1
|
Wei S, Richard R, Hogue D, Mondal I, Xu T, Boyer T, Hamilton K. High resolution data visualization and machine learning prediction of free chlorine residual in a green building water system. WATER RESEARCH X 2024; 24:100244. [PMID: 39188328 PMCID: PMC11345929 DOI: 10.1016/j.wroa.2024.100244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024]
Abstract
People spend most of their time indoors and are exposed to numerous contaminants in the built environment. Water management plans implemented in buildings are designed to manage the risks of preventable diseases caused by drinking water contaminants such as opportunistic pathogens (e.g., Legionella spp.), metals, and disinfection by-products (DBPs). However, specialized training required to implement water management plans and heterogeneity in building characteristics limit their widespread adoption. Implementation of machine learning and artificial intelligence (ML/AI) models in building water settings presents an opportunity for faster, more widespread use of data-driven water quality management approaches. We demonstrate the utility of Random Forest and Long Short-Term Memory (LSTM) ML models for predicting a key public health parameter, free chlorine residual, as a function of data collected from building water quality sensors (ORP, pH, conductivity, and temperature) as well as WiFi signals as a proxy for building occupancy and water usage in a "green" Leadership in Energy and Environmental Design (LEED) commercial and institutional building. The models successfully predicted free chlorine residual declines below 0.2 ppm, a common minimum reference level for public health protection in drinking water distribution systems. The predictions were valid up to 5 min in advance, and in some cases reasonably accurate up to 24 h in advance, presenting opportunities for proactive water quality management as part of a sense-analyze-decide framework. An online data dashboard for visualizing water quality in the building is presented, with the potential to link these approaches for real-time water quality management.
Collapse
|
2
|
Ren C, Hou N, Zhang Y, Wang Y, Zhang Y, Qiu Y, Wei S, Skuza L, Dai H. A comparative study on cadmium tolerance and applicability of two Solanum lycopersicum L. cultivars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44952-44964. [PMID: 38954340 DOI: 10.1007/s11356-024-34105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Solanum lycopersicum L. can be classified into low Cd-accumulating and high Cd-accumulating types based on their accumulation characteristics of cadmium (Cd). There are many common S. lycopersicum varieties available in the market, but their specific Cd tolerance and enrichment abilities are not well understood. This article uses two S. lycopersicum cultivars, Yellow Cherry and Yellow Pearl, as experimental materials. The experimental method of soil pot planting was adopted, and Cd concentrations in the soil were added at 0, 0.6, 1.5, 2.5, 5, and 10 mg/kg. The changes in Cd content, biomass, photosynthetic pigment content, and photosynthetic parameters of the two S. lycopersicum cultivars were analyzed to screen for low-accumulation S. lycopersicum cultivars. The results showed that S. lycopersicum are Cd-sensitive plants. The Cd accumulation, photosynthetic parameters, and other basic indicators of Yellow Cherry basically showed significant differences when the soil Cd concentration was 0.6 mg/kg, and the biomass showed significant differences when the soil Cd concentration was 1.5 mg/kg. Except for the Cd accumulation in the roots and leaves of Yellow Pearl, which showed significant differences at a soil Cd concentration of 0.6 mg/kg, the other indicators basically showed significant differences when the soil Cd concentration was 1.5 mg/kg. When the soil Cd concentration was 0.6 mg/kg, the Cd accumulation in the fruit of Yellow Pearl was 0.04 mg/kg, making it a low-accumulation S. lycopersicum variety suitable for promoting cultivation in Cd-contaminated soil at 0.6 mg/kg. In conclusion, the Cd accumulation in the fruit of Yellow Pearl is significantly lower than that of Yellow Cherry and even below the Cd limit value for fresh vegetables specified in GB2762-2017. Therefore, Yellow Pearl can be grown as edible crops in soils with Cd concentrations ≤0.6 mg/kg. Furthermore, Yellow Cherry demonstrate strong Cd tolerance and can be used for the remediation of Cd-contaminated soils.
