1
|
Qian F, Zhang S, Wang J, Zhu N, Bao X, Yang H, Xu X, Alshahrani WA, Helal MH, Guo Z. Ammonia energy fraction effect on the combustion and reduced NOX emission of ammonia/diesel dual fuel. ENVIRONMENTAL RESEARCH 2024; 261:119530. [PMID: 39004391 DOI: 10.1016/j.envres.2024.119530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/08/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
With stringent regulations of internal combustion engine on reducing CO2 emission, ammonia has been used as an alternative fuel. Investigating how engine-related performance is affected by partial ammonia replacement of diesel fuel is essential for understanding the combustion. Therefore, in this study, a three-dimensional numerical simulation model is developed for the burning of two fuels of diesel and ammonia based on relevant parameters (i.e., compression ratio, load, ammonia energy fraction, etc.) in a lab-made diesel engine. The consequences of load and compression proportion on combustion and pollutant emissions are investigated for ammonia energy fractions between 50% and 90%. When the ammonia portion rises, the increased ammonia equivalent ratio causes ammonia to move away from the dilute combustion boundary and accelerates the combustion rate of ammonia. An increase in compression ratio significantly increases the specified thermal performance and combustion efficacy. When the compression ratio is 16, as the ammonia energy fractions increases, due to the increase in the proportion of ammonia, that is, the proportion of nitrogen atoms increases, more NOx is generated during the combustion process. When the ammonia substitution rate is 90%, as the compression ratio increases, the cylinder pressure and temperature increase. The combustion efficiency of ammonia increases, generating more NOx and NOx emissions can reach 0.66 mg/m3. At a compression ratio of 18, the NOx emissions can reach 1.59 mg/m3. However, under medium and low load conditions, as the ammonia fraction increases, the total energy of fuel decreases, and the combustion efficiency of ammonia decreases, resulting in a decrease in the heat released during combustion and a decrease in NOx emissions. When the ammonia substitution rate is 90% and the load is 25%, NOx emissions reach 0.1 mg/m3. This research provides theoretical suggestions for the profitable and use ammonia fuel in internal combustion engines in a clean manner.
Collapse
|
2
|
Dong L, Hu YD, Xiong WF, Du JY, Li CW, Xie CL, Lyu JZ, Cui A, Zhou DB, Li SH, Zhu N, Zhang XJ, Li SQ. [Comparative analysis of the efficacy of direct oral anticoagulant rivaroxaban and low molecular weight heparin in the treatment of tumor patients with venous thromboembolism]. ZHONGHUA YI XUE ZA ZHI 2024; 104:3896-3902. [PMID: 39533680 DOI: 10.3760/cma.j.cn112137-20240604-01259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Objective: To explore the effectiveness and safety of direct oral anticoagulant rivaroxaban and low molecular weight heparin (LMWH) in the treatment of tumor patients with venous thromboembolism (VTE). Methods: A retrospective analysis was conducted on 296 patients diagnosed with tumor associated VTE in the Shanghai Pulmonary Thromboembolism Database from December 2020 to September 2022. Patients were grouped according to the prescription of anticoagulant drugs. Thirteen baseline variables [age, gender, smoking history, physical state (PS) score, tumor type, tumor stage, tumor treatment method, hemoglobin, platelets, D-dimer, creatinine, alanine aminotransferase, and VTE site] were matched. After matching, 100 cases were assigned to rivaroxaban group, including 64 males and 36 females, aged [M (Q1, Q3)] 70 (62,74) years old; There were 100 cases in the LMWH group, including 69 males and 31 females, aged 68 (60,73) years old. Kaplan-Meier method was used to plot survival curves. The differences between the rivaroxaban group and LMWH group in 6-month cumulative VTE recurrence rate, clinically significant bleeding rate, and all-cause mortality rate were analysed using log-rank test. Results: There were no statistically significant differences between the rivaroxaban group and the LMWH group in the 6-month cumulative VTE recurrence rate [13.5% (95%CI: 6.4%-20.1%) vs 7.5% (95%CI: 2.0%-12.7%), P=0.171], bleeding incidence rate [9.2% (95%CI: 3.3%-14.8%) vs 6.2% (95%CI: 1.3%-10.9%), P=0.438] and all-cause mortality rate [8.0% (95%CI: 2.5%-13.2%) vs 10.0% (95%CI: 3.9%-15.7%), P=0.602]. Conclusion: The anticoagulant efficacy and safety of rivaroxaban and LMWH are comparable in tumor patients with VTE.
Collapse
|
3
|
Morvan A, Villalonga B, Mi X, Mandrà S, Bengtsson A, Klimov PV, Chen Z, Hong S, Erickson C, Drozdov IK, Chau J, Laun G, Movassagh R, Asfaw A, Brandão LTAN, Peralta R, Abanin D, Acharya R, Allen R, Andersen TI, Anderson K, Ansmann M, Arute F, Arya K, Atalaya J, Bardin JC, Bilmes A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Campero J, Chang HS, Chiaro B, Chik D, Chou C, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Debroy DM, Barba ADT, Demura S, Paolo AD, Dunsworth A, Faoro L, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Garcia G, Genois É, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Dau AG, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hoffmann MR, Huang T, Huff A, Huggins WJ, Ioffe LB, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lensky YD, Lester BJ, Lill AT, Liu W, Livingston WP, Locharla A, Malone FD, Martin O, Martin S, McClean JR, McEwen M, Miao KC, Mieszala A, Montazeri S, Mruczkiewicz W, Naaman O, Neeley M, Neill C, Nersisyan A, Newman M, Ng JH, Nguyen A, Nguyen M, Niu MY, O'Brien TE, Omonije S, Opremcak A, Petukhov A, Potter R, Pryadko LP, Quintana C, Rhodes DM, Rocque C, Rosenberg E, Rubin NC, Saei N, Sank D, Sankaragomathi K, Satzinger KJ, Schurkus HF, Schuster C, Shearn MJ, Shorter A, Shutty N, Shvarts V, Sivak V, Skruzny J, Smith WC, Somma RD, Sterling G, Strain D, Szalay M, Thor D, Torres A, Vidal G, Heidweiller CV, White T, Woo BWK, Xing C, Yao ZJ, Yeh P, Yoo J, Young G, Zalcman A, Zhang Y, Zhu N, Zobrist N, Rieffel EG, Biswas R, Babbush R, Bacon D, Hilton J, Lucero E, Neven H, Megrant A, Kelly J, Roushan P, Aleiner I, Smelyanskiy V, Kechedzhi K, Chen Y, Boixo S. Phase transitions in random circuit sampling. Nature 2024; 634:328-333. [PMID: 39385051 PMCID: PMC11464376 DOI: 10.1038/s41586-024-07998-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/28/2024] [Indexed: 10/11/2024]
Abstract
Undesired coupling to the surrounding environment destroys long-range correlations in quantum processors and hinders coherent evolution in the nominally available computational space. This noise is an outstanding challenge when leveraging the computation power of near-term quantum processors1. It has been shown that benchmarking random circuit sampling with cross-entropy benchmarking can provide an estimate of the effective size of the Hilbert space coherently available2-8. Nevertheless, quantum algorithms' outputs can be trivialized by noise, making them susceptible to classical computation spoofing. Here, by implementing an algorithm for random circuit sampling, we demonstrate experimentally that two phase transitions are observable with cross-entropy benchmarking, which we explain theoretically with a statistical model. The first is a dynamical transition as a function of the number of cycles and is the continuation of the anti-concentration point in the noiseless case. The second is a quantum phase transition controlled by the error per cycle; to identify it analytically and experimentally, we create a weak-link model, which allows us to vary the strength of the noise versus coherent evolution. Furthermore, by presenting a random circuit sampling experiment in the weak-noise phase with 67 qubits at 32 cycles, we demonstrate that the computational cost of our experiment is beyond the capabilities of existing classical supercomputers. Our experimental and theoretical work establishes the existence of transitions to a stable, computationally complex phase that is reachable with current quantum processors.
