1
|
Murayama T, Otori Y, Kurebayashi N, Yamazawa T, Oyamada H, Sakurai T, Ogawa H. Dual role of the S5 segment in type 1 ryanodine receptor channel gating. Commun Biol 2024; 7:1108. [PMID: 39294299 PMCID: PMC11411075 DOI: 10.1038/s42003-024-06787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
The type 1 ryanodine receptor (RyR1) is a Ca2+ release channel in the sarcoplasmic reticulum that is essential for skeletal muscle contraction. RyR1 forms a channel with six transmembrane segments, in which S5 is the fifth segment and is thought to contribute to pore formation. However, its role in channel gating remains unclear. Here, we performed a functional analysis of several disease-associated mutations in S5 and interpreted the results with respect to the published RyR1 structures to identify potential interactions associated with the mutant phenotypes. We demonstrate that S5 plays a dual role in channel gating: the cytoplasmic side interacts with S6 to reduce the channel activity, whereas the luminal side forms a rigid structural base necessary for S6 displacement in channel opening. These results deepen our understanding of the molecular mechanisms of RyR1 channel gating and provide insight into the divergent disease phenotypes caused by mutations in S5.
Collapse
|
2
|
Suzuki M, Liu C, Oyama K, Yamazawa T. Trans-scale thermal signaling in biological systems. J Biochem 2023; 174:217-225. [PMID: 37461189 PMCID: PMC10464929 DOI: 10.1093/jb/mvad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/21/2023] [Indexed: 08/31/2023] Open
Abstract
Biochemical reactions in cells serve as the endogenous source of heat, maintaining a constant body temperature. This process requires proper control; otherwise, serious consequences can arise due to the unwanted but unavoidable responses of biological systems to heat. This review aims to present a range of responses to heat in biological systems across various spatial scales. We begin by examining the impaired thermogenesis of malignant hyperthermia in model mice and skeletal muscle cells, demonstrating that the progression of this disease is caused by a positive feedback loop between thermally driven Ca2+ signaling and thermogenesis at the subcellular scale. After we explore thermally driven force generation in both muscle and non-muscle cells, we illustrate how in vitro assays using purified proteins can reveal the heat-responsive properties of proteins and protein assemblies. Building on these experimental findings, we propose the concept of 'trans-scale thermal signaling'.
Collapse
Key Words
- ATPase
- fluorescence microscopy
- heat-induced calcium release
- microheating
- type 1 ryanodine receptor.
Abbreviations: [Ca2+]i, intracellular Ca2+ concentration; CICR, Ca2+-induced Ca2+ release; ER, endoplasmic reticulum; FDB, flexor digitorum brevis; HEK293 cell, human embryonic kidney 293 cell; HICR, heat-induced Ca2+ release; IP3R, inositol 1,4,5-trisphosphate receptor; MH, malignant hyperthermia; RCC, rapid cooling contracture; RyR1, type 1 ryanodine receptor; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; SR, sarcoplasmic reticulum; TRP, transient receptor potential; WT, wild type
Collapse
|
3
|
Tsuboi Y, Oyama K, Kobirumaki-Shimozawa F, Murayama T, Kurebayashi N, Tachibana T, Manome Y, Kikuchi E, Noguchi S, Inoue T, Inoue YU, Nishino I, Mori S, Ishida R, Kagechika H, Suzuki M, Fukuda N, Yamazawa T. Mice with R2509C-RYR1 mutation exhibit dysfunctional Ca2+ dynamics in primary skeletal myocytes. J Gen Physiol 2022; 154:213526. [PMID: 36200983 PMCID: PMC9546722 DOI: 10.1085/jgp.202213136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022] Open
Abstract
Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum (SR) of the skeletal muscle and plays a critical role in excitation-contraction coupling. Mutations in RYR1 cause severe muscle diseases, such as malignant hyperthermia, a disorder of Ca2+-induced Ca2+ release (CICR) through RYR1 from the SR. We recently reported that volatile anesthetics induce malignant hyperthermia (MH)-like episodes through enhanced CICR in heterozygous R2509C-RYR1 mice. However, the characterization of Ca2+ dynamics has yet to be investigated in skeletal muscle cells from homozygous mice because these animals die in utero. In the present study, we generated primary cultured skeletal myocytes from R2509C-RYR1 mice. No differences in cellular morphology were detected between wild type (WT) and mutant myocytes. Spontaneous Ca2+ transients and cellular contractions occurred in WT and heterozygous myocytes, but not in homozygous myocytes. Electron microscopic observation revealed that the sarcomere length was shortened to ∼1.7 µm in homozygous myocytes, as compared to ∼2.2 and ∼2.3 µm in WT and heterozygous myocytes, respectively. Consistently, the resting intracellular Ca2+ concentration was higher in homozygous myocytes than in WT or heterozygous myocytes, which may be coupled with a reduced Ca2+ concentration in the SR. Finally, using infrared laser-based microheating, we found that heterozygous myocytes showed larger heat-induced Ca2+ transients than WT myocytes. Our findings suggest that the R2509C mutation in RYR1 causes dysfunctional Ca2+ dynamics in a mutant-gene dose-dependent manner in the skeletal muscles, in turn provoking MH-like episodes and embryonic lethality in heterozygous and homozygous mice, respectively.