Collapse
|
3
|
Xu L, Dai H, Wei S, Skuza L, Shi J. High-efficiency combination washing agents with eco-friendliness simultaneously removing Cd, Cu and Ni from soil of e-waste recycling site: A lab-scale experiment. CHEMOSPHERE 2024; 357:142047. [PMID: 38621485 DOI: 10.1016/j.chemosphere.2024.142047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/17/2024] [Accepted: 04/13/2024] [Indexed: 04/17/2024]
Abstract
Soil washing technology plays an important role in the removal of heavy metals, and the efficacy of this process depends on the washing agent used. Due to the difficulty in treating soils contaminated by multiple heavy metals, there is still a need for further exploration of efficient washing agents with low environmental impact. Although single washing agents, such as chelators, can also effectively remove heavy metals from soil, combining efficient washing agents and determining their optimal washing conditions can effectively improve their removal efficiency for multiple heavy metals in soil simultaneously. Based on the previous research, the present study was carried out to combine different types of washing agents to remediate contaminated soils at a commonly e-waste recycling site. The objectives were to investigate their efficient washing conditions and assess the impact of the washing process on the speciation distribution and pollution level associated with heavy metals in soil. The results showed that the combination of HEDP (1-hydroxyethylidene-1,1-diphosphonic acid) and FeCl3 at a ratio of 6:4 exhibited the most effective removal of Cd, Cu and Ni from the contaminated soil at an e-waste recycling site. Under optimal washing conditions, with a soil-to-liquid ratio of 1:20 and a washing time of 48 h, the removal rates of Cd, Cu and Ni were 96.72%, 69.91% and 76.08%, respectively. It needed to be emphasized that the combination washing agents were able to remove most of the acid-soluble, reducible and oxidizable fractions of heavy metals, and even the removal rates of the stable residual fraction (e.g., of Cd) was at a relatively high level. In addition, the washing process significantly reduced the pollution level associated with heavy metals in soil. This study aid in the development of combined efficient washing agents and explores optimal washing strategies for the remediation of Cd, Cu, and Ni-contaminated soil at e-waste recycling sites. The findings may play a role in enhancing the remediation capabilities for soils contaminated with multiple heavy metals, due to its characteristics of and high-efficiency and environmental friendliness.
Collapse
|
4
|
Xu L, Xie W, Dai H, Wei S, Skuza L, Li J, Shi C, Zhang L. Effects of combined microplastics and heavy metals pollution on terrestrial plants and rhizosphere environment: A review. CHEMOSPHERE 2024; 358:142107. [PMID: 38657695 DOI: 10.1016/j.chemosphere.2024.142107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Microplastics (MPs) can enter the soil environment through industry, agricultural production and daily life sources. Their interaction with heavy metals (HMs) poses a significant threat to a variety of terrestrial ecosystems, including agricultural ones, thereby affecting crop quality and threatening human health. This review initially addresses the impact of single and combined contamination with MPs and HMs on soil environment, including changes in soil physicochemical properties, microbial community structure and diversity, fertility, enzyme activity and resistance genes, as well as alterations in heavy metal speciation. The article further explores the effects of this pollution on the growth characteristics of terrestrial plants, such as plant biomass, antioxidant systems, metabolites and photosynthesis. In general, the combined contaminants tend to significantly affect soil environment and terrestrial plant growth, i.e., the impact of combined contaminants on plants weight ranged from -87.5% to 4.55%. Similarities and differences in contamination impact levels stem from the variations in contaminant types, sizes and doses of contaminants and the specific plant growth environments. In addition, MPs can not only infiltrate plants directly, but also significantly affect the accumulation of HMs in terrestrial plants. The heavy metals concentration in plants under the treatment of MPs were 70.26%-36.80%. The co-occurrence of these two pollution types can pose a serious threat to crop productivity and safety. Finally, this study proposes suggestions for future research aiming to address current gaps in knowledge, raises awareness about the impact of combined MPs + HMs pollution on plant growth and eco-environmental security.
Collapse
|
5
|
Wei S, Wu L. Benefit and harm of low-dose aspirin in pregnancy: a balancing act. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 63:572. [PMID: 38465516 DOI: 10.1002/uog.27624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Linked article: This Correspondence comments on Souter et al. Click here to view the article.
Collapse
|
6
|
Yang W, Dai H, Wei S, Robinson BH, Xue J. Effect of ammonium sulfate combined with aqueous bio-chelator on Cd uptake by Cd-hyperaccumulator Solanum nigrum L. CHEMOSPHERE 2024; 352:141317. [PMID: 38286306 DOI: 10.1016/j.chemosphere.2024.141317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
The efficacy of using plants to phytoremediate heavy metal (HM) contaminated soils can be improved using soil amendments. These amendments may both increase plant biomasses and HMs uptake. We aimed to determine the composite effect of ammonium sulfate ((NH4)2SO4) combined with the application of an aqueous stem-extracted bio-chelator (Bidens tripartita L) on the plant biomasses and cadmium (Cd) phytoextraction by Solanum nigrum L. The constant (NH4)2SO4 application mode plus bio-chelator additives collectively enhanced the shoot Cd extraction ability owing to the increased plant biomass and shoot Cd concentration by S. nigrum. The shoot Cd extraction and the soil Cd decreased concentration confirmed the optimal Cd phytoextraction pattern in K8 and K9 treatments (co-application of (NH4)2SO4 and twofold/threefold bio-chelators). Accordingly, Cd contamination risk in the soil (2 mg kg-1) could be completely eradicated (<0.2 mg kg-1) after three rounds of phytoremediation by S.nigrum based on K8 and K9 treatments through calculating soil Cd depletion. The microorganism counts and enzyme activities in rhizosphere soils at treatments with the combined soil additives apparently advanced. In general, co-application mode of (NH4)2SO4 and aqueous bio-chelator was likely to be a perfect substitute for conventional scavenger agents on account of its environmental friendliness and cost saving for field Cd contamination phytoremediation by S. nigrum.