Collapse
|
4
|
Zhang S, Zhu N, Shi YN, Zeng Q, Zhang CJ, Li HF, Qin L. Celastrol mediates CAV1 to attenuate pro-tumorigenic effects of senescent cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155614. [PMID: 38692078 DOI: 10.1016/j.phymed.2024.155614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/04/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Cellular senescence is an emerging hallmark of cancers, primarily fuels cancer progression by expressing senescence-associated secretory phenotype (SASP). Caveolin-1 (CAV1) is a key mediator of cell senescence. Previous studies from our group have evidenced that the expression of CAV1 is downregulated by Celastrol (CeT). PURPOSE To investigate the impact of CeT on cellular senescence and its subsequent influence on post-senescence-driven invasion, migration, and stemness of clear cell renal cell carcinoma (ccRCC). STUDY DESIGN AND METHODS The expression levels of CAV1, canonical senescence markers, and markers associated with epithelial-mesenchymal transition (EMT) and stemness in clinical samples were assessed through Pearson correlation analysis. Senescent cell models were induced using DOX, and their impact on migration, invasion, and stemness was evaluated. The effects of CeT treatment on senescent cells and their pro-tumorigenic effects were examined. Subsequently, the underlying mechanism of CeT were explored using lentivirus transfection and CRISPR/Cas9 technology to silence CAV1. RESULTS In human ccRCC clinical samples, the expression of the canonical senescence markers p53, p21, and p16 are associated with ccRCC progression. Senescent cells facilitated migration, invasion, and enhanced stemness in both ccRCC cells and ccRCC tumor-bearing mice. As expected, CeT treatment reduced senescence markers (p16, p53, p21, SA-β-gal) and SASP factors (IL6, IL8, CXCL12), alleviating cell cycle arrest. However, it did not restore the proliferation of senescent cells. Additionally, CeT suppressed senescence-driven migration, invasion, and stemness. Further investigations into the underlying mechanism demonstrated that CAV1 is a critical mediator of cell senescence and represents a potential target for CeT to attenuate cellular senescence. CONCLUSIONS This study presents a pioneering investigation into the intricate interplay between cellular senescence and ccRCC progression. We unveil a novel mechanism of CeT to mitigate cellular senescence by downregulating CAV1, thereby inhibiting the migration, invasion and stemness of ccRCC driven by senescent cells. These findings provide valuable insights into the underlying mechanisms of CeT and its potential as a targeted therapeutic approach for alleviating the aggressive phenotypes associated with senescent cells in ccRCC.
Collapse
|
5
|
Liu J, Chang Y, Zhu N, Zhang Y. Dynamic navigation-assisted bone ring technique for partially edentulous patients with severe vertical ridge defects. Int J Oral Maxillofac Surg 2024; 53:607-611. [PMID: 38278686 DOI: 10.1016/j.ijom.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
The autogenous bone ring technique is among the approaches for vertical alveolar ridge augmentation, and this technique can enable simultaneous implantation. However, the outcomes can be compromised due to donor site morbidity, shifting of the bone ring graft positioning, and inaccurate implant placement. In recent decades, dynamic navigation systems have been introduced into the field of implantology, allowing the accuracy of outcomes to be improved. This Technical Note describes the use of dynamic navigation to guide bone ring surgery, which is expected to enable more precise and predictable bone augmentation and implantation procedures, reduce the risk of injuries to the adjacent anatomical structures, and achieve better treatment outcomes.
Collapse
|
6
|
Zeng Q, Gong Y, Zhu N, Shi Y, Zhang C, Qin L. Lipids and lipid metabolism in cellular senescence: Emerging targets for age-related diseases. Ageing Res Rev 2024; 97:102294. [PMID: 38583577 DOI: 10.1016/j.arr.2024.102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Cellular senescence is a kind of cellular state triggered by endogenous or exogenous stimuli, which is mainly characterized by stable cell cycle arrest and complex senescence-associated secretory phenotype (SASP). Once senescent cells accumulate in tissues, they may eventually accelerate the progression of age-related diseases, such as atherosclerosis, osteoarthritis, chronic lung diseases, cancers, etc. Recent studies have shown that the disorders of lipid metabolism are not only related to age-related diseases, but also regulate the cellular senescence process. Based on existing research evidences, the changes in lipid metabolism in senescent cells are mainly concentrated in the metabolic processes of phospholipids, fatty acids and cholesterol. Obviously, the changes in lipid-metabolizing enzymes and proteins involved in these pathways play a critical role in senescence. However, the link between cellular senescence, changes in lipid metabolism and age-related disease remains to be elucidated. Herein, we summarize the lipid metabolism changes in senescent cells, especially the senescent cells that promote age-related diseases, as well as focusing on the role of lipid-related enzymes or proteins in senescence. Finally, we explore the prospect of lipids in cellular senescence and their potential as drug targets for preventing and delaying age-related diseases.
