1
|
Fukuta T, Tatsumi T, Fujiyoshi K, Koyama T, Kawashima SA, Mitsunuma H, Yamatsugu K, Kanai M. Umpolung Phosphorylation of Tyrosine via 1,2-Phospha-Brook Rearrangement. Org Lett 2024; 26:8827-8831. [PMID: 39387660 DOI: 10.1021/acs.orglett.4c03223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Phosphorylated tyrosine is a fundamental building block of bioactive peptides and proteins. However, the chemoselective phosphorylation of tyrosine over other nucleophilic amino acid residues in unprotected peptides remains a significant challenge. Here we report an umpolung strategy that converts the C-terminal tyrosine into an electrophilic spirolactone cyclohexadienone motif through hypervalent iodine oxidation, followed by a 1,2-phospha-Brook rearrangement using phosphite diesters as nucleophilic phosphoryl donors. This reaction proceeds chemoselectively at the tyrosine phenol and is applicable to a wide range of peptide substrates containing various nucleophilic amino acid residues, including serine and threonine.
Collapse
|
2
|
Umeda H, Suda K, Yokogawa D, Azumaya Y, Kitada N, Maki SA, Kawashima SA, Mitsunuma H, Yamanashi Y, Kanai M. Unimolecular Chemiexcited Oxygenation of Pathogenic Amyloids. Angew Chem Int Ed Engl 2024; 63:e202405605. [PMID: 38757875 DOI: 10.1002/anie.202405605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/18/2024]
Abstract
Pathogenic protein aggregates, called amyloids, are etiologically relevant to various diseases, including neurodegenerative Alzheimer disease. Catalytic photooxygenation of amyloids, such as amyloid-β (Aβ), reduces their toxicity; however, the requirement for light irradiation may limit its utility in large animals, including humans, due to the low tissue permeability of light. Here, we report that Cypridina luciferin analogs, dmCLA-Cl and dmCLA-Br, promoted selective oxygenation of amyloids through chemiexcitation without external light irradiation. Further structural optimization of dmCLA-Cl led to the identification of a derivative with a polar carboxylate functional group and low cellular toxicity: dmCLA-Cl-acid. dmCLA-Cl-acid promoted oxygenation of Aβ amyloid and reduced its cellular toxicity without photoirradiation. The chemiexcited oxygenation developed in this study may be an effective approach to neutralizing the toxicity of amyloids, which can accumulate deep inside the body, and treating amyloidosis.
Collapse
|
3
|
Furuta M, Arii S, Umeda H, Matsukawa R, Shizu K, Kaji H, Kawashima SA, Hori Y, Tomita T, Sohma Y, Mitsunuma H, Kanai M. Leuco Ethyl Violet as Self-Activating Prodrug Photocatalyst for In Vivo Amyloid-Selective Oxygenation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401346. [PMID: 38689504 PMCID: PMC11234409 DOI: 10.1002/advs.202401346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/02/2024] [Indexed: 05/02/2024]
Abstract
Aberrant aggregates of amyloid-β (Aβ) and tau protein (tau), called amyloid, are related to the etiology of Alzheimer disease (AD). Reducing amyloid levels in AD patients is a potentially effective approach to the treatment of AD. The selective degradation of amyloids via small molecule-catalyzed photooxygenation in vivo is a leading approach; however, moderate catalyst activity and the side effects of scalp injury are problematic in prior studies using AD model mice. Here, leuco ethyl violet (LEV) is identified as a highly active, amyloid-selective, and blood-brain barrier (BBB)-permeable photooxygenation catalyst that circumvents all of these problems. LEV is a redox-sensitive, self-activating prodrug catalyst; self-oxidation of LEV through a hydrogen atom transfer process under photoirradiation produces catalytically active ethyl violet (EV) in the presence of amyloid. LEV effectively oxygenates human Aβ and tau, suggesting the feasibility for applications in humans. Furthermore, a concept of using a hydrogen atom as a caging group of a reactive catalyst functional in vivo is postulated. The minimal size of the hydrogen caging group is especially useful for catalyst delivery to the brain through BBB.