Collapse
|
7
|
Li H, Wei S, Xu Q. Full sample analysis of cerebral venous sinus thrombosis in ophthalmology inpatients. J Fr Ophtalmol 2024; 47:104074. [PMID: 38377844 DOI: 10.1016/j.jfo.2024.104074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 02/22/2024]
Abstract
PURPOSE We hope that by analyzing the clinical features of cerebral venous sinus thrombosis (CVST), we can help ophthalmologists reduce misdiagnosis or delayed diagnosis. DESIGN We evaluated 47 patients with CVST in terms of clinical manifestations. METHODS All cases were analyzed in terms of risk factors, clinical symptoms, ophthalmic examination, imaging examination and lumbar puncture. RESULTS The body mass indices (BMIs) of 41 patients (87.2%; 95% CI, 77.7-96.8%) were≥24, which is overweight by Chinese standards. There were 22 patients (46.8%; 95% CI, 32.5-61.1%) with BMIs≥28, who were considered obese. Thirteen were hypertensive (27.7%; 95% CI, 14.9-40.5%). The initial symptoms included blurred vision (23, 48.9%; 95% CI, 34.6-63.2%), amaurosis fugax (13, 27.7%; 95% CI, 14.9-40.5%), headache (11 patients, 23.4%; 95% CI, 11.3-35.5%), dizziness (3, 6.4%; 95% CI, -0.6-13.4%), and bilateral diplopia (3, 6.4%; 95% CI, -0.6-13.4%). There were 9 patients (9, 19.2%; 95% CI, 7.9-30.4%) with blindness, 23 patients (48.9%; 95% CI, 34.6-63.2%) with pupillary abnormalities, and 40 patients (85.1%; 95% CI, 74.9-95.2%) with papilledema. Forty-three of the 45 patients who successfully underwent a routine lumbar puncture showed high intracranial pressure (91.7%; 95.6% CI, 89.6-101.6%). Finally, two cases are reported in greater detail for illustrative purposes. CONCLUSION The main reasons interfering with the diagnosis of CVST might be its nonspecific ocular symptoms and the physicians' clinical thought process being limited to the scope of common ophthalmological diseases.
Collapse
|
8
|
Yang W, Dai H, Wei S, Skuza L. The effect of exogenous plant growth regulators on elevated Cd phytoremediation by Solanum nigrum L. in contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3964-3975. [PMID: 38097832 DOI: 10.1007/s11356-023-31420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024]
Abstract
Maximizing amendment potential is an emphasis in the HM-contaminated field of phytoremediation by hyperaccumulators due to the low bioavailability of HMs in soils and small biomass yields of plants. This study investigated the influence of different types and concentrations of plant growth regulators on Cd phytoremediation by Solanum nigrum in contaminated soil. Our conclusions showed that the shoot Cd extractions (μg plant-1) and the root and shoot biomasses at all the treatments remarkedly increased compared with that of the CK (p < 0.05), while the Cd concentrations at root and aboveground parts by S. nigrum, the extractable Cd concentrations, and pH value of soils did not change significantly compared with the CK (p < 0.05). Furthermore, correlation analysis showed that the shoot Cd phytoaccumulation and the root and aboveground biomasses of S. nigrum were particularly dependent upon the application of CTK and GA3 concentration gradient (p < 0.05). Moreover, some related physicochemical indexes were determined for supervising the growth conditions of plants, and these results pointed out that after exogenous PGRs treatments, the chlorophyll content and antioxidative enzymes POD and SOD activities in vivo of plants clearly advanced, while the H2O2 and MDA contents and CAT apparently declined. These consequence demonstrated that the exogenous PGR addition prominently reinforced the Cd phytoextraction capacity of S. nigrum in contaminated soil by stimulating plant growth and increasing shoot yields.
Collapse
|
9
|
Yan X, An J, Zhang Y, Wei S, He W, Zhou Q. Photochemical degradation in natural attenuation of characteristics of petroleum hydrocarbons (C 10-C 40) in crude oil polluted soil by simulated long term solar irradiation. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132259. [PMID: 37633018 DOI: 10.1016/j.jhazmat.2023.132259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/15/2023] [Accepted: 08/07/2023] [Indexed: 08/28/2023]
Abstract
Photodegradation process plays an important role in the natural attenuation of petroleum hydrocarbons (PHs) in oil contaminated soil. The photodegradation characteristics of PHs (C10-C40) in topsoil of crude oil contaminated soil irradiated by simulated sunlight in 280 d without microbial action were investigated. The results showed that photodegradation rate of PHs was increased with increasing the light intensity and decreased with increasing the initial concentration of PHs. Moreover, the photodegradation capacity of tested PHs was relevant to the length of carbon chain. The photodegradation rates of C10-C20 were higher than that of C21-C40 in photoperiod. C21-C40 showed an obvious trend of photodegradation after 56 d, although their photodegradation rates were less than 20% at the early stage. And, the redundancy analysis indicated that lighting time was the primary factor for photodegradation of PHs under abiotic conditions. The photodegradation rate was well interpreted by a two-stage, first-order kinetic law with a faster initial photolysis rate. The EPR spectrums showed that simulated solar irradiation accelerated the generation of superoxide radicals, which could react with PHs in soil. Also, the function groups in PHs polluted soil were changed after light exposure, which might imply the possible photodegradation pathway of PHs.
