1
|
Murillo Cisneros DA, Bishop AM, Zenteno-Savín T, Rea L, Fadely B, Rosado-Berrios CA, Taylor RJ, O'Hara TM. Regional variations and drivers of essential and non-essential elements in Steller sea lion pups from the Aleutian Islands, Alaska. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176103. [PMID: 39245392 DOI: 10.1016/j.scitotenv.2024.176103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Exposure and resulting tissue concentrations of various elements from natural and anthropogenic sources are influenced by multiple factors, such as geographic location, age, diet, and metabolic rate, that can influence wildlife health. Essential and non-essential elements were assessed in lanugo and whole blood collected in 2019 from 102 Steller sea lion (Eumetopias jubatus) pups from two rookeries from the western and central Aleutian Islands: Agattu (WAI, n = 54) and Ulak Islands (CAI, n = 48). Rookery, sex, dorsal standard length, and trophic ecology (ẟ15N, ẟ13C values) effects on element concentration were evaluated. Significant differences in element concentrations of lanugo were exhibited across rookeries (p < 0.05), except for zinc (Zn). For example, higher mercury (Hg) and selenium (Se) concentrations were observed in WAI than CAI, while other elements were lower in WAI. Whole blood showed higher sulfur (S) and Se concentrations in CAI compared to WAI, while WAI had elevated strontium (Sr) and Hg concentrations relative to CAI. Trophic ecology significantly influenced most element concentrations, possibly due to regional variations in adult female feeding and food web dynamics. Interactions between elements were found in lanugo across both rookeries, with varying strengths. Whole blood displayed less pronounced yet consistent associations, with variable intensities. Essential elements sodium (Na), potassium (K), and calcium (Ca) formed a distinct group whose interaction is crucial for nervous system function and muscle contraction. Another group comprised zinc (Zn), iron (Fe), manganese (Mn), magnesium (Mg), phosphorous (P), S, and Se, which are known for indirectly interacting with enzyme function and metabolic pathways. Hg and Se formed a distinct group probably due to their known chemical interactions and physiological protective interactions.
Collapse
|
2
|
O'Hara TM, Ylitalo GM, Crawford SG, Taras BD, Fadely BS, Rehberg MJ, Rea LD. Spatial and cumulative organochlorine and mercury exposure assessments in Steller Sea lions of Alaska: Emphasizing pups. MARINE POLLUTION BULLETIN 2024; 205:116592. [PMID: 38917493 DOI: 10.1016/j.marpolbul.2024.116592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Steller sea lions (SSL) are sentinels for monitoring environmental contaminants in remote areas of the Aleutian Islands, Alaska. Therefore, concentrations of several organochlorines (OCs) were measured in blood from 123 SSL pups sampled from 3 regions; the western Aleutian Islands (WAI), central Aleutian Islands (CAI), and the central Gulf of Alaska. Blood, blubber, and milk from 12 adult female SSL from WAI, CAI and southeast Alaska also were analyzed. Findings included the following. SSL pups had higher concentrations of some OCs and mercury (Hg) on rookeries in the WAI than those more easterly. Pups had significantly higher blood concentrations of many OC classes than adult females sampled within the same region; some pups had PCB concentrations exceeding thresholds of concern (∑PCBs >8600 ng/g lw). ∑PCB concentration in pup whole blood was positively correlated with the trophic marker, δ15N within the regions sampled, along with two PCB congeners (PCB138 and PCB153). This suggests that the dams of pups with higher ∑PCBs, PCB138, and PCB153 concentrations were feeding on more predatory prey. Adult female blubber ∑DDT and hexachlorocyclohexane concentrations were also positively correlated with δ15N values. Several pups (mostly from WAI) had blood Hg concentrations and/or blood PCB concentrations (surrogate for overall OC exposures) of concern. The finding that WAI SSL pups have been exposed to multiple contaminants calls for future investigation of their cumulative exposure to a mixture of contaminants especially their transplacental and then transmammary exposure routes.
Collapse
|
3
|
Trifari MP, Wooller MJ, Rea L, O'Hara TM, Lescord GL, Parnell AC, Barst BD. Compound-specific stable isotopes of amino acids reveal influences of trophic level and primary production sources on mercury concentrations in fishes from the Aleutian Islands, Alaska. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168242. [PMID: 37918743 DOI: 10.1016/j.scitotenv.2023.168242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Total mercury concentrations ([THg]) exceed thresholds of concern in some Steller sea lion (Eumetopias jubatus) tissues from certain portions of the Aleutian Islands, Alaska. We applied compound-specific stable isotope analyses of both carbon and nitrogen in amino acids from fish muscle tissue to quantify the proportional contributions of primary production sources and trophic positions of eight prey species (n = 474 total) that are part of Steller sea lion diets. Previous THg analyses of fish muscle, coupled with monomethylmercury analyses of a subset of samples, substantiated previous findings that fishes from the west of Amchitka Pass, a discrete oceanographic boundary of the Aleutian Archipelago, have higher muscle Hg concentrations relative to fishes from the east. The δ13C values of essential amino acids (EAAs) in fish muscle demonstrated that although most fishes obtained their EAAs primarily from algae, some species varied in the extent to which they relied on this EAA source. The δ15N values of phenylalanine (0.9 to 7.8 ‰), an indicator of the isotopic baseline of a food web, varied widely within and among fish species. Trophic position estimates, accounting for this baseline variation, were higher from the west relative to the east of the pass for some fish species. Trophic magnification slopes using baseline-corrected trophic position estimates indicated similar rates of Hg biomagnification to the east and west of Amchitka Pass. Multiple linear regression models revealed that trophic position was the most important driver of fish muscle [THg] with less variation explained by other parameters. Thus, higher trophic positions but not the rate of Hg biomagnification to the west of Amchitka Pass may play a role in the regional differences in both fish and Steller sea lion [THg]. Although, differences in Hg contamination and uptake at the base of the east and west food webs could not be excluded.