Collapse
|
4
|
Miura Y, Namioka S, Iwai A, Yoshida N, Konno H, Sohma Y, Kanai M, Makabe K. Redesign of a thioflavin-T-binding protein with a flat β-sheet to evaluate a thioflavin-T-derived photocatalyst with enhanced affinity. Int J Biol Macromol 2024; 269:131992. [PMID: 38697433 DOI: 10.1016/j.ijbiomac.2024.131992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Amyloids, proteinous aggregates with β-sheet-rich fibrils, are involved in several neurodegenerative diseases such as Alzheimer's disease; thus, their detection is critically important. The most common fluorescent dye for amyloid detection is thioflavin-T (ThT), which shows on/off fluorescence upon amyloid binding. We previously reported that an engineered globular protein with a flat β-sheet, peptide self-assembly mimic (PSAM), can be used as an amyloid binding model. In this study, we further explored the residue-specific properties of ThT-binding to the flat β-sheet by introducing systematic mutations. We found that site-specific mutations at the ThT-binding channel enhanced affinity. We also evaluated the binding of a ThT-based photocatalyst, which showed the photooxygenation activity on the amyloid fibril upon light radiation. Upon binding of the photocatalyst to the PSAM variant, singlet oxygen-generating activity was observed. The results of this study expand our understanding of the detailed binding mechanism of amyloid-specific molecules.
Collapse
|
5
|
Tatsumi T, Zhao S, Kasahara A, Aoki M, Nishijima KI, Ukon N, Kodama T, Takahashi K, Sugiyama A, Washiyama K, Yamatsugu K, Kanai M. In vivo-stable bis-iminobiotin for targeted radionuclide delivery with the mutant streptavidin. Bioorg Med Chem Lett 2024; 108:129803. [PMID: 38777280 DOI: 10.1016/j.bmcl.2024.129803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Targeted delivery of radionuclides to tumors is significant in theranostics applications for precision medicine. Pre-targeting, in which a tumor-targeting vehicle and a radionuclide-loaded effector small molecule are administered separately, holds promise since it can reduce unnecessary internal radiation exposure of healthy cells and can minimize radiation decay. The success of the pre-targeting delivery requires an in vivo-stable tumor-targeting vehicle selectively binding to tumor antigens and an in vivo-stable small molecule effector selectively binding to the vehicle accumulated on the tumor. We previously reported a drug delivery system composed of a low-immunogenic streptavidin with weakened affinity to endogenous biotin and a bis-iminobiotin with high affinity to the engineered streptavidin. It was, however, unknown whether the bis-iminobiotin is stable in vivo when administered alone for the pre-targeting applications. Here we report a new in vivo-stable bis-iminobiotin derivative. The keys to success were the identification of the degradation site of the original bis-iminobiotin treated with mouse plasma and the structural modification of the degradation site. We disclosed the successful pre-targeting delivery of astatine-211 (211At), α-particle emitter, to the CEACAM5-positive tumor in xenograft mouse models.
Collapse
|
6
|
Zheng XQ, Guo JP, Yang H, Kanai M, He LL, Li YY, Koomen JM, Minton S, Gao M, Ren XB, Coppola D, Cheng JQ. Retraction Note: Aurora-A is a determinant of tamoxifen sensitivity through phosphorylation of ERα in breast cancer. Oncogene 2024; 43:1160. [PMID: 38396296 PMCID: PMC11036404 DOI: 10.1038/s41388-024-02983-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
|
7
|
Sakata J, Tatsumi T, Sugiyama A, Shimizu A, Inagaki Y, Katoh H, Yamashita T, Takahashi K, Aki S, Kaneko Y, Kawamura T, Miura M, Ishii M, Osawa T, Tanaka T, Ishikawa S, Tsukagoshi M, Chansler M, Kodama T, Kanai M, Tokuyama H, Yamatsugu K. Antibody-mimetic drug conjugate with efficient internalization activity using anti-HER2 VHH and duocarmycin. Protein Expr Purif 2024; 214:106375. [PMID: 37797818 DOI: 10.1016/j.pep.2023.106375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Antibody-mimetic drug conjugate (AMDC) is a cancer cell-targeted drug delivery system based on the non-covalent binding of mutated streptavidin and modified biotin, namely Cupid and Psyche. However, the development of AMDCs is hampered by difficulties in post-translational modification or poor internalization activity. Here, we report an expression, refolding, and purification method for AMDC using a variable heavy chain of heavy chain-only antibodies (VHHs). Monomeric anti-HER2 VHH fused to Cupid was expressed in Escherichia coli inclusion bodies. Solubilization and refolding at optimized reducing conditions and pH levels were selected to form a functional, tetrameric protein (anti-HER2 VHH-Cupid) that can be easily purified based on molecular weight. Anti-HER2 VHH-Cupid non-covalently creates a tight complex with Psyche linked to a potent DNA-alkylating agent, duocarmycin. This complex can be absorbed by the HER2-expressing human breast cancer cell line, KPL-4, and kills KPL-4 cells in vitro and in vivo. The production of a targeting protein with internalizing activity, combined with the non-covalent conjugation of a highly potent payload, renders AMDC a promising platform for developing cancer-targeted therapy.