Collapse
|
10
|
Wei S, Liu K, Wu H, Hu J, He J, Li G, Liu B, Yang W. MT2 INHIBITS OSTEOCLASTOGENESIS BY SCAVENGING ROS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2023; 19:447-455. [PMID: 38933247 PMCID: PMC11197834 DOI: 10.4183/aeb.2023.447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Context and objective Reactive oxygen species (ROS) produced under oxidative stress is important for osteoclastogenesis. As a major member of the metallothionein (MT) family, metallothionein2 (MT2) can scavenge ROS in osteoblasts. However, the role of MT2 in osteoclastogenesis and ROS production in osteoclast precursors (OCPs) is unknown. Material and methods In this study, we first investigated MT2 expression level in osteoporotic model mice. Next, we explored the roles of MT2 in osteoclastic differentiation and ROS production in OCPs. Ultimately, via rescue assays based on hydrogen peroxide (H2O2), the significance of ROS in MT-2-regulated osteoclastic differentiation was further elucidated. Results Compared with sham operated (Sham) mice, ovariectomized (OVX) mice displayed bone marrow primary OCPs (Ly6C+CD11b-) having higher ROS levels and lower MT2 expression. MT2 overexpression inhibited the formation of mature osteoclasts, while MT2 knockdown was contrary. Moreover, MT2 overexpression inhibited ROS production in OCPs, while MT2 knockdown exhibited the opposite effects. Notably, the inhibitory effect of MT2 overexpression on osteoclastogenesis and ROS production was blocked by the addition of H2O2. Conclusion MT2 inhibits osteoclastogenesis through repressing ROS production in OCPs, which indicates that the strategy of upregulating MT2 in OCPs may be applied to the clinical treatment of osteoclastic bone loss.
Collapse
|
11
|
Jia J, Dai H, Wei S, Xue J, Skuza L, Sun Q, Li R. Toxicity of emerging contaminant antibiotics in soil to Capsicum annuum L. growth and their effects on it accumulating copper. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:661-667. [PMID: 36801528 DOI: 10.1016/j.plaphy.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/01/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Antibiotics are a kind of emerging contaminant in soil. Tetracycline (TC) and oxytetracycline (OTC) in soil are often detected, even with very high concentration in the soils of facility agriculture due to their good effect, low price and large usage. Copper (Cu) is common heavy metal pollutant in soil. The toxicity roles of TC, OTC and/or Cu in soil on a commonly consumed vegetable Capsicum annuum L. and its Cu accumulation were not clear till now. The results of pot experiment showed that the TC or OTC added in soil alone didn't produce poison effects for C. annuum after 6 weeks and 12 weeks growth reflected by some physiological index like SOD, CAT and APX activities changes, while the biomass changes affirmed them either. Cu contaminated soil significantly inhibited the growth of C. annuum. Furthermore, combined pollution of Cu with TC or OTC was with more serious suppression of C. annuum growth. The suppression role of OTC was heavier than TC in Cu and TC or OTC contaminated soil. Such phenomenon was relevant with the role of TC or OTC increased Cu concentration in C. annuum. The improvement role of TC or OTC on Cu accumulation in C. annuum caused by the increased extractable Cu concentration in soil. The study demonstrated that TC or OTC added in soil alone was without any toxicity to C. annuum. But they may aggravate the hurt of C. annuum caused by Cu through increased its accumulation from soil. Thus, such combine pollution should be avoided in safe agricultural product.