Collapse
|
4
|
Symon TE, Murillo-Cisneros DA, Hernández-Camacho CJ, O'Hara TM, Taylor RJ, Rosado-Berrios CA, Vázquez-Medina JP, Zenteno-Savín T. Mercury and selenium concentrations in lanugo of free-ranging California sea lions in the southern Gulf of California, Mexico. MARINE POLLUTION BULLETIN 2023; 197:115712. [PMID: 37922756 DOI: 10.1016/j.marpolbul.2023.115712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Total mercury ([THg]) and selenium ([TSe]) concentrations were determined in California sea lion (Zalophus californianus) lanugo from the Gulf of California in 2021 and 2022. Relationships with sex, morphometrics, and year were evaluated. Following toxicological thresholds of concern for piscivorous mammals, most pups had a [THg] < 10 ppm, one pup (2021) had a [THg] > 20 ppm, no pups had a [THg] > 30 ppm. Females had significantly higher [TSe] than males; sex did not influence [THg]. [THg] and [TSe] in 2022 were significantly higher in the general population and male cohorts compared to 2021. Significant negative correlations were observed between [THg], [TSe], and morphometrics (2021). These results indicate that, compared to other pinniped species, regional California sea lions may have a decreased likelihood of experiencing Hg-related adverse health effects. Year-related changes in element concentrations suggest continued monitoring of this population to assess pinniped, environmental, and potentially, human health.
Collapse
|
5
|
Rea LD, Castellini JM, Avery JP, Fadely BS, Burkanov VN, Rehberg MJ, O'Hara TM. Corrigendum to "Regional variations and drivers of mercury and selenium concentrations in Steller sea lions" [Sci. Total Environ. 744 (2020) 140787]. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154887. [PMID: 35364161 DOI: 10.1016/j.scitotenv.2022.154887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
|
6
|
Baró-Camarasa I, Marmolejo-Rodríguez AJ, O'Hara TM, Castellini JM, Murillo-Cisneros DA, Martínez-Rincón RO, Elorriaga-Verplancken FR, Galván-Magaña F. Mercury maternal transfer in two placental sharks and a yolk-sac ray from Baja California Sur, Mexico. MARINE POLLUTION BULLETIN 2022; 179:113672. [PMID: 35512518 DOI: 10.1016/j.marpolbul.2022.113672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Total mercury (THg) concentrations were measured in muscle and liver of two placental viviparous sharks, the Pacific sharpnose shark (Rhizoprionodon longurio) and the brown smooth-hound (Mustelus henlei); as well as in the muscle, liver, and yolk of the yolk-sac viviparous speckled guitarfish (Pseudobatos glaucostigmus) in Baja California Sur. The aim was to determine which factors could be involved in maternal transfer and resultant maternal and embryonic THg concentration. Higher THg concentrations were found in pregnant females compared to embryos paired tissues. THg concentrations of embryo tissues decreased with total length (TL), except for the muscle of the Pacific sharpnose shark. THg concentrations of embryo muscle was positively related to THg concentration in the muscle of pregnant females. Embryos TL, muscle THg concentration of pregnant females, percentage of THg concentration in embryos, along with the reproductive strategy are relevant factors required to improve our understanding of THg concentration in embryo tissues.
Collapse
|
7
|
Murillo-Cisneros DA, McHuron EA, Zenteno-Savín T, Castellini JM, Field CL, O'Hara TM. Fetal mercury concentrations in central California Pacific harbor seals: Associated drivers and outcomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153246. [PMID: 35065116 DOI: 10.1016/j.scitotenv.2022.153246] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is a well-known toxicant in wildlife and humans. High total Hg concentrations ([THg]) have been reported in central California harbor seals Phoca vitulina richardii. We evaluated the effects of presence/absence of early natal coat (lanugo), year (2012 to 2017), sex, stranding location, and trophic ecology (ẟ13C and ẟ15N values) on hair [THg] along coastal central California. Also examined were [THg] effects on growth rates of pups in rehabilitation and probability of release (e.g., successful rehabilitation). The [THg] ranged from 0.46-81.98 mg kg-1 dw, and ẟ15N and ẟ13C ranged from 13.6-21.5‰, and -17.2 to -13.0‰, respectively. Stranding location, year, and presence of lanugo coat were important factors explaining variation in [THg]. Seals from Sonoma and San Mateo County had higher [THg] than other locations. Seals with full or partial lanugo coat had lower [THg]. Seals from 2016 and 2017 had higher [THg] than those from 2015. Hair [THg] exceeded lower and upper toxicological thresholds (>20 mg kg-1 by year (5.88% to 23.53%); >30 mg kg-1 (0% to 12.31%)) with a pronounced increase from 2015 to 2016. Pups in 2017 had significantly higher odds ratio of [THg] above 20 mg kg-1 than pups of 2015, and pups in 2016 had significantly higher odds ratio than those from 2013 and 2015 (similar when using 30 mg kg-1). Pups in Sonoma County had the highest odds ratio for [THg] in lanugo above 20 mg kg-1. ẟ15N values were higher in 2015-2017, particularly relative to 2014, probably associated with the El Niño event. The [THg] was not a good predictor for probability of release and mass-specific growth rates in captivity. Further investigation of temporal trends of [THg] in harbor seals is warranted given the relatively high percentage of samples exceeding threshold values, particularly in the most recent sampling years.
