1
|
Miyakawa T, Maeda A, Yamazawa T, Hirose K, Kurosaki T, Iino M. Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. EMBO J 1999; 18:1303-8. [PMID: 10064596 PMCID: PMC1171220 DOI: 10.1093/emboj/18.5.1303] [Citation(s) in RCA: 324] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (IP3) plays a key role in Ca2+ signalling, which exhibits a variety of spatio-temporal patterns that control important cell functions. Multiple subtypes of IP3 receptors (IP3R-1, -2 and -3) are expressed in a tissue- and development-specific manner and form heterotetrameric channels through which stored Ca2+ is released, but the physiological significance of the differential expression of IP3R subtypes is not known. We have studied the Ca2+-signalling mechanism in genetically engineered B cells that express either a single or a combination of IP3R subtypes, and show that Ca2+-signalling patterns depend on the IP3R subtypes, which differ significantly in their response to agonists, i.e. IP3, Ca2+ and ATP. IP3R-2 is the most sensitive to IP3 and is required for the long lasting, regular Ca2+ oscillations that occur upon activation of B-cell receptors. IP3R-1 is highly sensitive to ATP and mediates less regular Ca2+ oscillations. IP3R-3 is the least sensitive to IP3 and Ca2+, and tends to generate monophasic Ca2+ transients. Furthermore, we show for the first time functional interactions between coexpressed subtypes. Our results demonstrate that differential expression of IP3R subtypes helps to encode IP3-mediated Ca2+ signalling.
Collapse
MESH Headings
- Adenosine Triphosphate/pharmacology
- Animals
- Antibodies/metabolism
- B-Lymphocytes/metabolism
- Calcium/metabolism
- Calcium Channels/classification
- Calcium Channels/metabolism
- Chickens
- Fura-2
- Gene Expression Regulation/genetics
- Gene Targeting
- Inositol 1,4,5-Trisphosphate/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors
- RNA, Messenger/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Cytoplasmic and Nuclear/classification
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction
- Tumor Cells, Cultured
Collapse
|
research-article |
26 |
324 |
2
|
Iino M, Kasai H, Yamazawa T. Visualization of neural control of intracellular Ca2+ concentration in single vascular smooth muscle cells in situ. EMBO J 1994; 13:5026-31. [PMID: 7957068 PMCID: PMC395448 DOI: 10.1002/j.1460-2075.1994.tb06831.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The intermittent rise in intracellular Ca2+ concentration ([Ca2+]i oscillation) has been observed in many types of isolated cells, yet it has not been demonstrated whether it plays an essential role during nerve stimulation in situ. We used confocal microscopy to study Ca2+ transients in individual smooth muscle cells in situ within the wall of small arteries stimulated with perivascular sympathetic nerves or noradrenaline. We show here that the sympathetic adrenergic regulation of arterial smooth muscle cells involves the oscillation of [Ca2+]i that propagates within the cell in the form of a wave. Ca2+ release from intracellular stores plays a key role in the oscillation because it is blocked after the store depletion by ryanodine treatment. Ca2+ influx through the plasma membrane sustains the oscillation by replenishing the Ca2+ stores. These results demonstrate the involvement of [Ca2+]i oscillations in the neural regulation of effector cells within the integrated system.
Collapse
|
|
31 |
137 |
3
|
Miyakawa T, Mizushima A, Hirose K, Yamazawa T, Bezprozvanny I, Kurosaki T, Iino M. Ca(2+)-sensor region of IP(3) receptor controls intracellular Ca(2+) signaling. EMBO J 2001; 20:1674-80. [PMID: 11285231 PMCID: PMC145472 DOI: 10.1093/emboj/20.7.1674] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many important cell functions are controlled by Ca(2+) release from intracellular stores via the inositol 1,4,5-trisphosphate receptor (IP(3)R), which requires both IP(3) and Ca(2+) for its activity. Due to the Ca(2+) requirement, the IP(3)R and the cytoplasmic Ca(2+) concentration form a positive feedback loop, which has been assumed to confer regenerativity on the IP(3)-induced Ca(2+) release and to play an important role in the generation of spatiotemporal patterns of Ca(2+) signals such as Ca(2+) waves and oscillations. Here we show that glutamate 2100 of rat type 1 IP(3)R (IP(3)R1) is a key residue for the Ca(2+) requirement. Substitution of this residue by aspartate (E2100D) results in a 10-fold decrease in the Ca(2+) sensitivity without other effects on the properties of the IP(3)R1. Agonist-induced Ca(2+) responses are greatly diminished in cells expressing the E2100D mutant IP(3)R1, particularly the rate of rise of initial Ca(2+) spike is markedly reduced and the subsequent Ca(2+) oscillations are abolished. These results demonstrate that the Ca(2+) sensitivity of the IP(3)R is functionally indispensable for the determination of Ca(2+) signaling patterns.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Amino Acid Sequence