Collapse
|
8
|
Nakamura R, Tomizawa I, Iwai A, Ikeda T, Hirayama K, Chiu YW, Suzuki T, Tarutani A, Mano T, Iwata A, Toda T, Sohma Y, Kanai M, Hori Y, Tomita T. Photo-oxygenation of histidine residue inhibits α-synuclein aggregation. FASEB J 2023; 37:e23311. [PMID: 37962096 DOI: 10.1096/fj.202301533r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/14/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Aggregation of α-synuclein (α-syn) into amyloid is the pathological hallmark of several neurodegenerative disorders, including Parkinson disease, dementia with Lewy bodies, and multiple system atrophy. It is widely accepted that α-syn aggregation is associated with neurodegeneration, although the mechanisms are not yet fully understood. Therefore, the inhibition of α-syn aggregation is a potential therapeutic approach against these diseases. This study used the photocatalyst for α-syn photo-oxygenation, which selectively adds oxygen atoms to fibrils. Our findings demonstrate that photo-oxygenation using this photocatalyst successfully inhibits α-syn aggregation, particularly by reducing its seeding ability. Notably, we also discovered that photo-oxygenation of the histidine at the 50th residue in α-syn aggregates is responsible for the inhibitory effect. These findings indicate that photo-oxygenation of the histidine residue in α-syn is a potential therapeutic strategy for synucleinopathies.
Collapse
|
9
|
Fujimura A, Ishida H, Nozaki T, Terada S, Azumaya Y, Ishiguro T, Kamimura YR, Kujirai T, Kurumizaka H, Kono H, Yamatsugu K, Kawashima SA, Kanai M. Designer Adaptor Proteins for Functional Conversion of Peptides to Small-Molecule Ligands toward In-Cell Catalytic Protein Modification. ACS CENTRAL SCIENCE 2023; 9:2115-2128. [PMID: 38033808 PMCID: PMC10683481 DOI: 10.1021/acscentsci.3c00930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/19/2023] [Accepted: 10/12/2023] [Indexed: 12/02/2023]
Abstract
Peptides are privileged ligands for diverse biomacromolecules, including proteins; however, their utility is often limited due to low membrane permeability and in-cell instability. Here, we report peptide ligand-inserted eDHFR (PLIED) fusion protein as a universal adaptor for targeting proteins of interest (POI) with cell-permeable and stable synthetic functional small molecules (SFSM). PLIED binds to POI through the peptide moiety, properly orienting its eDHFR moiety, which then recruits trimethoprim (TMP)-conjugated SFSM to POI. Using a lysine-acylating BAHA catalyst as SFSM, we demonstrate that POI (MDM2 and chromatin histone) are post-translationally and synthetically acetylated at specific lysine residues. The residue-selectivity is predictable in an atomic resolution from molecular dynamics simulations of the POI/PLIED/TMP-BAHA (MTX was used as a TMP model) ternary complex. This designer adaptor approach universally enables functional conversion of impermeable peptide ligands to permeable small-molecule ligands, thus expanding the in-cell toolbox of chemical biology.
Collapse
|
10
|
Matsukawa R, Yamane M, Kanai M. Histidine Photooxygenation Chemistry: Mechanistic Evidence and Elucidation. CHEM REC 2023; 23:e202300198. [PMID: 37675808 DOI: 10.1002/tcr.202300198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/25/2023] [Indexed: 09/08/2023]
Abstract
Histidine photooxygenation has been the subject of extensive investigation for many years. The intricate nature of histidine distinguishes it from other amino acids, as its side chain readily undergoes changes in charge state and tautomerization in response to pH, and the polarity of the imidazole ring inverts upon oxidation. This complexity gives rise to a diverse range of oxidation products and mechanisms, posing challenges in their interpretation. This review aims to provide a thorough overview of the chemistry involved in histidine photooxygenation, encompassing a comprehensive analysis of resulting products, mechanisms engaged in their formation, and analytical techniques that have contributed to their identification. Additionally, it explores a wide range of applications stemming from this transformation, offering valuable insights into its practical implications in fields such as materials science, biomedical research, and drug development. By bridging the existing gap in literature, this review serves as a resource for understanding the intricacies of histidine photooxygenation and its diverse ramifications.