Collapse
|
4
|
Yamazawa T. Therapeutic effects of novel type 1 ryanodine receptor inhibitor on malignant hyperthermia. J Gen Physiol 2022. [PMID: 34767020 DOI: 10.1085/jgp.2021ecc48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ca2+-induced Ca2+ release (CICR) is mediated by ryanodine receptors, a Ca2+ release channel in the sarcoplasmic/endoplasmic reticulum (SR/ER), and plays an important role in various tissues. Type 1 ryanodine receptor (RYR1) plays a key role during excitation-contraction coupling of skeletal muscle. Mutations in RYR1 overactivate the channel to cause malignant hyperthermia (MH). MH is a serious complication characterized by skeletal muscle rigidity and elevated body temperature in response to commonly used inhalational anesthetics. Thus far, >300 mutations in the RYR1 gene have been reported in patients with MH. Some heat stroke triggered by exercise or environmental heat stress is also related to MH mutations in the RYR1 gene. The only drug approved for ameliorating the symptoms of MH is dantrolene, which has been first developed in the 1960s as a muscle relaxant. However, dantrolene has several disadvantages for clinical use: poor water solubility, which makes rapid preparation difficult in emergency situations, and long plasma half-life, which causes long-lasting side effects such as muscle weakness. Here, we show that a novel RYR1-selective inhibitor, 6,7-(methylenedioxy)-1-octyl-4-quinolone-3-carboxylic acid (compound 1 [Cpd1]), effectively rescues MH and heat stroke in new mouse model (RYR1-p.R2509C) relevant to MH. Cpd1 has great advantages of higher water solubility and shorter plasma half-life compared with dantrolene. Our data suggest that Cpd1 has the potential to be a promising new candidate for effective treatment of patients carrying RYR1 mutations. Finally, we have recently identified that heat directly activates RYR1, which induces Ca2+ release from intracellular stores. Our results provide direct evidence that heat induces Ca2+ release (HICR) from the SR through the mutants rather than wild type RYR1, causing an immediate rise in the cytosolic Ca2+ concentration.
Collapse
|
5
|
Yamazawa T, Kobayashi T, Kurebayashi N, Murayama T. [Therapeutic effects of novel type1 ryanodine receptor inhibitor on skeletal muscle diseases]. Nihon Yakurigaku Zasshi 2022; 157:15-22. [PMID: 34980804 DOI: 10.1254/fpj.21068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Type 1 ryanodine receptor (RyR1) plays a key role in Ca2+ release from the sarcoplasmic reticulum (SR) during excitation-contraction coupling of skeletal muscle. Mutations in RyR1 hyperactivate the channel to cause malignant hyperthermia (MH). MH is a serious complication characterized by skeletal muscle rigidity and elevated body temperature in response to commonly used inhalational anesthetics. Thus far, more than 300 mutations in RyR1 gene have been reported in patients with MH. Some heat stroke triggered by exercise or environmental heat stress is also related to MH mutations in the RyR1 gene. The only drug approved for ameliorating the symptoms of MH is dantrolene, which has been first developed in 1960s as a muscle relaxant. However, dantrolene has several disadvantages for clinical use: poor water solubility which makes rapid preparation difficult in emergency situations and long plasma half-life, which causes long-lasting side effects such as muscle weakness. Here we show that a novel RyR1-selective inhibitor, 6,7-(methylenedioxy)-1-octyl-4-quinolone-3-carboxylic acid (Compound 1, Cpd1), effectively rescues MH and heat stroke in new mouse model relevant to MH. Cpd1 has great advantages of higher water solubility and shorter plasma half-life compared to dantrolene. Our data suggest that Cpd1 has the potential to be a promising new candidate for effective treatment of patients carrying RyR1 mutations.