Collapse
|
8
|
Kennedy SN, Keogh M, Levin M, Castellini JM, Lian M, Fadely BS, Rea LD, O'Hara TM. Regional variations and relationships among cytokine profiles, white blood cell counts, and blood mercury concentrations in Steller sea lion (Eumetopias jubatus) pups. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:144894. [PMID: 33631572 DOI: 10.1016/j.scitotenv.2020.144894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
The Steller sea lion (SSL) population west of 144°W longitude experienced a significant population decline. While there appears to be a stable or increasing population trend in rookeries in the Gulf of Alaska (GOA) and Southeast Alaska (SEA), some rookeries within the Aleutian Islands (AI) have failed to recover. Previous studies found regional differences in whole blood total mercury concentrations ([THg]) showing more than 20% of AI pups had [THg] above critical thresholds for increased risk of immunological effects and other adverse outcomes. Measurements of immune cell-signaling proteins can be used to evaluate the immune status of marine mammals in relation to [THg]. We compared serum cytokine and chemokine concentrations in pups among regions (AI, eastern GOA, SEA), and examined associations among cytokines, chemokines, white blood cell (WBC) counts, and [THg]. Considering liver is an important target organ for mercury and immune protein synthesis we additionally examined the relationship of [THg] with liver-related enzymes serum aspartate (AST) and alanine aminotransferase (ALT). We observed regional differences in cytokine and chemokine measurements and immune protein associations. There was a positive association between total WBC counts and [THg] in AI pups, whereas a negative association between lymphocytes and [THg] in SEA pups. These findings may indicate regional variation in proliferation and differentiation of hematopoietic cells, differences in immune system development, and/or a difference in antigenic stimuli. No associations between [THg] and cytokines, chemokines, AST or ALT were found. Observed regional differences in cytokine and chemokine milieu during gestational and early development in SSL pups could lead to an imbalance in cell differentiation that could impact immunological resiliency in juvenile and adult life stages. We report concentration ranges of a suite of cytokines and chemokines which may prove to be a useful metric for ecotoxicology and risk assessment studies in SSLs and other wildlife.
Collapse
|
9
|
Lian M, Field CL, van Wijngaarden E, Rios C, Castellini JM, Greig DJ, Rea LD, Coleman DJ, Thomson CE, Gulland FMD, O'Hara TM. Assessment of clinical outcomes associated with mercury concentrations in harbor seal pups (Phoca vitulina richardii) in central California. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143686. [PMID: 33279198 DOI: 10.1016/j.scitotenv.2020.143686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Monomethyl mercury (MeHg+) from the diet can cause mild to severe neurotoxicosis in fish-eating mammals. Chronic and low-level in utero exposure also can be neurotoxic, as documented in laboratory animal studies and epidemiologic investigations. In free-ranging animals, it is challenging to study low-level exposure related neurotoxicosis, and few studies have investigated the relationship between mercury (Hg) and adverse outcomes in wild populations. Relative to Hg concentrations on admission we evaluated different types of behaviors for 267 Pacific harbor seal (HS; Phoca vitulina richardii) pups at The Marine Mammal Center from 2015 to 2019 during rehabilitation after stranding and maternal separation. Admitted HS pups underwent a clinical exam; including sex and weight determination, and hair (partly lanugo grown in utero) and blood samples were collected for total Hg concentration ([THg]) determination. All pups were monitored weekly (behavior assessments included response to tactile stimulation, movement, swimming, interactions with other seals, hand feeding, and feeding independently), and days in rehabilitation and survival were recorded. There was a significant negative correlation between [THg] and responses to tactile stimulation and movements, measured in both hair and whole blood (p < 0.05). This relationship was found both during the intensive care unit (ICU) stage, and during the pool stage of rehabilitation. Additionally, there was a significant association between greater [THg] and number of days spent in rehabilitation, although there was no relationship between [THg] and survival. There was a significant sex difference, with greater [THg] in female pups, which contrasts with previously published findings in juvenile and adult harbor seals. Our findings support small, but significant associations between gestational THg exposure and clinical effects for tactile sensory response and movement, and longer rehabilitation durations for HS pups, although there was considerable variability among animals.
Collapse
|
10
|
Baró-Camarasa I, Marmolejo-Rodríguez AJ, O'Hara TM, Elorriaga-Verplancken FR, Trejo-Ramírez A, Martínez-Rincón RO, Galván-Magaña F. Isotopic (δ 15 N) relationship of pregnant females and their embryos: Comparing placental and yolk-sac viviparous elasmobranchs. JOURNAL OF FISH BIOLOGY 2021; 98:784-790. [PMID: 33230841 DOI: 10.1111/jfb.14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/11/2020] [Accepted: 11/21/2020] [Indexed: 06/11/2023]
Abstract
Nitrogen stable isotopes ratios (δ15 N) were determined for selected tissues (muscle, liver, blood and yolk) of pregnant females and their embryos of a placental viviparous species, the Pacific sharpnose shark (Rhizoprionodon longurio), and a yolk-sac viviparous species, the speckled guitarfish (Pseudobatos glaucostigmus). The R. longurio embryo tissues were 15 N enriched compared to the same tissues in the pregnant female, using the difference in δ15 N (Δδ15 N) between embryo and adult. Mean Δδ15 N was 2.17‰ in muscle, 4.39‰ in liver and 0.80‰ in blood. For P. glaucostigmus, embryo liver tissue was significantly 15 N enriched in comparison with liver of the pregnant female (Δδ15 N mean = 1.22‰), whereas embryo muscle was 15 N depleted relative to the muscle of the pregnant female (Δδ15 N mean = -1.22‰). Both species presented a significant positive linear relationship between Δδ15 N and embryo total length (LT ). The results indicated that embryos have different Δδ15 N depending on their reproductive strategy, tissue type analysed and embryo LT .