- Animals
- Binding Sites
- Calcium/metabolism
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Channels/physiology
- Calcium Signaling/physiology
- Cell Membrane/metabolism
- Chickens
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Intracellular Fluid/metabolism
- Microscopy, Fluorescence
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Rats
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/physiology
- Tumor Cells, Cultured
Collapse
|
research-article |
24 |
117 |
4
|
Takeshima H, Yamazawa T, Ikemoto T, Takekura H, Nishi M, Noda T, Iino M. Ca(2+)-induced Ca2+ release in myocytes from dyspedic mice lacking the type-1 ryanodine receptor. EMBO J 1995; 14:2999-3006. [PMID: 7621815 PMCID: PMC394359 DOI: 10.1002/j.1460-2075.1995.tb07302.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
While subtypes 1 and 2 of the ryanodine receptor (RyR) function as intracellular Ca2+ release channels, little is known about the function of the third subtype (RyR-3), first identified in brain. Myocytes from mice homozygous for a targeted mutation in the RyR-1 gene (dyspedic mice) can now be used for a study on the function of RyR-3, which is predominantly expressed in these cells according to our reverse transcription-polymerase chain reaction analysis. We here demonstrate in these myocytes caffeine-, ryanodine- and adenine nucleotide-sensitive Ca(2+)-induced Ca2+ release with approximately 10 times lower sensitivity to Ca2+ than that of RyR-1. Although RyR-3 does not mediate excitation-contraction coupling of the skeletal muscle type, we propose that RyR-3 may induce intracellular Ca2+ release in response to a Ca2+ rise with a high threshold.
Collapse
|
|
30 |
106 |
5
|
Kakizawa S, Yamazawa T, Chen Y, Ito A, Murayama T, Oyamada H, Kurebayashi N, Sato O, Watanabe M, Mori N, Oguchi K, Sakurai T, Takeshima H, Saito N, Iino M. Nitric oxide-induced calcium release via ryanodine receptors regulates neuronal function. EMBO J 2011; 31:417-28. [PMID: 22036948 DOI: 10.1038/emboj.2011.386] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 09/28/2011] [Indexed: 12/13/2022] Open
Abstract
Mobilization of intracellular Ca(2+) stores regulates a multitude of cellular functions, but the role of intracellular Ca(2+) release via the ryanodine receptor (RyR) in the brain remains incompletely understood. We found that nitric oxide (NO) directly activates RyRs, which induce Ca(2+) release from intracellular stores of central neurons, and thereby promote prolonged Ca(2+) signalling in the brain. Reversible S-nitrosylation of type 1 RyR (RyR1) triggers this Ca(2+) release. NO-induced Ca(2+) release (NICR) is evoked by type 1 NO synthase-dependent NO production during neural firing, and is essential for cerebellar synaptic plasticity. NO production has also been implicated in pathological conditions including ischaemic brain injury, and our results suggest that NICR is involved in NO-induced neuronal cell death. These findings suggest that NICR via RyR1 plays a regulatory role in the physiological and pathophysiological functions of the brain.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
81 |
6
|
Ninomiya Y, Kishimoto T, Yamazawa T, Ikeda H, Miyashita Y, Kasai H. Kinetic diversity in the fusion of exocytotic vesicles. EMBO J 1997; 16:929-34. [PMID: 9118954 PMCID: PMC1169693 DOI: 10.1093/emboj/16.5.929] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The speed at which secretory vesicles fuse with the plasma membrane is a key parameter for neuronal and endocrine functions. We determined the precise time courses for fusion of small clear and large dense-core vesicles in PC12 and chromaffin cells by simultaneously measuring both plasma membrane areas and release of vesicular contents. We found that instantaneous increases in cytosolic Ca2+ concentration evoked vesicle fusion, but with time constants that varied over four orders of magnitude among different types of vesicles and cells. This indicates that the molecular machinery for the final Ca2+-dependent fusion steps of exocytosis is highly variable and is as critical as Ca2+ signalling processes in determining the speed and amount of secretion of neurotransmitters and hormones. Our results suggest a new possibility that the molecules responsible for the final fusion reaction that leads to vesicle fusion are key determinants for neuronal plasticity and hormonal disorders.