Collapse
|
7
|
Rosenberg E, Andersen TI, Samajdar R, Petukhov A, Hoke JC, Abanin D, Bengtsson A, Drozdov IK, Erickson C, Klimov PV, Mi X, Morvan A, Neeley M, Neill C, Acharya R, Allen R, Anderson K, Ansmann M, Arute F, Arya K, Asfaw A, Atalaya J, Bardin JC, Bilmes A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Campero J, Chang HS, Chen Z, Chiaro B, Chik D, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Debroy DM, Barba ADT, Demura S, Di Paolo A, Dunsworth A, Earle C, Faoro L, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Garcia G, Genois É, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Dau AG, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hill G, Hoffmann MR, Hong S, Huang T, Huff A, Huggins WJ, Ioffe LB, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lensky YD, Lester BJ, Lill AT, Liu W, Locharla A, Mandrà S, Martin O, Martin S, McClean JR, McEwen M, Meeks S, Miao KC, Mieszala A, Montazeri S, Movassagh R, Mruczkiewicz W, Nersisyan A, Newman M, Ng JH, Nguyen A, Nguyen M, Niu MY, O'Brien TE, Omonije S, Opremcak A, Potter R, Pryadko LP, Quintana C, Rhodes DM, Rocque C, Rubin NC, Saei N, Sank D, Sankaragomathi K, Satzinger KJ, Schurkus HF, Schuster C, Shearn MJ, Shorter A, Shutty N, Shvarts V, Sivak V, Skruzny J, Smith WC, Somma RD, Sterling G, Strain D, Szalay M, Thor D, Torres A, Vidal G, Villalonga B, Heidweiller CV, White T, Woo BWK, Xing C, Yao ZJ, Yeh P, Yoo J, Young G, Zalcman A, Zhang Y, Zhu N, Zobrist N, Neven H, Babbush R, Bacon D, Boixo S, Hilton J, Lucero E, Megrant A, Kelly J, Chen Y, Smelyanskiy V, Khemani V, Gopalakrishnan S, Prosen T, Roushan P. Dynamics of magnetization at infinite temperature in a Heisenberg spin chain. Science 2024; 384:48-53. [PMID: 38574139 DOI: 10.1126/science.adi7877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
Understanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin dynamics of the one-dimensional Heisenberg model were conjectured as to belong to the Kardar-Parisi-Zhang (KPZ) universality class based on the scaling of the infinite-temperature spin-spin correlation function. In a chain of 46 superconducting qubits, we studied the probability distribution of the magnetization transferred across the chain's center, [Formula: see text]. The first two moments of [Formula: see text] show superdiffusive behavior, a hallmark of KPZ universality. However, the third and fourth moments ruled out the KPZ conjecture and allow for evaluating other theories. Our results highlight the importance of studying higher moments in determining dynamic universality classes and provide insights into universal behavior in quantum systems.
Collapse
|
8
|
Mi X, Michailidis AA, Shabani S, Miao KC, Klimov PV, Lloyd J, Rosenberg E, Acharya R, Aleiner I, Andersen TI, Ansmann M, Arute F, Arya K, Asfaw A, Atalaya J, Bardin JC, Bengtsson A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Chen Z, Chiaro B, Chik D, Chou C, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Dau AG, Debroy DM, Del Toro Barba A, Demura S, Di Paolo A, Drozdov IK, Dunsworth A, Erickson C, Faoro L, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Genois É, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hoffmann MR, Hong S, Huang T, Huff A, Huggins WJ, Ioffe LB, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Kechedzhi K, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lensky YD, Lester BJ, Lill AT, Liu W, Locharla A, Malone FD, Martin O, McClean JR, McEwen M, Mieszala A, Montazeri S, Morvan A, Movassagh R, Mruczkiewicz W, Neeley M, Neill C, Nersisyan A, Newman M, Ng JH, Nguyen A, Nguyen M, Niu MY, O'Brien TE, Opremcak A, Petukhov A, Potter R, Pryadko LP, Quintana C, Rocque C, Rubin NC, Saei N, Sank D, Sankaragomathi K, Satzinger KJ, Schurkus HF, Schuster C, Shearn MJ, Shorter A, Shutty N, Shvarts V, Skruzny J, Smith WC, Somma R, Sterling G, Strain D, Szalay M, Torres A, Vidal G, Villalonga B, Heidweiller CV, White T, Woo BWK, Xing C, Yao ZJ, Yeh P, Yoo J, Young G, Zalcman A, Zhang Y, Zhu N, Zobrist N, Neven H, Babbush R, Bacon D, Boixo S, Hilton J, Lucero E, Megrant A, Kelly J, Chen Y, Roushan P, Smelyanskiy V, Abanin DA. Stable quantum-correlated many-body states through engineered dissipation. Science 2024; 383:1332-1337. [PMID: 38513021 DOI: 10.1126/science.adh9932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
Engineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for quantum simulation of high-temperature superconductivity or quantum magnetism. Using up to 49 superconducting qubits, we prepared low-energy states of the transverse-field Ising model through coupling to dissipative auxiliary qubits. In one dimension, we observed long-range quantum correlations and a ground-state fidelity of 0.86 for 18 qubits at the critical point. In two dimensions, we found mutual information that extends beyond nearest neighbors. Lastly, by coupling the system to auxiliaries emulating reservoirs with different chemical potentials, we explored transport in the quantum Heisenberg model. Our results establish engineered dissipation as a scalable alternative to unitary evolution for preparing entangled many-body states on noisy quantum processors.
Collapse
|
9
|
Wang X, Zhu N, Zeng W, Wang P. Hemoglobin variability in patients receiving EPO and roxadustat during maintenance hemodialysis: a self-control study. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2024; 28:303-309. [PMID: 38235900 DOI: 10.26355/eurrev_202401_34917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
OBJECTIVE The aim of this study was to investigate the hemoglobin variability in patients undergoing maintenance hemodialysis during the application of erythropoietin (EPO) and roxadustat. PATIENTS AND METHODS For this retrospective study, we analyzed the clinical records of 80 patients with renal anemia on maintenance hemodialysis (MHD) admitted to our hospital between January 2017 and December 2022. We adopted a self-control design comparing the hemoglobin variability of the values before and after roxadustat administration in each patient. The patients received EPO from January 2017 to December 2019 and roxadustat from January 2020 to December 2022. We compared the levels of serum ferritin, transferrin saturation, and hemoglobin and calculated the hemoglobin variabilities by comparing values before and after roxadustat treatments. RESULTS We found higher transferrin saturation levels at different time points after the roxadustat treatments (p<0.01); meanwhile, the serum ferritin and hemoglobin levels were significantly higher after the roxadustat treatment (p<0.001). During the treatments with EPO and roxadustat, the transferrin saturation, serum ferritin, and hemoglobin levels differed significantly at different time points for each patient (p<0.05). After roxadustat administration, the hemoglobin levels were significantly higher than after EPO administration (p<0.001) and changed more rapidly after roxadustat administration than after EPO administration (p<0.05). The hemoglobin variability after roxadustat administration was significantly lower than that after EPO administration (p<0.05). CONCLUSIONS Treatment with roxadustat led to higher hemoglobin levels and less hemoglobin variability than the treatment with EPO, with high transferrin saturation and higher ferritin levels in patients with renal anemia on MHD.