Collapse
|
12
|
Wang S, Dai H, Ji D, Cui S, Jiang C, Skuza L, Li L, Grzebelus D, Wei S. Influencing Factors of Bidens pilosa L. Hyperaccumulating Cadmium Explored by the Real-Time Uptake of Cd 2+ Influx around Root Apexes under Different Exogenous Nutrient Ion Levels. TOXICS 2023; 11:227. [PMID: 36976992 PMCID: PMC10054121 DOI: 10.3390/toxics11030227] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Though Bidens pilosa L. has been confirmed to be a potential Cd hyperaccumulator, the accumulation mechanism is not yet clear. The dynamic and real-time uptake of Cd2+ influx by B. pilosa root apexes was determined using non-invasive micro-test technology (NMT), which partly explored the influencing factors of the Cd hyperaccumulation mechanism under the conditions of different exogenous nutrient ions. The results indicated that Cd2+ influxes at 300 μm around the root tips decreased under Cd treatments with 16 mM Ca2+, 8 mM Mg2+, 0.5 mM Fe2+, 8 mM SO42- or 18 mM K+ compared to single Cd treatments. The Cd treatments with a high concentration of nutrient ions showed an antagonistic effect on Cd2+ uptake. However, Cd treatments with 1 mM Ca2+, 0.5 mM Mg2+, 0.5 mM SO42- or 2 mM K+ had no effect on the Cd2+ influxes as compared with single Cd treatments. It is worth noting that the Cd treatment with 0.05 mM Fe2+ markedly increased Cd2+ influxes. The addition of 0.05 mM Fe2+ exhibited a synergistic effect on Cd uptake, which could be low concentration Fe2+ rarely involved in blocking Cd2+ influx and often forming an oxide membrane on the root surface to help the Cd uptake by B. pilosa. The results also showed that Cd treatments with high concentration of nutrient ions significantly increased the concentrations of chlorophyll and carotenoid in leaves and the root vigor of B. pilosa relative to single Cd treatments. Our research provides novel perspectives with respect to Cd uptake dynamic characteristics by B. pilosa roots under different exogenous nutrient ion levels, and shows that the addition of 0.05 mM Fe2+ could promote the phytoremediation efficiency for B. pilosa.
Collapse
|
13
|
Dou X, Dai H, Grzebelus D, Skuza L, Wei S. Cadmium phytoextraction efficiency of hyperaccumulator as affected by harvest stage in three continuous years. CHEMOSPHERE 2023; 313:137639. [PMID: 36566791 DOI: 10.1016/j.chemosphere.2022.137639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Phytoremediation which mainly using hyperaccumulator is a very popular and environmental-friendly clean method. Long term continuous test is very important due to its low remediation efficiency in a growth period. Cd hyperaccumulator Rorippa globosa (Turcz.) Thell. Was used to explore the effect of two remediation modes (harvests at flowering and maturity stages) on the continuous remediation efficiency in a 3-year experiment using pot experiment with real Cd contaminated soil. The results showed that the biomass in maturity-harvest treatments was 1.12 times of that in flowering-harvest treatments due to the short vegetation time. Shoot Cd concentrations in the flowering-harvest treatments were on average 15.4% lower compared to the maturity-harvest treatments either. However, the Cd phytoextraction efficiency (PE) in the flowering-harvest treatments was 13.8% higher compared to the harvests at the maturity stage due to the growth cycle of R. globosa harvested at the flowering was 34.5% of shorter compared to those in the maturity harvest treatments. After three consecutive years of R. globosa phytoextraction, the concentration of extractable Cd decreased on average by 28.7% and corresponding PEs lower either. It was suggested that cultivation modes of R. globosa and low-accumulation crop rotation, or three times flowering harvests of R. globosa per year seemed to be a good choice in practical solution.
Collapse
|
14
|
Wang S, Dai H, Cui S, Ji D, Skuza L, Li L, Grzebelus D, Wei S. The effects of salinity and pH variation on hyperaccumulator Bidens pilosa L. accumulating cadmium with dynamic and real-time uptake of Cd 2+ influx around its root apexes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41435-41444. [PMID: 36631619 DOI: 10.1007/s11356-023-25213-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Bidens pilosa L. has been confirmed to be a potential Cd hyperaccumulator by some researchers, but the dynamic and real-time uptake of Cd2+ influx by B. pilosa root apexes was a conundrum up to now. The aim of our study was to investigate the effects of salinity and pH variations on the characteristics of Cd2+ influx around the root apexes of B. pilosa. The tested seedlings of B. pilosa were obtained by sand culture experiments in a greenhouse after 1 month from germination, and the Cd2+ influxes from the root apex of B. pilosa under Cd treatments with different salinity and pH levels were determined with application of non-invasive micro-test technology (NMT). The results showed that Cd2+ influxes at 300 μm from the root tips decreased under Cd treatments with 5 mM and 10 mM NaCl, as compared to Cd stress alone. However, Cd treatments with 2.5 mM NaCl had little effect on the net Cd2+ influxes, as compared to Cd treatments alone. Importantly, Cd treatments at pH = 4.0 markedly increased Cd2+ influxes in roots, and Cd treatment at pH = 7.0 had no significant effect on the net Cd2+ influxes compared to Cd treatments at pH = 5.5. Results also showed that Cd treatments with 10 mM NaCl significantly decreased concentrations of chlorophyll (Chl) a and b in leaves and root vigor of B. pilosa relative to Cd treatments alone, while there were no significant differences between Cd treatments with 2.5 mM NaCl and Cd treatments alone. But root vigor was inhibited significantly under Cd treatments with 5 mM and 10 mM NaCl. A significant increase of root vigor was observed in Cd treatments at pH = 4.0, as compared to pH = 5.5. The Cd treatments with high and medium concentrations of NaCl inhibited the uptake of Cd by B. pilosa roots and affected the Chl and root vigor further. But the Cd treatments at pH = 4.0 could promote the Cd uptake and root vigor. Our results revealed the uptake mechanisms of B. pilosa as a potential phytoremediator under different salinity and pH levels combined with Cd contamination and provided a new idea for screening ideal hyperaccumulator and constructing evaluation system.