Collapse
|
11
|
Tatsumi T, Sasamoto K, Matsumoto T, Hirano R, Oikawa K, Nakano M, Yoshida M, Oisaki K, Kanai M. Practical N-to-C peptide synthesis with minimal protecting groups. Commun Chem 2023; 6:231. [PMID: 37884638 PMCID: PMC10603086 DOI: 10.1038/s42004-023-01030-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Accessible drug modalities have continued to increase in number in recent years. Peptides play a central role as pharmaceuticals and biomaterials in these new drug modalities. Although traditional peptide synthesis using chain-elongation from C- to N-terminus is reliable, it produces large quantities of chemical waste derived from protecting groups and condensation reagents, which place a heavy burden on the environment. Here we report an alternative N-to-C elongation strategy utilizing catalytic peptide thioacid formation and oxidative peptide bond formation with main chain-unprotected amino acids under aerobic conditions. This method is applicable to both iterative peptide couplings and convergent fragment couplings without requiring elaborate condensation reagents and protecting group manipulations. A recyclable N-hydroxy pyridone additive effectively suppresses epimerization at the elongating chain. We demonstrate the practicality of this method by showcasing a straightforward synthesis of the nonapeptide DSIP. This method further opens the door to clean and atom-efficient peptide synthesis.
Collapse
|
12
|
Habazaki M, Mizumoto S, Kajino H, Kujirai T, Kurumizaka H, Kawashima SA, Yamatsugu K, Kanai M. A chemical catalyst enabling histone acylation with endogenous acyl-CoA. Nat Commun 2023; 14:5790. [PMID: 37737243 PMCID: PMC10517024 DOI: 10.1038/s41467-023-41426-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
Life emerges from a network of biomolecules and chemical reactions catalyzed by enzymes. As enzyme abnormalities are often connected to various diseases, a chemical catalyst promoting physiologically important intracellular reactions in place of malfunctional endogenous enzymes would have great utility in understanding and treating diseases. However, research into such small-molecule chemical enzyme surrogates remains limited, due to difficulties in developing a reactive catalyst capable of activating inert cellular metabolites present at low concentrations. Herein, we report a small-molecule catalyst, mBnA, as a surrogate for a histone acetyltransferase. A hydroxamic acid moiety of suitable electronic characteristics at the catalytic site, paired with a thiol-thioester exchange process, enables mBnA to activate endogenous acyl-CoAs present in low concentrations and promote histone lysine acylations in living cells without the addition of exogenous acyl donors. An enzyme surrogate utilizing cellular metabolites will be a unique tool for elucidation of and synthetic intervention in the chemistry of life and disease.