Collapse
|
10
|
Li HF, Zhu N, Wu JJ, Shi YN, Gu J, Qin L. Celastrol Elicits Antitumor Effects through Inducing Immunogenic Cell Death and Downregulating PD-L1 in ccRCC. Curr Pharm Des 2024; 30:1265-1278. [PMID: 38584553 DOI: 10.2174/0113816128288970240321073436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Targeting immunogenic cell death (ICD) is considered a promising therapeutic strategy for cancer. However, the commonly identified ICD inducers promote the expression of programmed cell death ligand 1 (PD-L1) in tumor cells, thus aiding them to evade the recognition and killing by the immune system. Therefore, the finding of novel ICD inducers to avoid enhanced PD-L1 expression is of vital significance for cancer therapy. Celastrol (CeT), a triterpene isolated from Tripterygium wilfordii Hook. F induces various forms of cell death to exert anti-cancer effects, which may make celastrol an attractive candidate as an inducer of ICD. METHODS In the present study, bioinformatics analysis was combined with experimental validation to explore the underlying mechanism by which CeT induces ICD and regulates PD-L1 expression in clear cell renal cell carcinoma (ccRCC). RESULTS The results showed that EGFR, IKBKB, PRKCQ and MAPK1 were the crucial targets for CeT-induced ICD, and only MAPK1 was an independent prognostic factor for the overall survival (OS) of ccRCC patients. In addition, CeT triggered autophagy and up-regulated the expressions of HMGB1 and CRT to induce ICD in 786-O cells in vitro. Importantly, CeT can down-regulate PD-L1 expression through activating autophagy. At the molecular level, CeT suppressed PD-L1 via the inhibition of MAPK1 expression. Immunologically, the core target of celastrol, MAPK1, was tightly correlated with CD8+ T cells and CD4+ T cells in ccRCC. CONCLUSION These findings indicate that CeT not only induces ICD but also suppresses PD-L1 by down-regulating MAPK1 expression, which will provide an attractive strategy for ccRCC immunotherapy.
Collapse
|
11
|
Hoke JC, Ippoliti M, Rosenberg E, Abanin D, Acharya R, Andersen TI, Ansmann M, Arute F, Arya K, Asfaw A, Atalaya J, Bardin JC, Bengtsson A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Chen Z, Chiaro B, Chik D, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Dau AG, Debroy DM, Del Toro Barba A, Demura S, Di Paolo A, Drozdov IK, Dunsworth A, Eppens D, Erickson C, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hoffmann MR, Hong S, Huang T, Huff A, Huggins WJ, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Kechedzhi K, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klimov PV, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lensky YD, Lester BJ, Lill AT, Liu W, Locharla A, Martin O, McClean JR, McEwen M, Miao KC, Mieszala A, Montazeri S, Morvan A, Movassagh R, Mruczkiewicz W, Neeley M, Neill C, Nersisyan A, Newman M, Ng JH, Nguyen A, Nguyen M, Niu MY, O’Brien TE, Omonije S, Opremcak A, Petukhov A, Potter R, Pryadko LP, Quintana C, Rocque C, Rubin NC, Saei N, Sank D, Sankaragomathi K, Satzinger KJ, Schurkus HF, Schuster C, Shearn MJ, Shorter A, Shutty N, Shvarts V, Skruzny J, Smith WC, Somma R, Sterling G, Strain D, Szalay M, Torres A, Vidal G, Villalonga B, Heidweiller CV, White T, Woo BWK, Xing C, Yao ZJ, Yeh P, Yoo J, Young G, Zalcman A, Zhang Y, Zhu N, Zobrist N, Neven H, Babbush R, Bacon D, Boixo S, Hilton J, Lucero E, Megrant A, Kelly J, Chen Y, Smelyanskiy V, Mi X, Khemani V, Roushan P. Measurement-induced entanglement and teleportation on a noisy quantum processor. Nature 2023; 622:481-486. [PMID: 37853150 PMCID: PMC10584681 DOI: 10.1038/s41586-023-06505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/01/2023] [Indexed: 10/20/2023]
Abstract
Measurement has a special role in quantum theory1: by collapsing the wavefunction, it can enable phenomena such as teleportation2 and thereby alter the 'arrow of time' that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time3-10 that go beyond the established paradigms for characterizing phases, either in or out of equilibrium11-13. For present-day noisy intermediate-scale quantum (NISQ) processors14, the experimental realization of such physics can be problematic because of hardware limitations and the stochastic nature of quantum measurement. Here we address these experimental challenges and study measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping9,15-17 to avoid mid-circuit measurement and access different manifestations of the underlying phases, from entanglement scaling3,4 to measurement-induced teleportation18. We obtain finite-sized signatures of a phase transition with a decoding protocol that correlates the experimental measurement with classical simulation data. The phases display remarkably different sensitivity to noise, and we use this disparity to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realizing measurement-induced physics at scales that are at the limits of current NISQ processors.
Collapse
|
12
|
Gu J, Shi YN, Zhu N, Li HF, Zhang CJ, Qin L. Celastrol functions as an emerging manager of lipid metabolism: Mechanism and therapeutic potential. Biomed Pharmacother 2023; 164:114981. [PMID: 37285754 DOI: 10.1016/j.biopha.2023.114981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023] Open
Abstract
Lipid metabolism disorders are pivotal in the development of various lipid-related diseases, such as obesity, atherosclerosis, non-alcoholic fatty liver disease, type 2 diabetes, and cancer. Celastrol, a bioactive compound extracted from the Chinese herb Tripterygium wilfordii Hook F, has recently demonstrated potent lipid-regulating abilities and promising therapeutic effects for lipid-related diseases. There is substantial evidence indicating that celastrol can ameliorate lipid metabolism disorders by regulating lipid profiles and related metabolic processes, including lipid synthesis, catabolism, absorption, transport, and peroxidation. Even wild-type mice show augmented lipid metabolism after treatment with celastrol. This review aims to provide an overview of recent advancements in the lipid-regulating properties of celastrol, as well as to elucidate its underlying molecular mechanisms. Besides, potential strategies for targeted drug delivery and combination therapy are proposed to enhance the lipid-regulating effects of celastrol and avoid the limitations of its clinical application.