Collapse
|
6
|
Murayama T, Yamazawa T. [Preface]. Nihon Yakurigaku Zasshi 2022; 157:3. [PMID: 34980808 DOI: 10.1254/fpj.21073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Yamazawa T, Ogawa H, Murayama T, Yamaguchi M, Oyamada H, Suzuki J, Kurebayashi N, Kanemaru K, Oguchi K, Sakurai T, Iino M. Insights into channel modulation mechanism of RYR1 mutants using Ca2+ imaging and molecular dynamics. J Gen Physiol 2021; 152:132759. [PMID: 31841587 PMCID: PMC7034096 DOI: 10.1085/jgp.201812235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 07/31/2019] [Accepted: 11/05/2019] [Indexed: 12/01/2022] Open
Abstract
Molecular bases of pathogenic enhancement of Ca2+ release channel activities in RYR1 carrying disease-associated mutations at the N-terminal region were studied. Functional studies and MD simulation revealed that the interactions between domains have a strong correlation with channel activity. Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum in skeletal muscle and plays an important role in excitation–contraction coupling. Mutations in the RYR1 gene cause severe muscle diseases such as malignant hyperthermia (MH), which is a disorder of CICR via RYR1. Thus far, >300 mutations in RYR1 have been reported in patients with MH. However, owing to a lack of comprehensive analysis of the structure–function relationship of mutant RYR1, the mechanism remains largely unknown. Here, we combined functional studies and molecular dynamics (MD) simulations of RYR1 bearing disease-associated mutations at the N-terminal region. When expressed in HEK293 cells, the mutant RYR1 caused abnormalities in Ca2+ homeostasis. MD simulations of WT and mutant RYR1s were performed using crystal structure of the N-terminal domain (NTD) monomer, consisting of A, B, and C domains. We found that the mutations located around the interdomain region differentially affected hydrogen bonds/salt bridges. Particularly, mutations at R402, which increase the open probability of the channel, cause clockwise rotation of BC domains with respect to the A domain by alteration of the interdomain interactions. Similar results were also obtained with artificial mutations that mimic alteration of the interactions. Our results reveal the importance of interdomain interactions within the NTD in the regulation of the RYR1 channel and provide insights into the mechanism of MH caused by the mutations at the NTD.
Collapse
|
8
|
Oyama K, Gotoh M, Hosaka Y, Oyama TG, Kubonoya A, Suzuki Y, Arai T, Tsukamoto S, Kawamura Y, Itoh H, Shintani SA, Yamazawa T, Taguchi M, Ishiwata S, Fukuda N. Single-cell temperature mapping with fluorescent thermometer nanosheets. J Gen Physiol 2020; 152:151786. [PMID: 32421782 PMCID: PMC7398143 DOI: 10.1085/jgp.201912469] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/17/2020] [Indexed: 01/09/2023] Open
Abstract
Recent studies using intracellular thermometers have shown that the temperature inside cultured single cells varies heterogeneously on the order of 1°C. However, the reliability of intracellular thermometry has been challenged both experimentally and theoretically because it is, in principle, exceedingly difficult to exclude the effects of nonthermal factors on the thermometers. To accurately measure cellular temperatures from outside of cells, we developed novel thermometry with fluorescent thermometer nanosheets, allowing for noninvasive global temperature mapping of cultured single cells. Various types of cells, i.e., HeLa/HEK293 cells, brown adipocytes, cardiomyocytes, and neurons, were cultured on nanosheets containing the temperature-sensitive fluorescent dye europium (III) thenoyltrifluoroacetonate trihydrate. First, we found that the difference in temperature on the nanosheet between nonexcitable HeLa/HEK293 cells and the culture medium was less than 0.2°C. The expression of mutated type 1 ryanodine receptors (R164C or Y523S) in HEK293 cells that cause Ca2+ leak from the endoplasmic reticulum did not change the cellular temperature greater than 0.1°C. Yet intracellular thermometry detected an increase in temperature of greater than ∼2°C at the endoplasmic reticulum in HeLa cells upon ionomycin-induced intracellular Ca2+ burst; global cellular temperature remained nearly constant within ±0.2°C. When rat neonatal cardiomyocytes or brown adipocytes were stimulated by a mitochondrial uncoupling reagent, the temperature was nearly unchanged within ±0.1°C. In cardiomyocytes, the temperature was stable within ±0.01°C during contractions when electrically stimulated at 2 Hz. Similarly, when rat hippocampal neurons were electrically stimulated at 0.25 Hz, the temperature was stable within ±0.03°C. The present findings with nonexcitable and excitable cells demonstrate that heat produced upon activation in single cells does not uniformly increase cellular temperature on a global basis, but merely forms a local temperature gradient on the order of ∼1°C just proximal to a heat source, such as the endoplasmic/sarcoplasmic reticulum ATPase.