Collapse
|
13
|
Mauro E, Lapaillerie D, Tumiotto C, Charlier C, Martins F, Sousa SF, Métifiot M, Weigel P, Yamatsugu K, Kanai M, Munier-Lehmann H, Richetta C, Maisch M, Dutrieux J, Batisse J, Ruff M, Delelis O, Lesbats P, Parissi V. Modulation of the functional interfaces between retroviral intasomes and the human nucleosome. mBio 2023; 14:e0108323. [PMID: 37382440 PMCID: PMC10470491 DOI: 10.1128/mbio.01083-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 06/30/2023] Open
Abstract
Infection by retroviruses as HIV-1 requires the stable integration of their genome into the host cells. This process needs the formation of integrase (IN)-viral DNA complexes, called intasomes, and their interaction with the target DNA wrapped around nucleosomes within cell chromatin. To provide new tools to analyze this association and select drugs, we applied the AlphaLISA technology to the complex formed between the prototype foamy virus (PFV) intasome and nucleosome reconstituted on 601 Widom sequence. This system allowed us to monitor the association between both partners and select small molecules that could modulate the intasome/nucleosome association. Using this approach, drugs acting either on the DNA topology within the nucleosome or on the IN/histone tail interactions have been selected. Within these compounds, doxorubicin and histone binders calixarenes were characterized using biochemical, in silico molecular simulations and cellular approaches. These drugs were shown to inhibit both PFV and HIV-1 integration in vitro. Treatment of HIV-1-infected PBMCs with the selected molecules induces a decrease in viral infectivity and blocks the integration process. Thus, in addition to providing new information about intasome-nucleosome interaction determinants, our work also paves the way for further unedited antiviral strategies that target the final step of intasome/chromatin anchoring. IMPORTANCE In this work, we report the first monitoring of retroviral intasome/nucleosome interaction by AlphaLISA. This is the first description of the AlphaLISA application for large nucleoprotein complexes (>200 kDa) proving that this technology is suitable for molecular characterization and bimolecular inhibitor screening assays using such large complexes. Using this system, we have identified new drugs disrupting or preventing the intasome/nucleosome complex and inhibiting HIV-1 integration both in vitro and in infected cells. This first monitoring of the retroviral/intasome complex should allow the development of multiple applications including the analyses of the influence of cellular partners, the study of additional retroviral intasomes, and the determination of specific interfaces. Our work also provides the technical bases for the screening of larger libraries of drugs targeting specifically these functional nucleoprotein complexes, or additional nucleosome-partner complexes, as well as for their characterization.
Collapse
|
14
|
Umeda H, Sawazaki T, Furuta M, Suzuki T, Kawashima SA, Mitsunuma H, Hori Y, Tomita T, Sohma Y, Kanai M. Quantitative Assays for Catalytic Photo-Oxygenation of Alzheimer Disease-Related Tau Proteins. ACS Chem Neurosci 2023; 14:2710-2716. [PMID: 37470225 DOI: 10.1021/acschemneuro.3c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
Catalytic photo-oxygenation of tau amyloid is a potential therapeutic approach to tauopathies, including Alzheimer disease (AD). However, tau is a complex target containing great molecular size and heterogeneous isoforms/proteoforms. Although catalytic photo-oxygenation has been confirmed when using catalyst 1 and recombinant tau pretreated with heparin, its effects on tau from human patients have not yet been clarified. In this study, focusing on the histidine residues being oxygenated, we have constructed two assay systems capable of quantitatively evaluating the catalytic activity when used on human patient tau: (1) fluorescence labeling at oxygenated histidine sites and (2) LC-MS/MS analysis of histidine-containing fragments. Using these assays, we identified 2 as a promising catalyst for oxygenation of human tau. In addition, our results suggest that aggregated tau induced by heparin is different from actual AD patient tau in developing effective photo-oxygenation catalysts.
Collapse
|
15
|
Oda H, Sato Y, Kawashima SA, Fujiwara Y, Pálfy M, Wu E, Vastenhouw NL, Kanai M, Kimura H. Actin filaments accumulated in the nucleus remain in the vicinity of condensing chromosomes in the zebrafish early embryo. Biol Open 2023; 12:bio059783. [PMID: 37071022 PMCID: PMC10214854 DOI: 10.1242/bio.059783] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
In the cytoplasm, filamentous actin (F-actin) plays a critical role in cell regulation, including cell migration, stress fiber formation, and cytokinesis. Recent studies have shown that actin filaments that form in the nucleus are associated with diverse functions. Here, using live imaging of an F-actin-specific probe, superfolder GFP-tagged utrophin (UtrCH-sfGFP), we demonstrated the dynamics of nuclear actin in zebrafish (Danio rerio) embryos. In early zebrafish embryos up to around the high stage, UtrCH-sfGFP increasingly accumulated in nuclei during the interphase and reached a peak during the prophase. After nuclear envelope breakdown (NEBD), patches of UtrCH-sfGFP remained in the vicinity of condensing chromosomes during the prometaphase to metaphase. When zygotic transcription was inhibited by injecting α-amanitin, the nuclear accumulation of UtrCH-sfGFP was still observed at the sphere and dome stages, suggesting that zygotic transcription may induce a decrease in nuclear F-actin. The accumulation of F-actin in nuclei may contribute to proper mitotic progression of large cells with rapid cell cycles in zebrafish early embryos, by assisting in NEBD, chromosome congression, and/or spindle assembly.