Collapse
|
13
|
Zhu N, Hong Y, Cai Y, Dong F, Song J. The Removal of CH 4 and NO x from Marine LNG Engine Exhaust by NTP Combined with Catalyst: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4969. [PMID: 37512244 PMCID: PMC10381958 DOI: 10.3390/ma16144969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Compared to diesel, liquefied natural gas (LNG), often used as an alternative fuel for marine engines, comes with significant advantages in reducing emissions of particulate matter (PM), SOx, CO2, and other pollutants. Promoting the use of LNG is of great significance for achieving carbon peaking and neutrality worldwide, as well as improving the energy structure. However, compared to diesel engines, medium- and high-speed marine LNG engines may produce higher methane (CH4) emissions and also have nitrogen oxide (NOx) emission issues. For the removal of CH4 and NOx from the exhaust of marine LNG engines, the traditional technical route of combining a methane oxidation catalyst (MOC) and an HN3 selective catalytic reduction system (NH3-SCR) will face problems, such as low conversion efficiency and high operation cost. In view of this, the technology of non-thermal plasma (NTP) combined with CH4-SCR is proposed. However, the synergistic mechanism between NTP and catalysts is still unclear, which limits the optimization of an NTP-CH4-SCR system. This article summarizes the synergistic mechanism of NTP and catalysts in the integrated treatment process of CH4 and NOx, including experimental analysis and numerical simulation. And the relevant impact parameters (such as electrode diameter, electrode shape, electrode material, and barrier material, etc.) of NTP reactor energy optimization are discussed. The work of this paper is of great significance for guiding the high-efficiency removal of CH4 and NOx for an NTP-CH4-SCR system.
Collapse
|
14
|
Andersen TI, Lensky YD, Kechedzhi K, Drozdov IK, Bengtsson A, Hong S, Morvan A, Mi X, Opremcak A, Acharya R, Allen R, Ansmann M, Arute F, Arya K, Asfaw A, Atalaya J, Babbush R, Bacon D, Bardin JC, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Chen Z, Chiaro B, Chik D, Chou C, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Debroy DM, Del Toro Barba A, Demura S, Dunsworth A, Eppens D, Erickson C, Faoro L, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Dau AG, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hilton J, Hoffmann MR, Huang T, Huff A, Huggins WJ, Ioffe LB, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klimov PV, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lester BJ, Lill AT, Liu W, Locharla A, Lucero E, Malone FD, Martin O, McClean JR, McCourt T, McEwen M, Miao KC, Mieszala A, Mohseni M, Montazeri S, Mount E, Movassagh R, Mruczkiewicz W, Naaman O, Neeley M, Neill C, Nersisyan A, Newman M, Ng JH, Nguyen A, Nguyen M, Niu MY, O’Brien TE, Omonije S, Petukhov A, Potter R, Pryadko LP, Quintana C, Rocque C, Rubin NC, Saei N, Sank D, Sankaragomathi K, Satzinger KJ, Schurkus HF, Schuster C, Shearn MJ, Shorter A, Shutty N, Shvarts V, Skruzny J, Smith WC, Somma R, Sterling G, Strain D, Szalay M, Torres A, Vidal G, Villalonga B, Heidweiller CV, White T, Woo BWK, Xing C, Yao ZJ, Yeh P, Yoo J, Young G, Zalcman A, Zhang Y, Zhu N, Zobrist N, Neven H, Boixo S, Megrant A, Kelly J, Chen Y, Smelyanskiy V, Kim EA, Aleiner I, Roushan P. Non-Abelian braiding of graph vertices in a superconducting processor. Nature 2023; 618:264-269. [PMID: 37169834 PMCID: PMC10247379 DOI: 10.1038/s41586-023-05954-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/14/2023] [Indexed: 06/09/2023]
Abstract
Indistinguishability of particles is a fundamental principle of quantum mechanics1. For all elementary and quasiparticles observed to date-including fermions, bosons and Abelian anyons-this principle guarantees that the braiding of identical particles leaves the system unchanged2,3. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions4-8. Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well-developed mathematical description of non-Abelian anyons and numerous theoretical proposals9-22, the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. Whereas efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasiparticles, superconducting quantum processors allow for directly manipulating the many-body wavefunction by means of unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons9,10, we implement a generalized stabilizer code and unitary protocol23 to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of using the anyons for quantum computation and use braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and, through the future inclusion of error correction to achieve topological protection, could open a path towards fault-tolerant quantum computing.
Collapse
|
15
|
Qiu Y, Shi YN, Zhu N, Zhang S, Zhang CJ, Gu J, He P, Dai AG, Qin L. A Lipid Perspective on Regulated Pyroptosis. Int J Biol Sci 2023; 19:2333-2348. [PMID: 37215994 PMCID: PMC10197892 DOI: 10.7150/ijbs.81017] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
Pyroptosis is a novel pro-inflammatory cell programmed death dependent on Gasdermin (GSMD) family-mediated membrane pore formation and subsequent cell lysis, accompanied by the release of inflammatory factors and expanding inflammation in multiple tissues. All of these processes have impacts on a variety of metabolic disorders. Dysregulation of lipid metabolism is one of the most prominent metabolic alterations in many diseases, including the liver, cardiovascular system, and autoimmune diseases. Lipid metabolism produces many bioactive lipid molecules, which are important triggers and endogenous regulators of pyroptosis. Bioactive lipid molecules promote pyroptosis through intrinsic pathways involving reactive oxygen species (ROS) production, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, lysosomal disruption, and the expression of related molecules. Pyroptosis can also be regulated during the processes of lipid metabolism, including lipid uptake and transport, de novo synthesis, lipid storage, and lipid peroxidation. Taken together, understanding the correlation between lipid molecules such as cholesterol and fatty acids and pyroptosis during metabolic processes can help to gain insight into the pathogenesis of many diseases and develop effective strategies from the perspective of pyroptosis.
Collapse
|
16
|
Zhang C, Qin Y, Deng C, Zhu N, Shi Y, Wang W, Qin L. GSH-specific fluorescent probe for sensing, bioimaging, rapid screening of natural inhibitor Celastrol and ccRCC theranostics. Anal Chim Acta 2023; 1248:340933. [PMID: 36813462 DOI: 10.1016/j.aca.2023.340933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
High level of intracellular glutathione (GSH) has been identified as a major barrier for cancer therapy. Therefore, effective regulation of GSH can be regarded as a novel approach for cancer therapy. In this study, an off-on fluorescent probe (NBD-P) is developed for selective and sensitive sensing GSH. NBD-P has a good cell membrane permeability that can be applied in bioimaging endogenous GSH in living cells. Moreover, the NBD-P probe is used to visualize GSH in animal models. In addition, a rapid drug screening method is successfully established using the fluorescent probe NBD-P. A potent natural inhibitor of GSH is identified as Celastrol from Tripterygium wilfordii Hook F, which effectively triggers mitochondrial apoptosis in clear cell renal cell carcinoma (ccRCC). More importantly, NBD-P can selectively respond to GSH fluctuations to distinguish cancer tissues from normal tissues. Thus, the present study provides insights into fluorescence probes for the screening GSH inhibitors and cancer diagnosis, as well as in-depth exploration of the anti-cancer effects of Traditional Chinese Medicine (TCM).