Collapse
|
11
|
Murillo-Cisneros DA, Zenteno-Savín T, Harley J, Cyr A, Hernández-Almaraz P, Gaxiola-Robles R, Galván-Magaña F, O'Hara TM. Mercury concentrations in Baja California Sur fish: Dietary exposure assessment. CHEMOSPHERE 2021; 267:129233. [PMID: 33359982 PMCID: PMC7851631 DOI: 10.1016/j.chemosphere.2020.129233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 05/06/2023]
Abstract
Total mercury concentrations ([THg]) in muscle were determined in commercial finfish and elasmobranchs from Baja California Sur (BCS), Mexico to evaluate dietary Hg exposure for BCS communities, including the relationship of trophic ecology, length and mass with [THg] that might drive future consumption advice (e.g., recommend limited consumption of large fish for some species). The [THg] ranged from 0.06 to 528.02 μg kg-1 ww in finfish and 17.68-848.26 μg kg-1 ww in elasmobranchs. Relative to the consumption threshold set for predatory fish in Mexico, all species had a concentration below 1000 μg kg-1 ww. As expected, 16 (4.02%) and 75 (18.84%) individual fish were above advisory thresholds of 500 and 200 μg kg-1 ww, respectively. The hazard quotients (HQs) in most species were significantly <1.0, only banded guitarfish showed a significant median HQ > 1.0. Thus, the relative level of risk of high Hg exposure is low for most species.
Collapse
|
12
|
Rea LD, Castellini JM, Avery JP, Fadely BS, Burkanov VN, Rehberg MJ, O'Hara TM. Regional variations and drivers of mercury and selenium concentrations in Steller sea lions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140787. [PMID: 32717470 DOI: 10.1016/j.scitotenv.2020.140787] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) can be neurotoxic to mammals and impact reproduction, whereas selenium (Se) is an important antioxidant known to ameliorate some adverse effects of Hg. Total Hg concentrations ([THg]) were measured in lanugo (pelage grown in utero) of 812 Steller sea lion (Eumetopias jubatus) pups across Alaska and Russia to assess fetal exposure during late gestation. The molar ratio of total Se to THg (TSe:THg) was determined in whole blood collected from 291 pups. Stable isotope ratios of carbon and nitrogen were measured in sections of vibrissae (whiskers, n = 498) and in lanugo (n = 480) of pups grown during late gestation to track diet variations among adult females that can drive Hg and Se exposure during this critical fetal development period. Lanugo [THg] ranged from 1.4 to 73.7 μg/g dry weight with the lowest median [THg] in Southeast Alaska. Pups from the Western Aleutian Islands had higher median lanugo [THg] than pups from other metapopulations in Alaska. Over 25% of pups in the Western Aleutian Islands had [THg] above published risk thresholds (20 μg/g) for other mammals. Whole blood molar TSe:THg was significantly lower in the Western Aleutian Islands and in some parts of the Central Aleutian Islands with higher molar ratios found in the Eastern Aleutian Islands and Central Gulf of Alaska. This suggests a limitation on potential protective functions of Se in the western regions with the highest relative [THg]. The Central Aleutian Island pups with [THg] over 20 μg/g had higher δ15N ratios than pups with lower [THg] suggesting dams consuming higher trophic level prey is a key driver for Hg exposure. However, regional differences likely reflect variability in diet of the dam during gestation and in Hg food web dynamics between oceanic regimes east and west of key passes in the Aleutian Islands.
Collapse
|
13
|
Harley JR, Gill VA, Lee S, Kannan K, Santana V, Burek-Huntington K, O'Hara TM. Concentrations of organohalogens (PCBs, DDTs, PBDEs) in hunted and stranded Northern sea otters (Enhydra lutris kenyoni) in Alaska from 1992 to 2010: Links to pathology and feeding ecology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:789-798. [PMID: 31326802 PMCID: PMC6711818 DOI: 10.1016/j.scitotenv.2019.07.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Many organohalogen compounds (OHCs) are persistent organic pollutants (POPs) found in appreciable concentrations in marine predators. While production of some POPs has declined or ceased in recent decades, their capacity for global transport and bioaccumulation results in observations of unchanging or increasing concentrations in marine systems. Sea otters (Enhydra lutris) have been advocated as an environmental sentinel for contaminants due to their longevity, site fidelity and prey species that often overlap with human consumption. Using archived (1992-2010) samples of livers from Northern sea otters (n = 50) from Alaska we examine concentrations of chlordanes (CHLs), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDTs), and polybrominated diphenyl ethers (PBDEs) and associated metabolites. We found some evidence for declining ΣPCBs over the two decades, however for most animals concentrations were low compared to toxicological thresholds. Six animals had relatively high concentrations of ΣPCBs (mean = 262,000 ng/g lipid weight), ΣDDTs (mean = 8,800 ng/g lw), and ΣPBDEs (mean = 4,600 ng/g lw), with four of these six animals experiencing hepatic parasitism or hepatitis. In order to assess whether differences in POP concentrations are associated with feeding ecology, we examined stable isotopes of C and N in archived muscle and whisker samples. In general, there were no significant relationships between ΣPOP concentrations and stable isotope ratios. There were small differences in stable isotope profiles in animals with high POP concentrations, although it was unclear if these differences were due to feeding ecology or disease processes. This study highlights the importance of considering feeding ecology and necropsy (health and disease status) data while conducting contaminant surveys, and confirms some previous reports of trends in OHCs in Alaska marine mammals.