Collapse
|
research-article |
28 |
70 |
7
|
Yamazawa T, Takeshima H, Shimuta M, Iino M. A region of the ryanodine receptor critical for excitation-contraction coupling in skeletal muscle. J Biol Chem 1997; 272:8161-4. [PMID: 9079632 DOI: 10.1074/jbc.272.13.8161] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ca2+ release mediated by the ryanodine receptor (RyR) regulates many important cell functions including excitation-contraction (E-C) coupling in skeletal muscle, by which membrane depolarization controls the opening of RyR via the dihydropyridine receptor. Among the three RyR subtypes, RyR-1 mediates skeletal muscle E-C coupling, whereas RyR-2 and RyR-3 cannot substitute for RyR-1. We carried out expression experiments using cultured mutant skeletal myocytes not having intrinsic intracellular Ca2+ release channels to study the structure-function relationship of amino acid residues 1303-1406 in RyR-1 (D2 region). In this region the amino acid sequences are highly divergent between RyR-1 and RyR-2, and the corresponding sequence is lacking in RyR-3. Expression of RyR-1 but not of RyR-2 rescued E-C coupling in the mutant cells. Deletion of either the entire D2 region or its N-terminal half from RyR-1 preserved the function of RyR-1 as a Ca2+ release channel but resulted in the loss of E-C coupling. Substitution of the D2 region for the corresponding sequence of RyR-2 had no effect on the function of RyR-1. These results indicate that the presence of the D2 region is critical for E-C coupling in skeletal muscle, although the D2 region alone cannot determine the functional difference between RyR-1 and RyR-2.
Collapse
|
|
28 |
68 |
8
|
Iino M, Yamazawa T, Miyashita Y, Endo M, Kasai H. Critical intracellular Ca2+ concentration for all-or-none Ca2+ spiking in single smooth muscle cells. EMBO J 1993; 12:5287-91. [PMID: 8262071 PMCID: PMC413794 DOI: 10.1002/j.1460-2075.1993.tb06224.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neurotransmitters induce contractions of smooth muscle cells initially by mobilizing Ca2+ from intracellular Ca2+ stores through inositol 1,4,5-trisphosphate (InsP3) receptors. Here we studied roles of the molecules involved in Ca2+ mobilization in single smooth muscle cells. A slow rise in cytoplasmic Ca2+ ([Ca2+]i) in agonist-stimulated smooth muscle cells was followed by a wave of rapid regenerative Ca2+ release as the local [Ca2+]i reached a critical concentration of approximately 160 nM. Neither feedback regulation of phospholipase C nor caffeine-sensitive Ca(2+)-induced Ca2+ release was found to be required in the regenerative Ca2+ release. These results indicate that Ca(2+)-dependent feedback control of InsP3-induced Ca2+ release plays a dominant role in the generation of the regenerative Ca2+ release. The resulting Ca2+ release in a whole cell was an all-or-none event, i.e. constant peak [Ca2+]i was attained with agonist concentrations above the threshold value. This finding suggests a possible digital mode involved in the neural control of smooth muscle contraction.
Collapse
|
|
32 |
67 |
9
|
Yamazawa T, Iino M. Simultaneous imaging of Ca2+ signals in interstitial cells of Cajal and longitudinal smooth muscle cells during rhythmic activity in mouse ileum. J Physiol 2002; 538:823-35. [PMID: 11826167 PMCID: PMC2290102 DOI: 10.1113/jphysiol.2001.013045] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Electrical rhythmicity in smooth muscle cells is essential for the movement of the gastrointestinal tract. Interstitial cells of Cajal (ICC) lie adjacent to smooth muscle layers and are implicated as the pacemaker cells. However, the pace making mechanism remains unclear. To study the intercellular interaction during electrical rhythm generation, we visualized changes in intracellular Ca2+ concentration ([Ca2+]i) in smooth muscle cells and myenteric ICC within segments of mouse ileum loaded with a fluorescent Ca2+ indicator, fluo-3. We observed rhythmic [Ca2+]i changes in longitudinal smooth muscle cells travelling rapidly through the smooth muscle cell layer. Between the rhythmic Ca2+ transients, we found brief Ca2+ transients localized to small areas within smooth muscle cells. The amplitude but not the periodicity of rhythmic [Ca2+]i transients in both cell types was partially inhibited by nicardipine, an L-type Ca2+ channel antagonist, suggesting that the rhythmic [Ca2+]i transients reflect membrane potential depolarizations corresponding to both slow waves and triggered Ca2+ spikes. Longitudinal smooth muscle cells and myenteric ICC showed synchronous spontaneous [Ca2+]i transients in eight out of 21 ileac preparations analysed. In the remaining preparations, the synchrony between ICC and smooth muscle cells was absent, although the rhythmicity of the smooth muscle cells was not disturbed. These results suggest that myenteric ICC may play multiple roles including pace making for physiological bowel movement.