Collapse
|
15
|
Yan X, An J, Zhang L, Zhang L, Zhou X, Wei S. Ecotoxicological effects and bioaccumulation in Eichhornia crassipes induced by long-term exposure to triclosan. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:90-98. [PMID: 36343464 DOI: 10.1016/j.plaphy.2022.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
In this study, the ecotoxicological effects and bioaccumulation of triclosan (TCS) in Eichhornia crassipes (E. crassipes) were investigated with 28 d exposure experiments. The results showed that chlorophyll content was increased after 7 d exposure to 0.05-0.1 mg L-1 TCS, while it was inhibited significantly by 0.5 mg L-1 TCS after 21 d exposure. The concentrations of soluble protein in the leaves increased during the initial stage (7 d and 14 d), whereas they decreased during 21 d and 28 d. The concentrations of soluble protein in the roots gradually reduced during the exposure time. The antioxidant enzyme activities in roots decreased continually with the exposure time. However, the antioxidant enzyme (SOD and CAT) activities in leaves decreased after exposure longer than 14 d. Moreover, differentially expressed genes (DEGs) were observed in the root of E. crassipes after a 28 d exposure to 0.5 mg L-1 TCS, with 11023 DEGs down-regulated and 3947 DEGs up-regulated. 5 SOD down-regulated genes and 3 CAT down-regulated genes were identified from transport and catabolism in cellular processes. After 28 d exposure, the TCS content in roots and leaves stressed by 0.5 mg L-1 TCS were up to 13.04 μg g-1 and 1.97 μg g-1, respectively. SOD in leaves was negatively correlated with TCS content in leaves, CAT in roots was negatively correlated with TCS content in roots. These results provide experimental data to assess the ecological risk of TCS with long exposure in aquatic systems.
Collapse
|
16
|
Chen L, Ye Z, Liu G, Lin Q, Chi Y, Wang J, Wei S, Wei C, Liu S, Zeng Y, Chen S, Wang Y. 85P Tislelizumab combined with apatinib and oxaliplatin plus S1 as neoadjuvant therapy for Borrmann IV large Borrmann III type and bulky N positive advanced gastric cancer: A single-arm multicenter trial (TAOS-3B-Trial). IMMUNO-ONCOLOGY AND TECHNOLOGY 2022. [DOI: 10.1016/j.iotech.2022.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Ge H, Cai J, Li D, Ding D, Jia L, Wei S, Liu Y. Half-Field Segmented VMAT Spares Organs at Risk from Postoperative Left Breast Cancer Radiotherapy. Int J Radiat Oncol Biol Phys 2022. [DOI: 10.1016/j.ijrobp.2022.07.746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
18
|
Li H, Liu Y, Wang X, Chen Z, Wang J, Sun T, Li Q, Cheng J, Zhang Q, Wang X, Wang J, Gu K, Wei S, Zhang S, Wang X, Sun P, Hao C, Han C, Li Y, Kang X. Efficacy and safety of the biosimilar QL1206 compared with denosumab in breast cancer with bone metastases: subgroup analyses of a phase III study. Eur J Cancer 2022. [DOI: 10.1016/s0959-8049(22)01531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Dai H, Wei S, Grzebelus D, Skuza L, Jia J, Hou N. Mechanism exploration of Solanum nigrum L. hyperaccumulating Cd compared to Zn from the perspective of metabolic pathways based on differentially expressed proteins using iTRAQ. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129717. [PMID: 35961076 DOI: 10.1016/j.jhazmat.2022.129717] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
It is challenging to determine the mechanism involved in only Cd hyperaccumulation by Solanum nigrum L. owing to the uniqueness of the process. Isobaric tags for relative and absolute quantitation (iTRAQ) were used to explore the mechanism by which S. nigrum hyperaccumulates Cd by comparing the differentially expressed proteins (DEPs) for Cd and Zn accumulation (non-Zn hyperaccumulator). Based on the comparison between the DEPs associated with Cd and Zn accumulation, the relative metabolic pathways reflected by 17 co-intersecting specific proteins associated with Cd and Zn accumulation included phagosome, aminoacyl-tRNA biosynthesis, and carbon metabolism. Apart from the 17 co-intersecting specific proteins, the conjoint metabolic pathways reported by 21 co-intersecting specific proteins associated with Cd accumulation and 30 co-intersecting specific proteins associated with Zn accumulation, the most differentially expressed metabolic pathways might cause Cd TF (Translocation factor)> 1 and Zn TF< 1, including protein export, ribosome, amino sugar, and nucleotide sugar metabolism. The determined DEPs were verified using qRT-PCR with the four key proteins M1CW30, A0A3Q7H652, A0A0V0IFB9, and A0A0V0IAC4. The plasma membrane H+-ATPase protein was identified using western blotting. Some physiological indices for protein-related differences indirectly confirmed the above results. These results are crucial to further explore the mechanisms involved in Cd hyperaccumulation.