Collapse
|
17
|
Li H, Deng C, Zhu N, Zhang C, Zeng Q, Qin L. An ultrasensitive GSH-specific fluorescent probe unveils celastrol-induced ccRCC ferroptosis. Bioorg Chem 2023; 134:106454. [PMID: 36889199 DOI: 10.1016/j.bioorg.2023.106454] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/27/2022] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Glutathione (GSH) is closely related to the occurrence and development of tumors. The intracellular GSH levels are abnormally altered when tumor cells undergo programmed cell death. Therefore, real-time monitoring of the dynamic changes of intracellular GSH levels can better enable the early diagnosis of diseases and evaluate the effects of cell death-inducing drugs. In this study, a stable and highly selective fluorescent probe AR has been designed and synthesized for the fluorescence imaging and rapid detection of GSH in vitro and in vivo, as well as patient-derived tumor tissue. More importantly, the AR probe can be used to track changes in GSH levels and fluorescence imaging during the treatment of clear cell renal cell carcinoma (ccRCC) with celastrol (CeT) via inducing ferroptosis. These findings demonstrate that the developed fluorescent probe AR exhibits high selectivity and sensitivity, as well as good biocompatibility and long-term stability, which can be used to image endogenous GSH in living tumors and cells. Also, a significant decrease in GSH levels was observed by the fluorescent probe AR during the treatment of ccRCC with CeT-induced ferroptosis in vitro and in vivo. Overall, these findings will provide a novel strategy for celastrol targeting ferroptosis in the treatment of ccRCC and the application of fluorescent probes to help reveal the underlying mechanism of CeT in the treatment of ccRCC.
Collapse
|
18
|
Otter JA, Zhou J, Price JR, Reeves L, Zhu N, Randell P, Sriskandan S, Barclay WS, Holmes AH. SARS-CoV-2 surface and air contamination in an acute healthcare setting during the first and second pandemic waves. J Hosp Infect 2023; 132:36-45. [PMID: 36435307 PMCID: PMC9683853 DOI: 10.1016/j.jhin.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Surfaces and air in healthcare facilities can be contaminated with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Previously, the authors identified SARS-CoV-2 RNA on surfaces and air in their hospital during the first wave of the coronavirus disease 2019 pandemic (April 2020). AIM To explore whether the profile of SARS-CoV-2 surface and air contamination had changed between April 2020 and January 2021. METHODS This was a prospective, cross-sectional, observational study in a multi-site London hospital. In January 2021, surface and air samples were collected from comparable areas to those sampled in April 2020, comprising six clinical areas and a public area. SARS-CoV-2 was detected using reverse transcription polymerase chain reaction and viral culture. Sampling was also undertaken in two wards with natural ventilation alone. The ability of the prevalent variants at the time of the study to survive on dry surfaces was evaluated. FINDINGS No viable virus was recovered from surfaces or air. Five percent (N=14) of 270 surface samples and 4% (N=1) of 27 air samples were positive for SARS-CoV-2, which was significantly lower than in April 2020 [52% (N=114) of 218 surface samples and 48% (N=13) of 27 air samples (P<0.001, Fisher's exact test)]. There was no clear difference in the proportion of surface and air samples positive for SARS-CoV-2 RNA based on the type of ventilation in the ward. All variants tested survived on dry surfaces for >72 h, with a <3-log10 reduction in viable count. CONCLUSION This study suggests that enhanced infection prevention measures have reduced the burden of SARS-CoV-2 RNA on surfaces and air in healthcare facilities.
Collapse
|
19
|
Shi Y, Zhu N, Qiu Y, Tan J, Wang F, Qin L, Dai A. Resistin-like molecules: a marker, mediator and therapeutic target for multiple diseases. Cell Commun Signal 2023; 21:18. [PMID: 36691020 PMCID: PMC9869618 DOI: 10.1186/s12964-022-01032-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/27/2022] [Indexed: 01/25/2023] Open
Abstract
Resistin-like molecules (RELMs) are highly cysteine-rich proteins, including RELMα, RELMβ, Resistin, and RELMγ. However, RELMs exhibit significant differences in structure, distribution, and function. The expression of RELMs is regulated by various signaling molecules, such as IL-4, IL-13, and their receptors. In addition, RELMs can mediate numerous signaling pathways, including HMGB1/RAGE, IL-4/IL-4Rα, PI3K/Akt/mTOR signaling pathways, and so on. RELMs proteins are involved in wide range of physiological and pathological processes, including inflammatory response, cell proliferation, glucose metabolism, barrier defense, etc., and participate in the progression of numerous diseases such as lung diseases, intestinal diseases, cardiovascular diseases, and cancers. Meanwhile, RELMs can serve as biomarkers, risk predictors, and therapeutic targets for these diseases. An in-depth understanding of the role of RELMs may provide novel targets or strategies for the treatment and prevention of related diseases. Video abstract.
Collapse
|
20
|
Zhao YK, Xie K, Bao LW, Chen YF, Luo XP, Shi HM, Zhu N, Yang MJ, Cheng X, Wang HY, Li J. [Recurrent syncope of unknown origin after ICD implantation: a case report]. ZHONGHUA NEI KE ZA ZHI 2022; 61:1366-1369. [PMID: 36456520 DOI: 10.3760/cma.j.cn112138-20211208-00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
21
|
Morvan A, Andersen TI, Mi X, Neill C, Petukhov A, Kechedzhi K, Abanin DA, Michailidis A, Acharya R, Arute F, Arya K, Asfaw A, Atalaya J, Bardin JC, Basso J, Bengtsson A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Chen Z, Chiaro B, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Debroy DM, Del Toro Barba A, Demura S, Dunsworth A, Eppens D, Erickson C, Faoro L, Farhi E, Fatemi R, Flores Burgos L, Forati E, Fowler AG, Foxen B, Giang W, Gidney C, Gilboa D, Giustina M, Grajales Dau A, Gross JA, Habegger S, Hamilton MC, Harrigan MP, Harrington SD, Hoffmann M, Hong S, Huang T, Huff A, Huggins WJ, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev AY, Klimov PV, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lester BJ, Lill AT, Liu W, Locharla A, Malone F, Martin O, McClean JR, McEwen M, Meurer Costa B, Miao KC, Mohseni M, Montazeri S, Mount E, Mruczkiewicz W, Naaman O, Neeley M, Nersisyan A, Newman M, Nguyen A, Nguyen M, Niu MY, O'Brien TE, Olenewa R, Opremcak A, Potter R, Quintana C, Rubin NC, Saei N, Sank D, Sankaragomathi K, Satzinger KJ, Schurkus HF, Schuster C, Shearn MJ, Shorter A, Shvarts V, Skruzny J, Smith WC, Strain D, Sterling G, Su Y, Szalay M, Torres A, Vidal G, Villalonga B, Vollgraff-Heidweiller C, White T, Xing C, Yao Z, Yeh P, Yoo J, Zalcman A, Zhang Y, Zhu N, Neven H, Bacon D, Hilton J, Lucero E, Babbush R, Boixo S, Megrant A, Kelly J, Chen Y, Smelyanskiy V, Aleiner I, Ioffe LB, Roushan P. Formation of robust bound states of interacting microwave photons. Nature 2022; 612:240-245. [PMID: 36477133 PMCID: PMC9729104 DOI: 10.1038/s41586-022-05348-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/14/2022] [Indexed: 12/12/2022]
Abstract
Systems of correlated particles appear in many fields of modern science and represent some of the most intractable computational problems in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles1. The lack of general solutions for the three-body problem and acceptable theory for strongly correlated electrons shows that our understanding of correlated systems fades when the particle number or the interaction strength increases. One of the hallmarks of interacting systems is the formation of multiparticle bound states2-9. Here we develop a high-fidelity parameterizable fSim gate and implement the periodic quantum circuit of the spin-½ XXZ model in a ring of 24 superconducting qubits. We study the propagation of these excitations and observe their bound nature for up to five photons. We devise a phase-sensitive method for constructing the few-body spectrum of the bound states and extract their pseudo-charge by introducing a synthetic flux. By introducing interactions between the ring and additional qubits, we observe an unexpected resilience of the bound states to integrability breaking. This finding goes against the idea that bound states in non-integrable systems are unstable when their energies overlap with the continuum spectrum. Our work provides experimental evidence for bound states of interacting photons and discovers their stability beyond the integrability limit.