Collapse
|
research-article |
23 |
63 |
10
|
Kasai Y, Yamazawa T, Sakurai T, Taketani Y, Iino M. Endothelium-dependent frequency modulation of Ca2+ signalling in individual vascular smooth muscle cells of the rat. J Physiol 1997; 504 ( Pt 2):349-57. [PMID: 9365909 PMCID: PMC1159915 DOI: 10.1111/j.1469-7793.1997.349be.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. We visualized intracellular Ca2+ concentration ([Ca2+]i) changes, using fluo-3 as an indicator, of individual vascular smooth muscle cells and endothelial cells within intact rat tail arteries by confocal microscopy. 2. Using a piezo-driven objective, we focused on endothelial and smooth muscle cell layers alternately to obtain Ca2+ images of their cells. In the presence of 1 microM acetylcholine (ACh), individual endothelial cells responded with intermittent increases in the [Ca2+]i (Ca2+ oscillations). At the same time, the frequency of Ca2+ oscillations in smooth muscle cells induced by electrical stimulation of the perivascular sympathetic nerve was greatly decreased. 3. A [Ca2+]i rise during the oscillations in the endothelial cells propagated in the form of a wave along the long axis of the cells. 4. In the presence of a NO synthase inhibitor, no significant inhibitory effect of ACh on the Ca2+ signalling in the vascular smooth muscle cells was detected, although the Ca2+ oscillations in the endothelial cells persisted. 5. The inhibitory effect of ACh on the frequency of Ca2+ oscillations in the vascular smooth muscle cells was mimicked by 1 microM sodium nitroprusside, a NO donor. 6. These results indicate that Ca2+ waves and oscillations in vascular endothelial cells regulate NO production, which modulates vascular tone by decreasing the frequency of Ca2+ oscillations in smooth muscle cells activated by sympathetic agonists.
Collapse
|
research-article |
28 |
55 |
11
|
Murayama T, Kurebayashi N, Ogawa H, Yamazawa T, Oyamada H, Suzuki J, Kanemaru K, Oguchi K, Iino M, Sakurai T. Genotype-Phenotype Correlations of Malignant Hyperthermia and Central Core Disease Mutations in the Central Region of the RYR1 Channel. Hum Mutat 2016; 37:1231-1241. [PMID: 27586648 DOI: 10.1002/humu.23072] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/29/2016] [Indexed: 01/05/2023]
Abstract
Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum of skeletal muscle and is mutated in some muscle diseases, including malignant hyperthermia (MH) and central core disease (CCD). Over 200 mutations associated with these diseases have been identified, and most mutations accelerate Ca2+ -induced Ca2+ release (CICR), resulting in abnormal Ca2+ homeostasis in skeletal muscle. However, it remains largely unknown how specific mutations cause different phenotypes. In this study, we investigated the CICR activity of 14 mutations at 10 different positions in the central region of RYR1 (10 MH and four MH/CCD mutations) using a heterologous expression system in HEK293 cells. In live-cell Ca2+ imaging, the mutant channels exhibited an enhanced sensitivity to caffeine, a reduced endoplasmic reticulum Ca2+ content, and an increased resting cytoplasmic Ca2+ level. The three parameters for CICR (Ca2+ sensitivity for activation, Ca2+ sensitivity for inactivation, and attainable maximum activity, i.e., gain) were obtained by [3 H]ryanodine binding and fitting analysis. The mutant channels showed increased gain and Ca2+ sensitivity for activation in a site-specific manner. Genotype-phenotype correlations were explained well by the near-atomic structure of RYR1. Our data suggest that divergent CICR activity may cause various disease phenotypes by specific mutations.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
41 |
12
|
Yamazawa T, Iino M, Endo M. Presence of functionally different compartments of the Ca2+ store in single intestinal smooth muscle cells. FEBS Lett 1992; 301:181-4. [PMID: 1568477 DOI: 10.1016/0014-5793(92)81243-f] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Studies in smooth muscle bundles have shown the presence of functionally different compartments of Ca2+ store, one (S alpha) sensitive to both caffeine and inositol 1,4,5-trisphosphate (IP3), and the other (S beta) sensitive only to IP3. Ca2+ release in isolated single smooth muscle cells from guinea pig taenia caeci was studied to see if both compartments exist within a cell. Responses to caffeine and carbachol were consistently observed but were abolished after treatment with ryanodine, while intracellular application of IP3 induced Ca2+ release after the treatment, albeit smaller in size than control. Thus S alpha and S beta coexist in a single smooth muscle cell and agonist-induced Ca2+ release requires whole store to be loaded with Ca2+.