Collapse
|
20
|
Dai H, Wei S, Twardowska I, Hou N, Zhang Q. Cosmopolitan cadmium hyperaccumulator Solanum nigrum: Exploring cadmium uptake, transport and physiological mechanisms of accumulation in different ecotypes as a way of enhancing its hyperaccumulative capacity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115878. [PMID: 36056491 DOI: 10.1016/j.jenvman.2022.115878] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
The non-essential element cadmium (Cd) is one of the most problematic priority soil pollutants due to multitude of pollution sources, mobility in the environment and high toxicity to all living organisms. This strongly limits also the number and occurrence of species - Cd hyperaccumulators to be used for soil phytoremediation. However, efficient Cd hyperaccumulator Solanum nigrum L. appeared to commonly occur worldwide as a representative of Solanum nigrum complex of a great taxonomic diversity. This led to the idea that the search among different ecotypes of Solanum nigrum L. may result in the identifying the most efficient Cd hyperaccumulator without applying to soil any additional measures such as chemical ligands. In this first pioneering comparative study, three randomly selected ecotypes of S. nigrum L. ssp. nigrum from Shenyang (SY) and Hanzhong (HZ) in China, and Kyoto (KY) in Japan were used in pot experiments at soil treatments from 0 to 50 mg Cd kg-1. The Cd accumulation capacity appeared to represent KY > HZ > SY range, KY ecotype accumulating up to 73%, and HZ ecotype up to 67% bigger total Cd load than SY ecotype. At Cd content in soil up to 10 mg kg-1, no significant effect on the all ecotype biomass, photosynthetic activities, contents of first line defense antioxidant enzymes (CAT, SOD, GPX), and scavenging antioxidants ASA, GSH, was observed. At Cd in soil>10 mg kg-1all these parameters showed decreasing, and cell damage indicator MDA increasing trend, however total accumulated Cd load further increased up to 30 mg kg Cd in soil in all ecotypes in the same KY > HZ > SY sequence. The study proved the great potential of enhancing Cd accumulation capacity of S. nigrum species by selecting the most efficient ecotypes among commonly occurring representatives of S. nigrum complex worldwide. Moreover, these first comparative experiments convinced that the cosmopolitan character and great variety of species/subspecies belonging to Solanum nigrum complex all over the world opens the new area for successful soil phytoremediation with the use of the most appropriate eco/genotypes of S. nigtum as a tool for the best Cd-contaminated soil management practice.
Collapse
|
21
|
Feng P, Lin L, Wang Y, Chen L, Min J, Xie Y, Liu M, Wei S, Lin S, Yu Q. Impacts of menopause hormone therapy on mood disorders among postmenopausal women. Climacteric 2022; 25:579-585. [PMID: 36179737 DOI: 10.1080/13697137.2022.2026915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE This study aimed to explore the modulatory effects of menopause hormone therapy (MHT) on mood disorders among postmenopausal women. METHODS A cross-sectional study was conducted to recruit postmenopausal women, including patients (arranged MHT for over 3 years as the medication group) and non-MHT controls. All participants were asked to respond to the Center for Epidemiological Studies Depression Scale (CES-D) and Generalized Anxiety Disorder Screener (GAD-7) questionnaires to assess their depression and anxiety status. RESULTS A total of 230 cases from the two groups were determined based on propensity score matching analysis by matching the menopausal age and menopausal durations. We found that MHT served as a favorable modulator in the depression status of postmenopausal women. Among the four factors of the CES-D questionnaire, our data indicated that the differences between the two groups fell primarily into two aspects: depressive emotion, and somatic symptoms or retarded activities. MHT was mainly involved in improving the depression of overweight women. However, no substantial effects of MHT were observed on the regulation of anxiety. CONCLUSION Postmenopausal women, especially the overweight population, who have experienced MHT exhibited an improved depressive status but not their anxiety condition.