Collapse
|
16
|
Yamatsugu K, Kanai M. Catalytic Approaches to Chemo- and Site-Selective Transformation of Carbohydrates. Chem Rev 2023; 123:6793-6838. [PMID: 37126370 DOI: 10.1021/acs.chemrev.2c00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Carbohydrates are a fundamental unit playing pivotal roles in all the biological processes. It is thus essential to develop methods for synthesizing, functionalizing, and manipulating carbohydrates for further understanding of their functions and the creation of sugar-based functional materials. It is, however, not trivial to develop such methods, since carbohydrates are densely decorated with polar and similarly reactive hydroxy groups in a stereodefined manner. New approaches to chemo- and site-selective transformations of carbohydrates are, therefore, of great significance for revolutionizing sugar chemistry to enable easier access to sugars of interest. This review begins with a brief overview of the innate reactivity of hydroxy groups of carbohydrates. It is followed by discussions about catalytic approaches to enhance, override, or be orthogonal to the innate reactivity for the transformation of carbohydrates. This review avoids making a list of chemo- and site-selective reactions, but rather focuses on summarizing the concept behind each reported transformation. The literature references were sorted into sections based on the underlying ideas of the catalytic approaches, which we hope will help readers have a better sense of the current state of chemistry and develop innovative ideas for the field.
Collapse
|
17
|
Iwai A, Nakamura R, Tomizawa I, Mitsunuma H, Hori Y, Tomita T, Sohma Y, Kanai M. Attenuation of α-synuclein aggregation by catalytic photo-oxygenation. Chem Commun (Camb) 2023; 59:5745-5748. [PMID: 37092686 DOI: 10.1039/d3cc00665d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
We developed catalyst 11 to promote selective photo-oxygenation of α-synuclein amyloid and attenuate its aggregation. Catalyst 11 effectively oxygenated both small and large aggregates. The oxygenated α-synuclein exhibited lower seeding activity than intact α-synuclein. This study corroborates the feasibility of catalytic photo-oxygenation as an anti-synucleinopathy strategy.
Collapse
|
18
|
Malawska KJ, Takano S, Oisaki K, Yanagisawa H, Kikkawa M, Tsukuda T, Kanai M. Bioconjugation of Au 25 Nanocluster to Monoclonal Antibody at Tryptophan. Bioconjug Chem 2023. [PMID: 36893358 DOI: 10.1021/acs.bioconjchem.3c00069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
We report the first bioconjugation of Au25 nanocluster to a monoclonal antibody at scarcely exposed tryptophan (Trp) residues toward the development of high-resolution probes for cryogenic electron microscopy (cryo-EM) and tomography (cryo-ET). To achieve this, we improved the Trp-selective bioconjugation using hydroxylamine (ABNOH) reagents instead of previously developed N-oxyl radicals (ABNO). This new protocol allowed for the application of Trp-selective bioconjugation to acid-sensitive proteins such as antibodies. We found that a two-step procedure utilizing first Trp-selective bioconjugation for the introduction of azide groups to the protein and then strain-promoted azide-alkyne cycloaddition (SPAAC) to attach a bicyclononyne (BCN)-presenting redox-sensitive Au25 nanocluster was essential for a scalable procedure. Covalent labeling of the antibody with gold nanoclusters was confirmed by various analytical methods, including cryo-EM analysis of the Au25 nanocluster conjugates.
Collapse
|
19
|
Shimizu Y, Kanai M. Boron-Catalyzed α-Functionalizations of Carboxylic Acids. CHEM REC 2023:e202200273. [PMID: 36639245 DOI: 10.1002/tcr.202200273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Indexed: 01/15/2023]
Abstract
Catalytic, chemoselective, and asymmetric α-functionalizations of carboxylic acids promise up-grading simple feedstock materials to value-added functional molecules, as well as late-stage structural diversifications of multifunctional molecules, such as drugs and their leads. In this personal account, we describe boron-catalyzed α-functionalizations of carboxylic acids developed in our group (five reaction types). The reversible boron carboxylate formation is key to the acidification of the α-protons and enolization using mild organic bases, allowing for chemoselective and asymmetric bond formations of carboxylic acids. The ligand effects on reactivity and stereoselectivity, substrate scopes, and mechanistic insights are summarized.