Collapse
|
|
33 |
39 |
13
|
Yamazawa T, Takeshima H, Sakurai T, Endo M, Iino M. Subtype specificity of the ryanodine receptor for Ca2+ signal amplification in excitation-contraction coupling. EMBO J 1996. [DOI: 10.1002/j.1460-2075.1996.tb01005.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
|
29 |
38 |
14
|
Murayama T, Kurebayashi N, Yamazawa T, Oyamada H, Suzuki J, Kanemaru K, Oguchi K, Iino M, Sakurai T. Divergent Activity Profiles of Type 1 Ryanodine Receptor Channels Carrying Malignant Hyperthermia and Central Core Disease Mutations in the Amino-Terminal Region. PLoS One 2015; 10:e0130606. [PMID: 26115329 PMCID: PMC4482644 DOI: 10.1371/journal.pone.0130606] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 05/21/2015] [Indexed: 11/25/2022] Open
Abstract
The type 1 ryanodine receptor (RyR1) is a Ca2+ release channel in the sarcoplasmic reticulum of skeletal muscle and is mutated in several diseases, including malignant hyperthermia (MH) and central core disease (CCD). Most MH and CCD mutations cause accelerated Ca2+ release, resulting in abnormal Ca2+ homeostasis in skeletal muscle. However, how specific mutations affect the channel to produce different phenotypes is not well understood. In this study, we have investigated 11 mutations at 7 different positions in the amino (N)-terminal region of RyR1 (9 MH and 2 MH/CCD mutations) using a heterologous expression system in HEK293 cells. In live-cell Ca2+ imaging at room temperature (~25 °C), cells expressing mutant channels exhibited alterations in Ca2+ homeostasis, i.e., an enhanced sensitivity to caffeine, a depletion of Ca2+ in the ER and an increase in resting cytoplasmic Ca2+. RyR1 channel activity was quantitatively evaluated by [3H]ryanodine binding and three parameters (sensitivity to activating Ca2+, sensitivity to inactivating Ca2+ and attainable maximum activity, i.e., gain) were obtained by fitting analysis. The mutations increased the gain and the sensitivity to activating Ca2+ in a site-specific manner. The gain was consistently higher in both MH and MH/CCD mutations. Sensitivity to activating Ca2+ was markedly enhanced in MH/CCD mutations. The channel activity estimated from the three parameters provides a reasonable explanation to the pathological phenotype assessed by Ca2+ homeostasis. These properties were also observed at higher temperatures (~37 °C). Our data suggest that divergent activity profiles may cause varied disease phenotypes by specific mutations. This approach should be useful for diagnosis and treatment of diseases with mutations in RyR1.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
34 |
15
|
Asada Y, Yamazawa T, Hirose K, Takasaka T, Iino M. Dynamic Ca2+ signalling in rat arterial smooth muscle cells under the control of local renin-angiotensin system. J Physiol 1999; 521 Pt 2:497-505. [PMID: 10581318 PMCID: PMC2269666 DOI: 10.1111/j.1469-7793.1999.00497.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. We visualized the changes in intracellular Ca2+ concentration ([Ca2+]i), using fluo-3 as an indicator, in individual smooth muscle cells within intact rat tail artery preparations. 2. On average in about 45 % of the vascular smooth muscle cells we found spontaneous Ca2+ waves and oscillations ( approximately 0.13 Hz), which we refer to here as Ca2+ ripples because the peak amplitude of [Ca2+]i was about one-seventh of that of Ca2+ oscillations evoked by noradrenaline. 3. We also found another pattern of spontaneous Ca2+ transients often in groups of two to three cells. They were rarely observed and are referred to as Ca2+ flashes because their peak amplitude was nearly twice as large as that in noradrenaline-evoked responses. 4. Sympathetic nerve activity was not considered responsible for the Ca2+ ripples, and they were abolished by inhibitors of either the Ca2+ pump in the sarcoplasmic reticulum (cyclopiazonic acid) or phospholipase C (U-73122). 5. Both angiotensin antagonists ([Sar1,Ile8]-angiotensin II and losartan) and an angiotensin converting enzyme inhibitor (captopril) inhibited the Ca2+ ripples. 6. The extracellular Ca2+-dependent tension borne by unstimulated arterial rings was reduced by the angiotensin antagonist by approximately 50 %. 7. These results indicate that the Ca2+ ripples are generated via inositol 1,4, 5-trisphosphate-induced Ca2+ release from the intracellular Ca2+ stores in response to locally produced angiotensin II, which contributes to the maintenance of vascular tone.