Collapse
|
22
|
Qi Y, Xia X, Wei S, Shao L, Tian J. 1077P An updated network meta-analysis of EGFR-TKIs and combination therapy in the first-line treatment of the advanced EGFR mutation positive non-small cell lung cancer. Ann Oncol 2022. [DOI: 10.1016/j.annonc.2022.07.1203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Zhao J, Zheng X, Gao M, Chi J, Wei S, Yun X. Video-assisted superior mediastinal lymphadenectomy for papillary thyroid cancer: a case report. Ann R Coll Surg Engl 2022; 104:e227-e231. [PMID: 35713097 PMCID: PMC9433169 DOI: 10.1308/rcsann.2021.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2020] [Indexed: 09/03/2023] Open
Abstract
Superior mediastinal lymph node metastases in papillary thyroid cancer are uncommon. The clinical characteristics and surgical strategy of superior mediastinal lymph node metastases remain unclear. Superior mediastinal lymphadenectomy can be accomplished either by a transcervical or transsternal approach. Transsternal approach for superior mediastinal lymphadenectomy can cause great damage; transcervical approach sometimes results in inadequate exposure. Here we report our experience of a papillary thyroid cancer patient with superior mediastinal lymph node metastases who underwent video-assisted superior mediastinal lymphadenectomy. A 49-year-old woman diagnosed with papillary thyroid cancer in left thyroid underwent unilateral lobectomy and ipsilateral central and lateral node dissection in the local hospital 4 years ago. Currently lymph node metastases were found in mediastinum and the right neck, some of which were adjacent to the right innominate vein. Unilateral lobectomy, ipsilateral central and lateral node dissection, and video-assisted superior mediastinal lymphadenectomy were successfully performed by transcervical approach. Subsequently, the patient received thyroxine suppression therapy and adjuvant radioiodine treatment. Video-assisted superior mediastinal lymphadenectomy, providing adequate exposure for a complete superior mediastinal lymphadenectomy, is proved to be safe and feasible.
Collapse
|
24
|
Dou X, Dai H, Skuza L, Wei S. Cadmium removal potential of hyperaccumulator Solanum nigrum L. under two planting modes in three years continuous phytoremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119493. [PMID: 35597484 DOI: 10.1016/j.envpol.2022.119493] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/02/2022] [Accepted: 05/14/2022] [Indexed: 05/22/2023]
Abstract
Solanum nigrum L. is a Cd hyperaccumulator, but the potential for continuous remediation, or different planting methods have not been fully characterized. The potential for continuous phytoremediation of Cd-contaminated farmland soil (2.08 mg kg-1 Cd) by 2 planting methods (flowering harvest twice a year and maturity harvest once a year) was studied in a 3-year pot experiment. The total Cd accumulation (ug plant-1) of the 3-year flowering stage treatments was 26.3% higher than that of the maturity stage treatments, which was mainly due to that flowering harvest twice a year caused 65.5% increase of shoot biomass. Similarly, the Cd decreased concentration in soil and Cd removal rate in the flowering stage treatments were 29.2% and 27.9% higher than that in the maturity stage treatments, respectively. After 3 years of phytoremediation, the extractable Cd concentration in soil was reduced by 36.4% in the flowering stage treatments and by 27.6% in the maturity stage treatments, which also led to the same decreasing trend of Cd accumulation of S. nigrum. In conclusion, the study results have demonstrated that the planting mode of two harvests a year at the flowering stage seems to be a viable option to apply for continuous phytoremediation of Cd-contaminated farmland soil.
Collapse
|
25
|
Xu L, Dai H, Skuza L, Xu J, Shi J, Wei S. Co-high-efficiency washing agents for simultaneous removal of Cd, Pb and As from smelting soil with risk assessment. CHEMOSPHERE 2022; 300:134581. [PMID: 35436460 DOI: 10.1016/j.chemosphere.2022.134581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Soil washing is considered a highly efficient technology due to its higher removal rate of multiple heavy metals from contaminated soil. However, previous studies on Cd, Pb and As washing agents for soils with complex contaminations did not consider the differences in As and Cd/Pb properties, resulting in the lack of effective washing compounds and washing conditions for soils with complex contaminations. Moreover, most traditional washing agents can cause secondary pollution. In this study, HEDTA and lactic acid (LA) treatments resulted in a higher Cd and Pb removal, while 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) was more effective in As removal. Most importantly, a new washing strategy was proposed with a new combined high-efficiency washing agents consisting of HEDP + LA + FeCl3 with a ratio of 6:3:1. Considering washing efficiency and consumption under optimal washing conditions, i.e. the soil/liquid (S/L) ratio of 1:20 and washing time of 48 h, the rates of Cd, Pb and As removal were 79.93%, 69.84% and 61.55%, respectively. In addition, washing process could influence the speciation of heavy metals, especially oxidizable and residual Cd and Pb fractions, as well as reducible As fraction. The washing process using the new washing agent can significantly reduce the pollution level and health risk of Cd, Pb and As contamination. The results of this study can provide an efficient washing agent for the remediation of heavy metal-contaminated soils at smelting sites, which will help protect human health.
Collapse
|