Collapse
|
9
|
Tomida T, Yamazawa T. [Preface]. Nihon Yakurigaku Zasshi 2020; 155:224. [PMID: 32612033 DOI: 10.1254/fpj.20040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Yamazawa T, Yamada S. [Role of skeletal muscle homeostasis of functional food material]. Nihon Yakurigaku Zasshi 2020; 155:236-240. [PMID: 32612036 DOI: 10.1254/fpj19151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Functional food material, polyamines are considered to be essential for growth factors in virtually all cells. The polyamines putrescine, spermidine and spermine are low molecular weight organic polycations, well known as mediators involved in cell homeostasis. The proposed functions of polyamines are the regulation of ion channels, nucleic acid packaging, signal transduction, cell proliferation, and differentiation, as well as gene expression. In skeletal muscle, regulation of polyamine levels is associated with muscle hypertrophy and atrophy, yet detailed studies are remained to be undergoing. Here, we studied how polyamines may affect the proliferation and/or differentiation of murine myoblast progenitor C2C12 cell line. Upon polyamine treatment of C2C12 cells during induction of myogenic differentiation, the number of myotubes significantly increased. Morphologically, polyamine-treated myotubes exhibited elongated cell body and contained larger amount of nuclei in the cell. On the other hand, the polyamine did not have influence on myoblasts proliferation. Furthermore, compensatory muscle hypertrophy of C57BL6 mice that underwent sciatic nerve transection of the left hindlimb was enhanced by administration of polyamines. Therefore, our study demonstrates that polyamines may play an important role in regulating myogenic differentiation rather than myoblasts proliferation.
Collapse
|
11
|
Ogawa H, Kurebayashi N, Yamazawa T, Murayama T. Regulatory mechanisms of ryanodine receptor/Ca 2+ release channel revealed by recent advancements in structural studies. J Muscle Res Cell Motil 2020; 42:291-304. [PMID: 32040690 PMCID: PMC8332584 DOI: 10.1007/s10974-020-09575-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Ryanodine receptors (RyRs) are huge homotetrameric Ca2+ release channels localized to the sarcoplasmic reticulum. RyRs are responsible for the release of Ca2+ from the SR during excitation–contraction coupling in striated muscle cells. Recent revolutionary advancements in cryo-electron microscopy have provided a number of near-atomic structures of RyRs, which have enabled us to better understand the architecture of RyRs. Thus, we are now in a new era understanding the gating, regulatory and disease-causing mechanisms of RyRs. Here we review recent advances in the elucidation of the structures of RyRs, especially RyR1 in skeletal muscle, and their mechanisms of regulation by small molecules, associated proteins and disease-causing mutations.