Collapse
|
research-article |
26 |
32 |
16
|
Mikami Y, Kanemaru K, Okubo Y, Nakaune T, Suzuki J, Shibata K, Sugiyama H, Koyama R, Murayama T, Ito A, Yamazawa T, Ikegaya Y, Sakurai T, Saito N, Kakizawa S, Iino M. Nitric Oxide-induced Activation of the Type 1 Ryanodine Receptor Is Critical for Epileptic Seizure-induced Neuronal Cell Death. EBioMedicine 2016; 11:253-261. [PMID: 27544065 PMCID: PMC5049986 DOI: 10.1016/j.ebiom.2016.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/05/2016] [Accepted: 08/12/2016] [Indexed: 01/27/2023] Open
Abstract
Status epilepticus (SE) is a life-threatening emergency that can cause neurodegeneration with debilitating neurological disorders. However, the mechanism by which convulsive SE results in neurodegeneration is not fully understood. It has been shown that epileptic seizures produce markedly increased levels of nitric oxide (NO) in the brain, and that NO induces Ca2+ release from the endoplasmic reticulum via the type 1 ryanodine receptor (RyR1), which occurs through S-nitrosylation of the intracellular Ca2+ release channel. Here, we show that through genetic silencing of NO-induced activation of the RyR1 intracellular Ca2+ release channel, neurons were rescued from seizure-dependent cell death. Furthermore, dantrolene, an inhibitor of RyR1, was protective against neurodegeneration caused by SE. These results demonstrate that NO-induced Ca2+ release via RyR is involved in SE-induced neurodegeneration, and provide a rationale for the use of RyR1 inhibitors for the prevention of brain damage following SE.
Collapse
|
Journal Article |
9 |
28 |
17
|
Ogawa H, Kurebayashi N, Yamazawa T, Murayama T. Regulatory mechanisms of ryanodine receptor/Ca 2+ release channel revealed by recent advancements in structural studies. J Muscle Res Cell Motil 2020; 42:291-304. [PMID: 32040690 PMCID: PMC8332584 DOI: 10.1007/s10974-020-09575-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Ryanodine receptors (RyRs) are huge homotetrameric Ca2+ release channels localized to the sarcoplasmic reticulum. RyRs are responsible for the release of Ca2+ from the SR during excitation–contraction coupling in striated muscle cells. Recent revolutionary advancements in cryo-electron microscopy have provided a number of near-atomic structures of RyRs, which have enabled us to better understand the architecture of RyRs. Thus, we are now in a new era understanding the gating, regulatory and disease-causing mechanisms of RyRs. Here we review recent advances in the elucidation of the structures of RyRs, especially RyR1 in skeletal muscle, and their mechanisms of regulation by small molecules, associated proteins and disease-causing mutations.
Collapse
|
Journal Article |
5 |
27 |
18
|
Oyamada H, Oguchi K, Saitoh N, Yamazawa T, Hirose K, Kawana Y, Wakatsuki K, Oguchi K, Tagami M, Hanaoka K, Endo M, Iino M. Novel mutations in C-terminal channel region of the ryanodine receptor in malignant hyperthermia patients. JAPANESE JOURNAL OF PHARMACOLOGY 2002; 88:159-66. [PMID: 11928716 DOI: 10.1254/jjp.88.159] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Malignant hyperthermia (MH) is a pharmacogenetical complication of general anesthesia resulting from abnormal Ca2+-induced Ca2+ release (CICR) via the type 1 ryanodine receptor (RyR1) in skeletal muscles. In this study, we analyzed the genomic DNAs prepared for determination of all the 106 exons of the RyR1 gene from blood samples donated by two MH patients with extremely high CICR rates in their biopsied skeletal muscles and a clear history of MH incidence. Two novel point mutations were found in the exons 96 and 101 with alterations in the coded amino acids within the C-terminal channel region, i.e., Pro4668 to Ser and Leu4838 to Val. The latter mutation was found in both MH patients. Rabbit RyR1 channels carrying corresponding mutations were expressed in CHO cells for functional assay. It was found that the L to V but not the P to S mutation of the RyR1 resulted in enhanced Ca2+ release activity. These results indicate that the L4838V mutation is responsible for the MH incidence. The L4838V mutation is unique because it is the mutation first found within a hydrophobic transmembrane segment of the channel region and should provide further information on the function of the RyR1 as well as for genetic diagnosis of MH.