Collapse
|
20
|
Kawashima SA, Kanai M. Live Cell Synthetic Histone Acetylation by Chemical Catalyst. Methods Mol Biol 2023; 2519:155-161. [PMID: 36066720 DOI: 10.1007/978-1-0716-2433-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Posttranslational modifications (PTMs) of histones, such as lysine acetylation and ubiquitination, regulate chromatin structure and gene expression. In living organisms, histone PTMs are catalyzed by histone-modifying enzymes. Here, we describe an entirely chemical method to introduce histone modifications in living cells without genetic manipulation. The chemical catalyst PEG-LANA-DSSMe activates a thioester acetyl donor, N,S-diacetylcysteamine (NAC-Ac), and promotes regioselective, synthetic histone acetylation at H2BK120 in living cells.
Collapse
|
21
|
Kaneko Y, Yamatsugu K, Yamashita T, Takahashi K, Tanaka T, Aki S, Tatsumi T, Kawamura T, Miura M, Ishii M, Ohkubo K, Osawa T, Kodama T, Ishikawa S, Tsukagoshi M, Chansler M, Sugiyama A, Kanai M, Katoh H. Pathological complete remission of relapsed tumor by photo-activating antibody-mimetic drug conjugate treatment. Cancer Sci 2022; 113:4350-4362. [PMID: 36121618 DOI: 10.1111/cas.15565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 02/03/2023] Open
Abstract
Antibody-mimetic drug conjugate is a novel noncovalent conjugate consisting of an antibody-mimetic recognizing a target molecule on the cancer cell surface and low-molecular-weight payloads that kill the cancer cells. In this study, the efficacy of a photo-activating antibody-mimetic drug conjugate targeting HER2-expressing tumors was evaluated in mice, by using the affibody that recognize HER2 (ZHER2:342 ) as a target molecule and an axially substituted silicon phthalocyanine (a novel potent photo-activating compound) as a payload. The first treatment with the photo-activating antibody-mimetic drug conjugates reduced the size of all HER2-expressing KPL-4 xenograft tumors macroscopically. However, during the observation period, relapsed tumors gradually appeared in approximately 50% of the animals. To evaluate the efficacy of repeated antibody-mimetic drug conjugate treatment, animals with relapsed tumors were treated again with the same regimen. After the second observation period, the mouse tissues were examined histopathologically. Unexpectedly, all relapsed tumors were eradicated, and all animals were diagnosed with pathological complete remission. After the second treatment, skin wounds healed rapidly, and no significant side effects were observed in other organs, except for occasional microscopic granulomatous tissues beneath the serosa of the liver in a few mice. Repeated treatments seemed to be well tolerated. These results indicate the promising efficacy of the repeated photo-activating antibody-mimetic drug conjugate treatment against HER2-expressing tumors.
Collapse
|
22
|
Jagtap R, Kanai M. Sustainable and Mild Catalytic Acceptorless Dehydrogenations. Synlett 2022. [DOI: 10.1055/a-1990-5102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Catalytic acceptorless dehydrogenation of organic molecules is playing a crucial role in fine chemical synthesis as well as in energy storage and transport. Particularly, the acceptorless dehydrogenation of saturated N-heteroarenes and hydrocarbons has been realized by both transition metal-free and transition-metal catalyzed approaches. In this direction, our research group aims to develop mild catalytic acceptorless dehydrogenation protocols, majorly by using photoredox approaches. In this account, we have briefly discussed the advancements made by our group in the dehydrogenation of saturated N-heterocycles, aliphatic alcohols, and relatively challenging hydrocarbons.
Collapse
|
23
|
Katayama Y, Mitsunuma H, Kanai M. Lewis Acid-Conjugated Pyrene Photoredox Catalyst Promoting the Addition Reaction of α-Silyl Amines with Benzalmalononitriles. Chem Pharm Bull (Tokyo) 2022; 70:765-768. [DOI: 10.1248/cpb.c22-00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Tan D, Kim Y, Lim MC, Sho M, Lu CH, Nagao S, Kubo S, Kim BG, Chen LT, Kanai M, Wang PH, Rha S, Ramar R, Wong M, Sasaki T. 101P Real-world prevalence of MSI-H/dMMR across 6 different tumor types in Asia. Ann Oncol 2022. [DOI: 10.1016/j.annonc.2022.07.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
25
|
Irie Y, Chen H, Fuse H, Mitsunuma H, Kanai M. Linear‐Selective Allylation of Aldehydes with Simple Alkenes Mediated by Quadruple Hybrid Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|