Collapse
|
14
|
Harley J, Gaxiola-Robles R, Zenteno-Savín T, Méndez-Rodríguez LC, Bencomo-Alvarez AE, Thiede A, O'Hara TM. Using carbon and nitrogen stable isotope modelling to assess dietary mercury exposure for pregnant women in Baja California Sur, Mexico. CHEMOSPHERE 2019; 234:702-714. [PMID: 31234087 DOI: 10.1016/j.chemosphere.2019.06.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/02/2019] [Accepted: 06/10/2019] [Indexed: 06/04/2023]
Abstract
INTRODUCTION Previous studies of mercury (Hg) in pregnant women in the area of La Paz, Baja California Sur (BCS), Mexico found a proportion of individuals had concentrations of total Hg ([THg]) above some thresholds of concern set by health agencies. The [THg] were associated with fish and seafood consumption as well as other factors; although it was unclear which marine diet items could potentially be contributing to the concentrations observed. METHOD We examined [THg] and monomethylmercury concentration ([MeHg+]) in the archived hair of 70 pregnant women from BCS as well as in diet items including fish, shellfish, and staple items (rice, beans, corn, and flour). We measured stable isotopes of carbon and nitrogen and employed a Bayesian stable isotope mixing model to investigate the proportion of fish and seafood in the isotopic profiles of archived hair samples. RESULTS Concentrations of Hg species were low in staple foods and ranged from below detection limit to 5.71 parts per billion (ppb) wet weight. In hair, geometric mean [THg] was 658 ppb and [MeHg+] was 395 ppb, which were lower than previous reports. Percent MeHg+ was positively correlated with higher δ15N values. CONCLUSIONS The largest carbon contributors to the diet of the study participants were corn and rice, and our analysis of fish contribution to diet varyingly agreed with the self-reported fish consumption. This report highlights the ability to discriminate potential sources of Hg from a diverse diet and the limitations of dietary recall studies.
Collapse
|
15
|
Murillo-Cisneros DA, O'Hara TM, Elorriaga-Verplancken FR, Sánchez-González A, Marín-Enríquez E, Marmolejo-Rodríguez AJ, Galván-Magaña F. Trophic Structure and Biomagnification of Total Mercury in Ray Species Within a Benthic Food Web. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:321-329. [PMID: 31028414 DOI: 10.1007/s00244-019-00632-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Stable isotopes of C (δ13C) and N (δ15N) were used to explore the trophic structure and evaluate mercury (Hg) biomagnification in the food web of muscle of three commercially important ray species from the Pacific coast of Baja California Sur (PCBCS): the shovelnose guitarfish (Pseudobatos productus), banded guitarfish (Zapteryx exasperata), and bat ray (Myliobatis californica). The food web of these ray species predominately consisted of zooplankton, three species of fish, and five species of invertebrates. Mean δ15N values in all species ranged from 10.54 ± 0.18‰ in zooplankton to 17.84 ± 0.81‰ in the shovelnose guitarfish. Mean δ13C values ranged from - 22.05 ± 0.75‰ in the red crab to - 15.93 ± 0.78‰ in the bat ray. Mean total Hg concentration ([THg]) in all species ranged from 0.0009 ± 0.0002 mg kg-1 ww in zooplankton to 0.24 ± 0.19 mg kg-1 ww in the banded guitarfish. The food web magnification factor was 6.38 and significantly greater than 1.0. The present study describes [THg] biomagnification in the benthic food web of three ray species of the PCBCS. This provides an important baseline knowledge of the biomagnification dynamics and pathways of Hg in this environment for these multiple interacting species.