Collapse
|
|
23 |
26 |
19
|
Abstract
The inositol 1,4,5-trisphosphate receptor (IP3R) is highly expressed in Purkinje neurons (PNs) and is thought to be essential for the induction of long-term depression at parallel-fiber-PN synapses. Here, by imaging the fluorescence intensity of the low-affinity Ca2+ indicator inside the Ca2+ stores in the permeabilized single PNs, we analyzed the kinetics of Ca2+ release via the IP3R in controlled cytoplasmic environments. The rate of Ca2+ release is dependent on the IP3 concentration with an EC50 of 25.8 microM, which is > 20-fold greater than that of the IP3R in the isolated preparations or in peripheral cells. This property would be advantageous in inducing the release of Ca2+ in a localized space adjacent to the site of synaptic inputs.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channels/metabolism
- Cells, Cultured
- Dendrites/drug effects
- Dendrites/metabolism
- Dose-Response Relationship, Drug
- Fluorescent Dyes
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors
- Mice
- Mice, Inbred ICR
- Purkinje Cells/cytology
- Purkinje Cells/drug effects
- Purkinje Cells/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
Collapse
|
|
24 |
24 |
20
|
Kakizawa S, Yamazawa T, Iino M. Nitric oxide-induced calcium release: activation of type 1 ryanodine receptor by endogenous nitric oxide. Channels (Austin) 2012; 7:1-5. [PMID: 23247505 DOI: 10.4161/chan.22555] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1.
Collapse
|
Journal Article |
13 |
21 |
21
|
Nakamura N, Yamazawa T, Okubo Y, Iino M. Temporal switching and cell-to-cell variability in Ca2+ release activity in mammalian cells. Mol Syst Biol 2009; 5:247. [PMID: 19293827 PMCID: PMC2671922 DOI: 10.1038/msb.2009.6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 01/20/2009] [Indexed: 11/25/2022] Open
Abstract
Genetically identical cells in a uniform external environment can exhibit different phenotypes, which are often masked by conventional measurements that average over cell populations. Although most studies on this topic have used microorganisms, differentiated mammalian cells have rarely been explored. Here, we report that only approximately 40% of clonal human embryonic kidney 293 cells respond with an intracellular Ca2+ increase when ryanodine receptor Ca2+ release channels in the endoplasmic reticulum are maximally activated by caffeine. On the other hand, the expression levels of ryanodine receptor showed a unimodal distribution. We showed that the difference in the caffeine sensitivity depends on a critical balance between Ca2+ release and Ca2+ uptake activities, which is amplified by the regenerative nature of the Ca2+ release mechanism. Furthermore, individual cells switched between the caffeine-sensitive and caffeine-insensitive states with an average transition time of approximately 65 h, suggestive of temporal fluctuation in endogenous protein expression levels associated with caffeine response. These results suggest the significance of regenerative mechanisms that amplify protein expression noise and induce cell-to-cell phenotypic variation in mammalian cells.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
20 |
22
|
Mashimo M, Okubo Y, Yamazawa T, Yamasaki M, Watanabe M, Murayama T, Iino M. Inositol 1,4,5-trisphosphate signaling maintains the activity of glutamate uptake in Bergmann glia. Eur J Neurosci 2010; 32:1668-77. [PMID: 20958799 DOI: 10.1111/j.1460-9568.2010.07452.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The maintenance of synaptic functions is essential for neuronal information processing in the adult brain. Astrocytes express glutamate transporters that rapidly remove glutamate from the extracellular space and they play a critical role in the precise operation of glutamatergic transmission. However, how the glutamate clearance function of astrocytes is maintained remains elusive. Here, we describe a maintenance mechanism for the glutamate uptake capacity of Bergmann glial cells (BGs) in the cerebellum. When inositol 1,4,5-trisphosphate (IP(3) ) signaling was chronically and selectively inhibited in BGs in vivo, the retention time of glutamate around parallel fiber-Purkinje cell synapses was increased. Under these conditions, a decrease in the level of the glutamate/aspartate transporter (GLAST) in BGs was observed. The same effects were observed after chronic in vivo inhibition of purinergic P2 receptors in the cerebellar cortex. These results suggest that the IP(3) signaling cascade is involved in regulating GLAST levels in BGs to maintain glutamate clearance in the mature cerebellum.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
17 |
23
|