Collapse
|
22
|
Mi X, Sonner M, Niu MY, Lee KW, Foxen B, Acharya R, Aleiner I, Andersen TI, Arute F, Arya K, Asfaw A, Atalaya J, Bardin JC, Basso J, Bengtsson A, Bortoli G, Bourassa A, Brill L, Broughton M, Buckley BB, Buell DA, Burkett B, Bushnell N, Chen Z, Chiaro B, Collins R, Conner P, Courtney W, Crook AL, Debroy DM, Demura S, Dunsworth A, Eppens D, Erickson C, Faoro L, Farhi E, Fatemi R, Flores L, Forati E, Fowler AG, Giang W, Gidney C, Gilboa D, Giustina M, Dau AG, Gross JA, Habegger S, Harrigan MP, Hoffmann M, Hong S, Huang T, Huff A, Huggins WJ, Ioffe LB, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Kafri D, Kechedzhi K, Khattar T, Kim S, Kitaev AY, Klimov PV, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Lee J, Laws L, Liu W, Locharla A, Martin O, McClean JR, McEwen M, Meurer Costa B, Miao KC, Mohseni M, Montazeri S, Morvan A, Mount E, Mruczkiewicz W, Naaman O, Neeley M, Neill C, Newman M, O’Brien TE, Opremcak A, Petukhov A, Potter R, Quintana C, Rubin NC, Saei N, Sank D, Sankaragomathi K, Satzinger KJ, Schuster C, Shearn MJ, Shvarts V, Strain D, Su Y, Szalay M, Vidal G, Villalonga B, Vollgraff-Heidweiller C, White T, Yao Z, Yeh P, Yoo J, Zalcman A, Zhang Y, Zhu N, Neven H, Bacon D, Hilton J, Lucero E, Babbush R, Boixo S, Megrant A, Chen Y, Kelly J, Smelyanskiy V, Abanin DA, Roushan P. Noise-resilient edge modes on a chain of superconducting qubits. Science 2022; 378:785-790. [DOI: 10.1126/science.abq5769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inherent symmetry of a quantum system may protect its otherwise fragile states. Leveraging such protection requires testing its robustness against uncontrolled environmental interactions. Using 47 superconducting qubits, we implement the one-dimensional kicked Ising model, which exhibits nonlocal Majorana edge modes (MEMs) with
ℤ
2
parity symmetry. We find that any multiqubit Pauli operator overlapping with the MEMs exhibits a uniform late-time decay rate comparable to single-qubit relaxation rates, irrespective of its size or composition. This characteristic allows us to accurately reconstruct the exponentially localized spatial profiles of the MEMs. Furthermore, the MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism. Our work elucidates the complex interplay between noise and symmetry-protected edge modes in a solid-state environment.
Collapse
|
23
|
Zhang S, Zhu N, Li HF, Gu J, Zhang CJ, Liao DF, Qin L. The lipid rafts in cancer stem cell: a target to eradicate cancer. Stem Cell Res Ther 2022; 13:432. [PMID: 36042526 PMCID: PMC9429646 DOI: 10.1186/s13287-022-03111-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells with stem cell properties that sustain cancers, which may be responsible for cancer metastasis or recurrence. Lipid rafts are cholesterol- and sphingolipid-enriched microdomains in the plasma membrane that mediate various intracellular signaling. The occurrence and progression of cancer are closely related to lipid rafts. Emerging evidence indicates that lipid raft levels are significantly enriched in CSCs compared to cancer cells and that most CSC markers such as CD24, CD44, and CD133 are located in lipid rafts. Furthermore, lipid rafts play an essential role in CSCs, specifically in CSC self-renewal, epithelial-mesenchymal transition, drug resistance, and CSC niche. Therefore, lipid rafts are critical regulatory platforms for CSCs and promising therapeutic targets for cancer therapy.