Collapse
|
16
|
McHuron EA, Castellini JM, Rios CA, Berner J, Gulland FMD, Greig DJ, O'Hara TM. HAIR, WHOLE BLOOD, AND BLOOD-SOAKED CELLULOSE PAPER-BASED RISK ASSESSMENT OF MERCURY CONCENTRATIONS IN STRANDED CALIFORNIA PINNIPEDS. J Wildl Dis 2019; 55:823-833. [PMID: 31081740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mercury (Hg) poses a health risk to wildlife populations and has been documented at relatively high concentrations in many marine mammals, including wild-caught pinnipeds along the central California, US coast. We measured total Hg concentrations ([THg]) in hair and blood of live-stranded harbor seals (HS; Phoca vitulina), California sea lions (CSL; Zalophus californianus), and northern elephant seals (NES; Mirounga angustirostris) in California to quantify species, temporal, and spatial variability in [THg] and assess the relationships between [THg] measured by different methods (blood vs. filter paper) and in different matrices (blood vs. hair). We compared [THg] with toxicologic thresholds of concern to aid in identification of at-risk individuals or groups and better understand how the use of different methods and matrices affects assumed toxicologic risk. There was a wide range of [THg] in blood (<0.01-1.13 μg/g) and hair (0.45-81.98 μg/g), and NES had higher [THg] compared with HS and CSL. All three species had individuals with [THg] that exceeded the lower threshold for one or both matrices, but only HS pups had [THg] exceeding upper thresholds. Spatial differences in [THg] were detected, with higher concentrations in HS pups from areas surrounding San Francisco Bay, but differences were dependent on sampling year and matrix. The relationship between [THg] in blood and filter paper (r2=0.98) was strong, and differences had little influence on comparisons with toxicologic thresholds. Blood and hair [THg] were generally in agreement (r2=0.72), but large mismatches for a few seals underscore the importance of combined sampling in adverse effects studies where accurate assessment of Hg exposure is crucial. The wide range of [THg] in stranded HS pups that exceeded published thresholds of concern makes them a promising candidate for adverse effects studies, particularly because different matrices represent Hg exposure across key developmental stages.
Collapse
|
17
|
Cyr A, López JA, Rea L, Wooller MJ, Loomis T, Mcdermott S, O'Hara TM. Mercury concentrations in marine species from the Aleutian Islands: Spatial and biological determinants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:761-770. [PMID: 30763856 DOI: 10.1016/j.scitotenv.2019.01.387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/21/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Several species found in the Bering Sea show significant spatial variation in total mercury concentrations ([THg]) longitudinally along the Aleutian Island chain. We assessed [THg] in other members of the Bering Sea food web to better understand the factors shaping regional differences. [THg] and stable carbon and nitrogen isotope ratios (δ15N and δ13C values) were measured in muscle tissue from 1052 fishes and cephalopods from parts of the Bering Sea and North Pacific Ocean adjacent to the Aleutian Islands. The spatial distribution of the samples enabled regional comparisons for 8 species of fish and one species of cephalopod. Four species showed higher mean length-standardized [THg] in the western Aleutian Islands management area. [THg] in yellow Irish lord were very different relative to those observed in other species and when included in multi-species analyses drove the overall regional trends in mean [THg]. Multi-species analyses excluding measurements for yellow Irish lord showed mean length-standardized [THg] was greater in the western Aleutian Islands than in the central Aleutian Islands management area. Linear regression of [THg] and δ15N values showed a significant and positive relationship across all species, varying between regions and across species. Isotopic space of all species was significantly different between the western Aleutian Islands and central Aleutian Islands, driven largely by δ13C values. Stable isotope values observed follow the same regional trend of lower trophic taxa reported in the literature, with significantly lower δ13C values in the western Aleutian Islands. We conclude that there are regional differences in carbon and nitrogen stable isotope ecology, as well as species-specific feeding ecology that influence [THg] dynamics in part of the marine food web along the Aleutian Island chain. These regional differences are likely contributors to the observed regional variations of [THg] in some high-level predators found in these regions.
Collapse
|
18
|
Kennedy SN, Wilhite B, Margaret Castellini J, Rea LD, Kuhn TB, Ferrante A, O'Hara TM. Enhanced quantification of serum immunoglobulin G from a non-model wildlife species, the Steller sea lion (Eumetopias jubatus), using a protein A ELISA. J Immunol Methods 2018; 462:42-47. [PMID: 30099015 DOI: 10.1016/j.jim.2018.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/04/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
Immunoglobulins (Ig) are proteins that preserve immune homeostasis and are quantified to infer changes to the acquired humoral immune response in mammals. Measuring Ig in non-model wildlife for immune surveillance often requires ingenuity, and rigorous standardization of methodologies to provide reliable results especially when lacking species-specific reagents. We modified and optimized existing ELISA methodology utilizing the binding properties of Staphylococcus-derived Protein A (PrtA) to immunoglobulin G (IgG). We enhanced the assay for quantifying IgG in Steller sea lion (SSL) serum using critical quality control measures including dilution linearity, spike and percent recoveries, and internal controls. Of the modifications made, heat treatment of SSL serum enhanced accuracy and precision of IgG measurements by improving linearity and percent recovery in parallel dilutions and serum spikes. Purified canine IgG standard was not affected by heat inactivation. These results support that confounding serum proteins interfere with binding of PrtA with IgG demonstrating the need for heat treatment of serum to optimize IgG quantification using the PrtA-ELISA. Further, essential validation measures ensure proper assay performance. Consequently, the improved PrtA-ELISA provides species-independent IgG detection with validation criteria to enhance accuracy and precision for addressing future immunological questions in non-model wildlife in clinical, ecological, and conservation contexts.