Yano F, Saito T, Ogata N, Yamazawa T, Iino M, Chung UI, Kawaguchi H. β-catenin regulates parathyroid hormone/parathyroid hormone-related protein receptor signals and chondrocyte hypertrophy through binding to the intracellular C-terminal region of the receptor. ACTA ACUST UNITED AC 2013; 65:429-35. [PMID: 23124878 DOI: 10.1002/art.37779] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 10/25/2012] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To investigate the underlying mechanisms of action and functional relevance of β-catenin in chondrocytes, by examining the role of β-catenin as a novel protein that interacts with the intracellular C-terminal portion of the parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptor type 1 (PTHR-1). METHODS The β-catenin-PTHR-1 binding region was determined with deletion and mutagenesis analyses of the PTHR1 C-terminus, using a mammalian two-hybrid assay. Physical interactions between these 2 molecules were examined with an in situ proximity ligation assay and immunostaining. To assess the effects of gain- and loss-of-function of β-catenin, transfection experiments were performed to induce overexpression of the constitutively active form of β-catenin (ca-β-catenin) and to block β-catenin activity with small interfering RNA, in cells cotransfected with either wild-type PTHR1 or mutant forms (lacking binding to β-catenin). Activation of the G protein α subunits G(αs) and G(αq) in the cells was determined by measurement of the intracellular cAMP accumulation and intracellular Ca(2+) concentration, while activation of canonical Wnt pathways was assessed using a TOPflash reporter assay. RESULTS In differentiated chondrocytes, β-catenin physically interacted and colocalized with the cell membrane-specific region of PTHR-1 (584-589). Binding of β-catenin to PTHR-1 caused suppression of the G(αs)/cAMP pathway and enhancement of the G(αq)/Ca(2+) pathway, without affecting the canonical Wnt pathway. Inhibition of Col10a1 messenger RNA (mRNA) expression by PTH was restored by overexpression of ca-β-catenin, even after blockade of the canonical Wnt pathway, and Col10a1 mRNA expression was further decreased by knockout of β-catenin (via the Cre recombinase) in chondrocytes from β-catenin-floxed mice. Mutagenesis analyses to block the binding of β-catenin to PTHR1 caused an inhibition of chondrocyte hypertrophy markers. CONCLUSION β-catenin binds to the PTHR-1 C-tail and switches the downstream signaling pathway from G(αs)/cAMP to G(αq)/Ca(2+), which is a possible mechanism by which chondrocyte hypertrophy may be regulated through the PTH/PTHrP signal independent of the canonical Wnt pathway.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
15 |
24
|
Yamazawa T, Nakamura N, Sato M, Sato C. Secretory glands and microvascular systems imaged in aqueous solution by atmospheric scanning electron microscopy (ASEM). Microsc Res Tech 2016; 79:1179-1187. [DOI: 10.1002/jemt.22773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 12/14/2022]
|
|
9 |
15 |
25
|
Oyama K, Gotoh M, Hosaka Y, Oyama TG, Kubonoya A, Suzuki Y, Arai T, Tsukamoto S, Kawamura Y, Itoh H, Shintani SA, Yamazawa T, Taguchi M, Ishiwata S, Fukuda N. Single-cell temperature mapping with fluorescent thermometer nanosheets. J Gen Physiol 2020; 152:151786. [PMID: 32421782 PMCID: PMC7398143 DOI: 10.1085/jgp.201912469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/17/2020] [Indexed: 01/09/2023] Open
Abstract
Recent studies using intracellular thermometers have shown that the temperature inside cultured single cells varies heterogeneously on the order of 1°C. However, the reliability of intracellular thermometry has been challenged both experimentally and theoretically because it is, in principle, exceedingly difficult to exclude the effects of nonthermal factors on the thermometers. To accurately measure cellular temperatures from outside of cells, we developed novel thermometry with fluorescent thermometer nanosheets, allowing for noninvasive global temperature mapping of cultured single cells. Various types of cells, i.e., HeLa/HEK293 cells, brown adipocytes, cardiomyocytes, and neurons, were cultured on nanosheets containing the temperature-sensitive fluorescent dye europium (III) thenoyltrifluoroacetonate trihydrate. First, we found that the difference in temperature on the nanosheet between nonexcitable HeLa/HEK293 cells and the culture medium was less than 0.2°C. The expression of mutated type 1 ryanodine receptors (R164C or Y523S) in HEK293 cells that cause Ca2+ leak from the endoplasmic reticulum did not change the cellular temperature greater than 0.1°C. Yet intracellular thermometry detected an increase in temperature of greater than ∼2°C at the endoplasmic reticulum in HeLa cells upon ionomycin-induced intracellular Ca2+ burst; global cellular temperature remained nearly constant within ±0.2°C. When rat neonatal cardiomyocytes or brown adipocytes were stimulated by a mitochondrial uncoupling reagent, the temperature was nearly unchanged within ±0.1°C. In cardiomyocytes, the temperature was stable within ±0.01°C during contractions when electrically stimulated at 2 Hz. Similarly, when rat hippocampal neurons were electrically stimulated at 0.25 Hz, the temperature was stable within ±0.03°C. The present findings with nonexcitable and excitable cells demonstrate that heat produced upon activation in single cells does not uniformly increase cellular temperature on a global basis, but merely forms a local temperature gradient on the order of ∼1°C just proximal to a heat source, such as the endoplasmic/sarcoplasmic reticulum ATPase.
Collapse
|
|
5 |
14 |