes putatively under selection and differentially expressed genes than expected by chance. We conclude that considering both differential expression and changes in DNA sequence led to a more comprehensive understanding of how these populations adapted to extreme environmental conditions. Our results imply that changes in both gene expression and DNA sequence-sometimes at the same loci-may be involved in adaptation.
Collapse
|
23
|
von Wolff M, Nakas CT, Tobler M, Merz TM, Hilty MP, Veldhuis JD, Huber AR, Pichler Hefti J. Adrenal, thyroid and gonadal axes are affected at high altitude. Endocr Connect 2018; 7:1081-1089. [PMID: 30352395 PMCID: PMC6198189 DOI: 10.1530/ec-18-0242] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 11/08/2022]
Abstract
Humans cannot live at very high altitude for reasons, which are not completely understood. Since these reasons are not restricted to cardiorespiratory changes alone, changes in the endocrine system might also be involved. Therefore, hormonal changes during prolonged hypobaric hypoxia were comprehensively assessed to determine effects of altitude and hypoxia on stress, thyroid and gonadal hypothalamus-pituitary hormone axes. Twenty-one male and 19 female participants were examined repetitively during a high-altitude expedition. Cortisol, prolactin, thyroid-stimulating hormone (TSH), fT4 and fT3 and in males follicle-stimulating hormone (FSH), luteinizing hormone (LH) and total testosterone were analysed as well as parameters of hypoxemia, such as SaO2 and paO2 at 550 m (baseline) (n = 40), during ascent at 4844 m (n = 38), 6022 m (n = 31) and 7050 m (n = 13), at 4844 m (n = 29) after acclimatization and after the expedition (n = 38). Correlation analysis of hormone concentrations with oxygen parameters and with altitude revealed statistical association in most cases only with altitude. Adrenal, thyroid and gonadal axes were affected by increasing altitude. Adrenal axis and prolactin were first supressed at 4844 m and then activated with increasing altitude; thyroid and gonadal axes were directly activated or suppressed respectively with increasing altitude. Acclimatisation at 4844 m led to normalization of adrenal and gonadal but not of thyroid axes. In conclusion, acclimatization partly leads to a normalization of the adrenal, thyroid and gonadal axes at around 5000 m. However, at higher altitude, endocrine dysregulation is pronounced and might contribute to the physical degradation found at high altitude.
Collapse
|
24
|
Barts N, Greenway R, Passow CN, Arias-Rodriguez L, Kelley JL, Tobler M. Molecular evolution and expression of oxygen transport genes in livebearing fishes (Poeciliidae) from hydrogen sulfide rich springs. Genome 2018; 61:273-286. [DOI: 10.1139/gen-2017-0051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydrogen sulfide (H2S) is a natural toxicant in some aquatic environments that has diverse molecular targets. It binds to oxygen transport proteins, rendering them non-functional by reducing oxygen-binding affinity. Hence, organisms permanently inhabiting H2S-rich environments are predicted to exhibit adaptive modifications to compensate for the reduced capacity to transport oxygen. We investigated 10 lineages of fish of the family Poeciliidae that have colonized freshwater springs rich in H2S—along with related lineages from non-sulfidic environments—to test hypotheses about the expression and evolution of oxygen transport genes in a phylogenetic context. We predicted shifts in the expression of and signatures of positive selection on oxygen transport genes upon colonization of H2S-rich habitats. Our analyses indicated significant shifts in gene expression for multiple hemoglobin genes in lineages that have colonized H2S-rich environments, and three hemoglobin genes exhibited relaxed selection in sulfidic compared to non-sulfidic lineages. However, neither changes in gene expression nor signatures of selection were consistent among all lineages in H2S-rich environments. Oxygen transport genes may consequently be predictable targets of selection during adaptation to sulfidic environments, but changes in gene expression and molecular evolution of oxygen transport genes in H2S-rich environments are not necessarily repeatable across replicated lineages.
Collapse
|
25
|
Culumber ZW, Tobler M. Correlated evolution of thermal niches and functional physiology in tropical freshwater fishes. J Evol Biol 2018; 31:722-734. [DOI: 10.1111/jeb.13260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/13/2018] [Accepted: 02/23/2018] [Indexed: 11/30/2022]
|