Collapse
|
19
|
Murillo-Cisneros DA, O'Hara TM, Castellini JM, Sánchez-González A, Elorriaga-Verplancken FR, Marmolejo-Rodríguez AJ, Marín-Enríquez E, Galván-Magaña F. Mercury concentrations in three ray species from the Pacific coast of Baja California Sur, Mexico: Variations by tissue type, sex and length. MARINE POLLUTION BULLETIN 2018; 126:77-85. [PMID: 29421137 DOI: 10.1016/j.marpolbul.2017.10.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 10/05/2017] [Accepted: 10/21/2017] [Indexed: 06/08/2023]
Abstract
Total mercury concentrations ([THg]) were determined in muscle and liver of the bat ray (Myliobatis californica), shovelnose guitarfish (Pseudobatos productus) and banded guitarfish (Zapteryx exasperata). Generalized linear models (GLM) were used to determine the effects of size and sex in [THg] and showed that both are determinants of [THg] in these species. The [THg] in both tissues significantly increased with length especially in sexually mature organisms with a steeper slope for mature male than mature female. This may relate to elasmobranchs sexual dimorphism driven variation in growth rates. Median muscle [THg] was significantly greater than liver in each ray species but there were some individuals with higher liver [THg] than muscle. There were individuals with muscle [THg] higher than the advisory thresholds of 0.2 and 0.5mgkg-1ww (2.4 and 11% of the bat ray; 2.1 and 10% of the shovelnose guitarfish; 12.6 and 45% of the banded guitarfish, respectively).
Collapse
|
20
|
Hayden M, Bhawal R, Escobedo J, Harmon C, O'Hara TM, Klein D, San-Francisco S, Zabet-Moghaddam M, Godard-Codding CAJ. Nanospray liquid chromatography/tandem mass spectrometry analysis of steroids from gray whale blubber. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1088-1094. [PMID: 28423207 DOI: 10.1002/rcm.7884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Analysis of steroids from precious blubber biopsies obtained from marine mammals, especially endangered species, can provide valuable information on their endocrine status. Challenges with currently used ELISA methodology include lack of absolute quantitation and incompatibility with multiple steroids analysis due to limited biopsy mass. Development of a sensitive, accurate analytical method for this purpose is critical. METHODS A nanospray liquid chromatography/tandem mass spectrometry (nanoLC/MS/MS) method was validated for sensitive, specific and quantitative analysis of three steroid hormones, without derivatization, extracted from 50 mg blubber samples. Data was acquired with an LTQ XL ion trap mass spectrometer in positive ion mode, using single reaction monitoring. All three steroids were analyzed in a single run. Cholic acid was used as a surrogate internal standard for quantitation due to its steroidal structure and lack of measurable endogenous levels in blubber. RESULTS The lowest limits of quantitation for progesterone, testosterone, and hydrocortisone were significantly improved compared to previous studies using conventional LC/MS/MS. The lowest limit of detection was 7 fg/μL using a 1 μL injection volume. Calibration curves for steroid quantification showed good linearity (r2 >0.99) between 14 and 3620 fg/μL, and accuracy was <20% for interday and <10% for intraday. After validation, the method was successfully applied to quantification of steroids in gray whale blubber samples. CONCLUSIONS The nanoLC/MS/MS method is more sensitive than traditional LC/MS/MS for steroid analysis. It is also compatible with other important biopsy analyses due to its small blubber mass requirement. This will benefit the reproductive and stress assessments for all marine mammals, particularly endangered populations. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
|
21
|
O'Hara TM, Hanns C, Bratton G, Taylor R, Woshner VM. Essential and non-essential elements in eight tissue types from subsistencehunted bowhead whale: Nutritional and toxicological assessment. Int J Circumpolar Health 2016; 65:228-42. [PMID: 16871829 DOI: 10.3402/ijch.v65i3.18108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To assess essential/non-essential elements in bowhead whale. STUDY DESIGN Analyzes of tissues for key elements and comparing them to published food guidelines. METHODS Using national and international guidelines calculate percent (%) "Recommended Daily Allowance" of essential elements in 100 g portion of bowhead tissues. For non-essential elements, determine maximal tissue consumption based on average element concentrations and provisional tolerable weekly intake; and minimal risk level. RESULTS Liver and kidney are rich in essential/non-essential elements and have the greatest concentration of cadmium (Cd) among tissues studied, while mercury (Hg), lead (Pb) and arsenic (As) are relatively low. Kidney of bowhead whale is consumed in very limited amounts (limited tissue mass compared to muscle and maktak); liver is consumed rarely. Other tissues, except blubber, are excellent sources of many essential elements, without the abundance of liver and kidney Cd. CONCLUSIONS Renal Cd concentrations are most restrictive for consumption on a tissue mass basis. Better understanding of Cd bioavailability, food processing, and actual consumption rates and patterns, are critical to providing improved guidance. Compared to store-bought meat, bowhead whale had comparable concentrations of elements in the tissues studied, with a few noted differences. The occasional blubber substitute, Crisco, was nearly devoid of trace element content.