Collapse
|
12
|
Yamazawa T, Ogawa H, Murayama T, Yamaguchi M, Oyamada H, Suzuki J, Kurebayashi N, Kazunori K, Sakurai T, Iino M. Molecular Dynamics and Ca2+ Imaging of Mutant Type 1 Ryanodine Receptor. Biophys J 2020. [DOI: 10.1016/j.bpj.2019.11.694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
13
|
Murayama T, Yamazawa T, Kobayashi T, Kurebayashi N, Noguchi S, Nishino I, Mori S, Kagechika H, Lopez JR, Allen PD. Therapeutic Effects of a Novel RyR1 Inhibitor on Malignant Hyperthermia-Susceptible Model Mice. Biophys J 2020. [DOI: 10.1016/j.bpj.2019.11.696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Sato C, Yamazawa T, Ohtani A, Maruyama Y, Memtily N, Sato M, Hatano Y, Shiga T, Ebihara T. Primary cultured neuronal networks and type 2 diabetes model mouse fatty liver tissues in aqueous liquid observed by atmospheric SEM (ASEM): Staining preferences of metal solutions. Micron 2019; 118:9-21. [DOI: 10.1016/j.micron.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 01/25/2023]
|
15
|
Yamazawa T, Ogawa H, Yamaguchi M, Murayama T, Oyamada H, Suzuki J, Kurebayashi N, Kanemaru K, Sakurai T, Masamitsu I. Investigation of Mutant Ryanodine Receptor Channel Activity using Functional Analysis and Molecular Dynamics. Biophys J 2019. [DOI: 10.1016/j.bpj.2018.11.2812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
16
|
Murayama T, Kurebayashi N, Ogawa H, Yamazawa T, Sakurai T. Genotype-Phenotype Correlations of the Central Core Disease Mutations in the C-Terminal Region of the RyR1 Channel. Biophys J 2017. [DOI: 10.1016/j.bpj.2016.11.564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
17
|
Yamazawa T, Nakamura N, Mikami Y, Sekiya H, Sato M, Sato C. OB-IV-1Exocrine Organs Imaged in Aqueous Solution by Atmospheric Scanning Electron Microscopy (ASEM). Microscopy (Oxf) 2016. [DOI: 10.1093/jmicro/dfw050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Sato C, Memitily N, Sato M, Yamazawa T, Sugimoto S. OM-III-3Development of atmospheric scanning electron microscope (ASEM) and its applications. Microscopy (Oxf) 2016. [DOI: 10.1093/jmicro/dfw088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Yamazawa T, Nakamura N, Sato M, Sato C. Secretory glands and microvascular systems imaged in aqueous solution by atmospheric scanning electron microscopy (ASEM). Microsc Res Tech 2016; 79:1179-1187. [DOI: 10.1002/jemt.22773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 12/14/2022]
|
20
|
Mikami Y, Kakizawa S, Yamazawa T. Essential Roles of Natural Products and Gaseous Mediators on Neuronal Cell Death or Survival. Int J Mol Sci 2016; 17:E1652. [PMID: 27690018 PMCID: PMC5085685 DOI: 10.3390/ijms17101652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/21/2022] Open
Abstract
Although precise cellular and molecular mechanisms underlying neurodegeneration still remain enigmatic, key factors associated with degenerative disorders, such as glutamate toxicity and oxidative stress, have been recently identified. Accordingly, there has been growing interest in examining the effects of exogenous and endogenous molecules on neuroprotection and neurodegeneration. In this paper, we review recent studies on neuroprotective and/or neurodegenerative effects of natural products, such as caffeic acid and chlorogenic acid, and gaseous mediators, including hydrogen sulfide and nitric oxide. Furthermore, possible molecular mechanisms of these molecules in relation to glutamate signals are discussed. Insight into the pathophysiological role of these molecules will make progress in our understanding of molecular mechanisms underlying neurodegenerative diseases, and is expected to lead to potential therapeutic approaches.
Collapse
|
21
|
Murayama T, Kurebayashi N, Ogawa H, Yamazawa T, Oyamada H, Suzuki J, Kanemaru K, Oguchi K, Iino M, Sakurai T. Genotype-Phenotype Correlations of Malignant Hyperthermia and Central Core Disease Mutations in the Central Region of the RYR1 Channel. Hum Mutat 2016; 37:1231-1241. [PMID: 27586648 DOI: 10.1002/humu.23072] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/29/2016] [Indexed: 01/05/2023]
Abstract
Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum of skeletal muscle and is mutated in some muscle diseases, including malignant hyperthermia (MH) and central core disease (CCD). Over 200 mutations associated with these diseases have been identified, and most mutations accelerate Ca2+ -induced Ca2+ release (CICR), resulting in abnormal Ca2+ homeostasis in skeletal muscle. However, it remains largely unknown how specific mutations cause different phenotypes. In this study, we investigated the CICR activity of 14 mutations at 10 different positions in the central region of RYR1 (10 MH and four MH/CCD mutations) using a heterologous expression system in HEK293 cells. In live-cell Ca2+ imaging, the mutant channels exhibited an enhanced sensitivity to caffeine, a reduced endoplasmic reticulum Ca2+ content, and an increased resting cytoplasmic Ca2+ level. The three parameters for CICR (Ca2+ sensitivity for activation, Ca2+ sensitivity for inactivation, and attainable maximum activity, i.e., gain) were obtained by [3 H]ryanodine binding and fitting analysis. The mutant channels showed increased gain and Ca2+ sensitivity for activation in a site-specific manner. Genotype-phenotype correlations were explained well by the near-atomic structure of RYR1. Our data suggest that divergent CICR activity may cause various disease phenotypes by specific mutations.