Collapse
|
24
|
Zhu N, Huang YQ, Song YM, Zhang SZ, Zheng S, Yuan Y. [Efficacy comparison among high risk factors questionnaire and Asia-Pacific colorectal screening score and their combinations with fecal immunochemical test in screening advanced colorectal tumor]. ZHONGHUA WEI CHANG WAI KE ZA ZHI = CHINESE JOURNAL OF GASTROINTESTINAL SURGERY 2022; 25:612-620. [PMID: 35844124 DOI: 10.3760/cma.j.cn441530-20211127-00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Objective: To investigate the effects of high risk factors questionnaire (HRFQ), Asia-Pacific colorectal screening (APCS) score and their combinations with fecal immunochemical test (FIT) in screening advanced colorectal neoplasia, in order to provide an evidence for further optimization of cancer screening program. Methods: A retrospective cohort study method was used to summarize and analyze the results of colorectal tumor screening in Jiashan County, Zhejiang Province from March 2017 to July 2018. Those with severe diseases that were not suitable for colonoscopy and those with mental and behavioral abnormalities who can not cooperate with the screening were excluded. Those who met any one or more of the followings in the HRFQ questionnaire were classified as high-risk people of HRFQ: (1) first-degree relatives with a history of colorectal cancer; (2) subjects with a history of cancer or any other malignant tumor; (3) subjects with a history of intestinal polyps; (4) those with two or more of the followings: chronic constipation (constipation lasted for more than 2 months per year in the past two years), chronic diarrhea (diarrhea lasted for more than 3 months in the past two years, and the duration of each episode was more than one week), mucus and bloody stools, history of adverse life events (occurring within the past 20 years and causing greater trauma or distress to the subject after the event), history of chronic appendicitis or appendectomy, history of chronic biliary disease or cholecystectomy. In this study, those who were assessed as high risk by HRFQ were recorded as "HRFQ (+)", and those who were not at high risk were recorded as "HRFQ (-)". The APCS questionnaire provided risk scores based on 4 risk factors including age, gender, family history and smoking: (1) age: 2 points for 50-69 years old, 3 points for 70 years old and above; (2) gender: 1 point for male, 0 point for women; (3) family history: 2 points for first-degree relatives suffering from colorectal cancer; (4) smoking: 1 point for current or past smoking, 0 point for non-smokers. The population was divided into low-risk (0-1 point), intermediate-risk (2-3 points), and high-risk (4-7 points). Those who were assessed as high risk by APCS were recorded as "APCS (+)", and those with intermediate and low risk were recorded as "APCS (-)". The hemoglobin threshold for a positive FIT was set to 100 μg/L. Those who were assessed as high risk by APCS with positive FIT were recorded as "APCS+FIT (+)". Those who were assessed as high risk by APCS with negative FIT, those who were assessed by APCS as low-middle risk with positive FIT, and those who were assessed by APCS as low-middle with negative FIT were all recorded as "APCS+FIT(-)". Observation indicators in this study were as follows: (1) the screening compliance rate of the cohort and the detection of advanced colorectal tumors; (2) positive predictive value, negative predictive value, sensitivity and specificity of HRFQ and APCS and their combination with FIT for screening advanced colorectal tumors; (3) comparison of the detection rate between HRFQ and APCS questionnaire for different colorectal lesions. Using SPSS 21.0 software, the receiver operating characteristic (ROC) curve was drawn to evaluate the clinical value of HRFQ and APCS combined with FIT in screening advanced colorectal tumors. Results: From 2017 to 2018 in Jiashan County, a total of 53 268 target subjects were screened, and 42 093 people actually completed the questionnaire, with a compliance rate of 79.02%. A total of 8145 cases underwent colonoscopy. A total of 3607 cases among HRFQ positive population (5320 cases) underwent colonoscopy, and the colonoscopy compliance rate was 67. 80%; 8 cases were diagnosed with colorectal cancer and 88 cases were advanced colorectal adenoma. A total of 2977 cases among APCS positive population (11 942 cases) underwent colonoscopy, and the colonoscopy compliance rate was 24.93%; 17 cases were diagnosed with colorectal cancer and 148 cases were advanced colorectal adenoma. The positive rate of HRFQ screening was lower than that of APCS [12.6% (5320/42 093) vs. 28.4% (11 942/42 093), χ2=3195. 547, P<0.001]. In the FIT positive population (6223 cases), a total of 4894 cases underwent colonoscopy, and the colonoscopy compliance rate was 78.64%; 34 cases were diagnosed with colorectal cancer and 224 cases were advanced adenoma. The positive predictive values of HRFQ and APCS and their combination with FIT for screening advanced colorectal tumors were 2.67%, 5.54%, 5.44%, and 8.56%; negative predictive values were 94.89%, 96.85%, 96.11% and 96.99%; sensitivity was 29.27%, 50.30%, 12.20 % and 39.02%; specificity was 55.09%, 64.03%, 91.11% and 82.51%, respectively. The ROC curves constructed by HRFQ, APCS, FIT, HRFQ+FIT and APCS+FIT indicated that APCS+FIT presented the highest efficacy in screening advanced colorectal tumors (AUC: 0.608, 95%CI: 0.574-0.642). The comparison of the detection rates of different colorectal lesions between HRFQ and APCS questionnaires showed that there were no significant differences in detection rate of inflammatory polyps and hyperplastic polyps between the two questionnaires (both P>0.05). However, as compared to HRFQ questionnaire, APCS questionnaire had higher detection rates in non-advanced adenomas [26.10% (777/2977) vs. 19.43% (701/3607), χ2=51.228, P<0.001], advanced adenoma [4.97% (148/2977) vs. 2.44% (88/3607), χ2=30.249, P<0.001] and colorectal cancer [0.57% (17 /2977) vs. 0.22% (8/3607), χ2=5.259, P=0.022]. Conclusions: APCS has a higher detection rate of advanced colorectal tumors than HRFQ. APCS combined with FIT can further improve the effectiveness of advanced colorectal tumor screening.
Collapse
|
25
|
Gu J, Zhu N, Li HF, Zhao TJ, Zhang CJ, Liao DF, Qin L. Cholesterol homeostasis and cancer: a new perspective on the low-density lipoprotein receptor. Cell Oncol 2022; 45:709-728. [PMID: 35864437 DOI: 10.1007/s13402-022-00694-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Disturbance of cholesterol homeostasis is considered as one of the manifestations of cancer. Cholesterol plays an essential role in the pleiotropic functions of cancer cells, including mediating membrane trafficking, intracellular signal transduction, and production of hormones and steroids. As a single transmembrane receptor, the low-density lipoprotein receptor (LDLR) can participate in intracellular cholesterol uptake and regulate cholesterol homeostasis. It has recently been found that LDLR is aberrantly expressed in a broad range of cancers, including colon cancer, prostate cancer, lung cancer, breast cancer and liver cancer. LDLR has also been found to be involved in various signaling pathways, such as the MAPK, NF-κB and PI3K/Akt signaling pathways, which affect cancer cells and their surrounding microenvironment. Moreover, LDLR may serve as an independent prognostic factor for lung cancer, breast cancer and pancreatic cancer, and is closely related to the survival of cancer patients. However, the role of LDLR in some cancers, such as prostate cancer, remains controversial. This may be due to the lack of normal feedback regulation of LDLR expression in cancer cells and the severe imbalance between LDLR-mediated cholesterol uptake and de novo biosynthesis of cholesterol. CONCLUSIONS The imbalance of cholesterol homeostasis caused by abnormal LDLR expression provides new therapeutic opportunities for cancer. LDLR interferes with the occurrence and development of cancer by modulating cholesterol homeostasis and may become a novel target for the development of anti-cancer drugs. Herein, we systematically review the contribution of LDLR to cancer progression, especially its dysregulation and underlying mechanism in various malignancies. Besides, potential targeting and immunotherapeutic options are proposed.
Collapse
|