Collapse
|
22
|
O'Hara TM, Hoekstra PF, Hanns C, Backus SM, Muir DCG. Concentrations of selected persistent organochlorine contaminants in store-bought foods from northern Alaska. Int J Circumpolar Health 2016; 64:303-13. [PMID: 16277115 DOI: 10.3402/ijch.v64i4.18008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES We address marine and terrestrial mammal blubber, liver, muscle, kidney, heart, tongue, maktak and maktaaq (epidermis and blubber from bowhead, beluga whales, respectively), and fish muscle and livers, as commonly consumed tissues in subsistence communities across northern Alaska in the context of organochlorine (OC) contamination of store-bought foods. Human exposure to contaminants from biota, as part of a subsistence diet, has been superficially evaluated in numerous studies (focused on liver and blubber), but are limited in the type of tissues analyzed, and rarely consider the contaminants in the alternatives (i.e., store-bought foods). STUDY DESIGN Concentrations from published literature on selected persistent organochlorine contaminants (OCs) in eight tissues of the bowhead whale and other biota (1) were compared to store-bought foods evaluated in this study. RESULTS As expected, store-bought foods had lower concentrations of OCs than some tissues of the marine mammals (especially blubber, maktak, and maktaaq). However, blubber is rarely eaten alone and should not be used to give consumption advice unless considered as a portion of the food item (i.e., maktak). This study indicates that the store-bought food alternatives have detectable OC concentrations (e.g., < 0.01 to 22.5 ng/g w.w. for hexachlorobenzene) and, in many cases, have greater OC concentrations than some subsistence food items. Many wildlife tissues had OC concentrations similar to those quantified in local store-bought food. CONCLUSIONS Switching from the traditional diet to western store-bought foods will not always reduce exposure to OCs. However, raw blubber-based products are clearly more contaminated with OCs due to lipid content. A detailed profile of traditional/country foods and western foods consumed by subsistence communities of northern Alaska is required to address chronic exposure in more detail for the diverse sources of foods (subsistence use and commercially available) and the widely varying concentrations of contaminants reported therein. This should be combined with biomonitoring people dependent upon subsistence foods. Further assessment of essential and non-essential elements, emerging contaminants (e.g. brominated flame retardants), etc. should be conducted in order to improve our understanding of the differences and similarities between wildlife and store-bought foods.
Collapse
|
23
|
Bradley M, Kutz SJ, Jenkins E, O'Hara TM. The potential impact of climate change on infectious diseases of Arctic fauna. Int J Circumpolar Health 2016; 64:468-77. [PMID: 16440609 DOI: 10.3402/ijch.v64i5.18028] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Climate change is already affecting Arctic species including infectious disease agents and greater changes are expected. Some infectious diseases are already increasing but future changes are difficult to predict because of the complexity of host-agent-environment relationships. However mechanisms related to climate change that will influence disease patterns are understood. Warmer temperatures will benefit free living bacteria and parasites whose survival and development is limited by temperature. Warmer temperatures could promote survivability, shorter development rates and transmission. Insects such as mosquitoes and ticks that transmit disease agents may also benefit from climate change as well as the diseases they spread. Climate change will have significant impacts on biodiversity. Disease agents of species that benefit from warming will likely become more prevalent. Host species stressed by changing environmental conditions may be more vulnerable to disease agents. Warming could lead to increased agriculture and other economic opportunities in the Arctic bringing people, domestic food animals, pets and invasive species and their disease agents into Northern regions. Climate warming may also favor the release of persistent environmental pollutants some of which can affect the immune system and may favor increased rates of some diseases.
Collapse
|
24
|
Harley JR, Bammler TK, Farin FM, Beyer RP, Kavanagh TJ, Dunlap KL, Knott KK, Ylitalo GM, O'Hara TM. Using Domestic and Free-Ranging Arctic Canid Models for Environmental Molecular Toxicology Research. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1990-1999. [PMID: 26730740 PMCID: PMC5290708 DOI: 10.1021/acs.est.5b04396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The use of sentinel species for population and ecosystem health assessments has been advocated as part of a One Health perspective. The Arctic is experiencing rapid change, including climate and environmental shifts, as well as increased resource development, which will alter exposure of biota to environmental agents of disease. Arctic canid species have wide geographic ranges and feeding ecologies and are often exposed to high concentrations of both terrestrial and marine-based contaminants. The domestic dog (Canis lupus familiaris) has been used in biomedical research for a number of years and has been advocated as a sentinel for human health due to its proximity to humans and, in some instances, similar diet. Exploiting the potential of molecular tools for describing the toxicogenomics of Arctic canids is critical for their development as biomedical models as well as environmental sentinels. Here, we present three approaches analyzing toxicogenomics of Arctic contaminants in both domestic and free-ranging canids (Arctic fox, Vulpes lagopus). We describe a number of confounding variables that must be addressed when conducting toxicogenomics studies in canid and other mammalian models. The ability for canids to act as models for Arctic molecular toxicology research is unique and significant for advancing our understanding and expanding the tool box for assessing the changing landscape of environmental agents of disease in the Arctic.
Collapse
|
25
|
Gribble MO, Karimi R, Feingold BJ, Nyland JF, O'Hara TM, Gladyshev MI, Chen CY. Mercury, selenium and fish oils in marine food webs and implications for human health. JOURNAL OF THE MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM. MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM 2016; 96:43-59. [PMID: 26834292 PMCID: PMC4720108 DOI: 10.1017/s0025315415001356] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/23/2015] [Indexed: 05/04/2023]
Abstract
Humans who eat fish are exposed to mixtures of healthful nutrients and harmful contaminants that are influenced by environmental and ecological factors. Marine fisheries are composed of a multitude of species with varying life histories, and harvested in oceans, coastal waters and estuaries where environmental and ecological conditions determine fish exposure to both nutrients and contaminants. Many of these nutrients and contaminants are thought to influence similar health outcomes (i.e., neurological, cardiovascular, immunological systems). Therefore, our understanding of the risks and benefits of consuming seafood require balanced assessments of contaminants and nutrients found in fish and shellfish. In this paper, we review some of the reported benefits of fish consumption with a focus on the potential hazards of mercury exposure, and compare the environmental variability of fish oils, selenium and mercury in fish. A major scientific gap identified is that fish tissue concentrations are rarely measured for both contaminants and nutrients across a range of species and geographic regions. Interpreting the implications of seafood for human health will require a better understanding of these multiple exposures, particularly as environmental conditions in the oceans change.
Collapse
|