Collapse
|
22
|
Mikami Y, Kanemaru K, Okubo Y, Nakaune T, Suzuki J, Shibata K, Sugiyama H, Koyama R, Murayama T, Ito A, Yamazawa T, Ikegaya Y, Sakurai T, Saito N, Kakizawa S, Iino M. Nitric Oxide-induced Activation of the Type 1 Ryanodine Receptor Is Critical for Epileptic Seizure-induced Neuronal Cell Death. EBioMedicine 2016; 11:253-261. [PMID: 27544065 PMCID: PMC5049986 DOI: 10.1016/j.ebiom.2016.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/05/2016] [Accepted: 08/12/2016] [Indexed: 01/27/2023] Open
Abstract
Status epilepticus (SE) is a life-threatening emergency that can cause neurodegeneration with debilitating neurological disorders. However, the mechanism by which convulsive SE results in neurodegeneration is not fully understood. It has been shown that epileptic seizures produce markedly increased levels of nitric oxide (NO) in the brain, and that NO induces Ca2+ release from the endoplasmic reticulum via the type 1 ryanodine receptor (RyR1), which occurs through S-nitrosylation of the intracellular Ca2+ release channel. Here, we show that through genetic silencing of NO-induced activation of the RyR1 intracellular Ca2+ release channel, neurons were rescued from seizure-dependent cell death. Furthermore, dantrolene, an inhibitor of RyR1, was protective against neurodegeneration caused by SE. These results demonstrate that NO-induced Ca2+ release via RyR is involved in SE-induced neurodegeneration, and provide a rationale for the use of RyR1 inhibitors for the prevention of brain damage following SE.
Collapse
|
23
|
Kakizawa S, Yamazawa T. [Nitric-oxide induced calcium release: regulatory mechanism and physiological function]. Nihon Yakurigaku Zasshi 2016; 147:194-199. [PMID: 27063901 DOI: 10.1254/fpj.147.194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|
24
|
Yamazawa T, Kakizawa S. [Nitric oxide-induced calcium release: neuronal cell death]. Nihon Yakurigaku Zasshi 2016; 147:200-205. [PMID: 27063902 DOI: 10.1254/fpj.147.200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|
25
|
Murayama T, Kurebayashi N, Yamazawa T, Oyamada H, Suzuki J, Kanemaru K, Oguchi K, Iino M, Sakurai T. Divergent Activity Profiles of Type 1 Ryanodine Receptor Channels Carrying Malignant Hyperthermia and Central Core Disease Mutations in the Amino-Terminal Region. PLoS One 2015; 10:e0130606. [PMID: 26115329 PMCID: PMC4482644 DOI: 10.1371/journal.pone.0130606] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 05/21/2015] [Indexed: 11/25/2022] Open
Abstract
The type 1 ryanodine receptor (RyR1) is a Ca2+ release channel in the sarcoplasmic reticulum of skeletal muscle and is mutated in several diseases, including malignant hyperthermia (MH) and central core disease (CCD). Most MH and CCD mutations cause accelerated Ca2+ release, resulting in abnormal Ca2+ homeostasis in skeletal muscle. However, how specific mutations affect the channel to produce different phenotypes is not well understood. In this study, we have investigated 11 mutations at 7 different positions in the amino (N)-terminal region of RyR1 (9 MH and 2 MH/CCD mutations) using a heterologous expression system in HEK293 cells. In live-cell Ca2+ imaging at room temperature (~25 °C), cells expressing mutant channels exhibited alterations in Ca2+ homeostasis, i.e., an enhanced sensitivity to caffeine, a depletion of Ca2+ in the ER and an increase in resting cytoplasmic Ca2+. RyR1 channel activity was quantitatively evaluated by [3H]ryanodine binding and three parameters (sensitivity to activating Ca2+, sensitivity to inactivating Ca2+ and attainable maximum activity, i.e., gain) were obtained by fitting analysis. The mutations increased the gain and the sensitivity to activating Ca2+ in a site-specific manner. The gain was consistently higher in both MH and MH/CCD mutations. Sensitivity to activating Ca2+ was markedly enhanced in MH/CCD mutations. The channel activity estimated from the three parameters provides a reasonable explanation to the pathological phenotype assessed by Ca2+ homeostasis. These properties were also observed at higher temperatures (~37 °C). Our data suggest that divergent activity profiles may cause varied disease phenotypes by specific mutations. This approach should be useful for diagnosis and treatment of diseases with mutations in RyR1.
Collapse
|