1
|
Hsieh KH, Chao CH, Cheng YL, Lai YC, Chuang YC, Wang JR, Chang SY, Hung YP, Chen YMA, Liu WL, Chuang WJ, Yeh TM. Enhancement of NETosis by ACE2-cross-reactive anti-SARS-CoV-2 RBD antibodies in patients with COVID-19. J Biomed Sci 2024; 31:39. [PMID: 38637878 PMCID: PMC11027296 DOI: 10.1186/s12929-024-01026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND High levels of neutrophil extracellular trap (NET) formation or NETosis and autoantibodies are related to poor prognosis and disease severity of COVID-19 patients. Human angiotensin-converting enzyme 2 (ACE2) cross-reactive anti-severe acute respiratory syndrome coronavirus 2 spike protein receptor-binding domain (SARS-CoV-2 RBD) antibodies (CR Abs) have been reported as one of the sources of anti-ACE2 autoantibodies. However, the pathological implications of CR Abs in NET formation remain unknown. METHODS In this study, we first assessed the presence of CR Abs in the sera of COVID-19 patients with different severity by serological analysis. Sera and purified IgG from CR Abs positive COVID-19 patients as well as a mouse monoclonal Ab (mAb 127) that can recognize both ACE2 and the RBD were tested for their influence on NETosis and the possible mechanisms involved were studied. RESULTS An association between CR Abs levels and the severity of COVID-19 in 120 patients was found. The CR Abs-positive sera and IgG from severe COVID-19 patients and mAb 127 significantly activated human leukocytes and triggered NETosis, in the presence of RBD. This NETosis, triggered by the coexistence of CR Abs and RBD, activated thrombus-related cells but was abolished when the interaction between CR Abs and ACE2 or Fc receptors was disrupted. We also revealed that CR Abs-induced NETosis was suppressed in the presence of recombinant ACE2 or the Src family kinase inhibitor, dasatinib. Furthermore, we found that COVID-19 vaccination not only reduced COVID-19 severity but also prevented the production of CR Abs after SARS-CoV-2 infection. CONCLUSIONS Our findings provide possible pathogenic effects of CR Abs in exacerbating COVID-19 by enhancing NETosis, highlighting ACE2 and dasatinib as potential treatments, and supporting the benefit of vaccination in reducing disease severity and CR Abs production in COVID-19 patients.
Collapse
|
2
|
Chao CH, Cheng D, Huang SW, Chuang YC, Yeh TM, Wang JR. Serological responses triggered by different SARS-CoV-2 vaccines against SARS-CoV-2 variants in Taiwan. Front Immunol 2022; 13:1023943. [PMID: 36458016 PMCID: PMC9705976 DOI: 10.3389/fimmu.2022.1023943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/31/2022] [Indexed: 09/05/2023] Open
Abstract
Broadly neutralizing ability is critical for developing the next-generation SARS-CoV-2 vaccine. We collected sera samples between December 2021-January 2022 from 113 Taiwan naïve participants after their second dose of homologous vaccine (AZD1222, mRNA-1273, BNT162-b2, and MVC-COV1901) and compared the differences in serological responses of various SARS-CoV-2 vaccines. Compared to AZD1222, the two mRNA vaccines could elicit a higher level of anti-S1-RBD binding antibodies with higher broadly neutralizing ability evaluated using pseudoviruses of various SARS-CoV-2 lineages. The antigenic maps produced from the neutralization data implied that Omicron represents very different antigenic characteristics from the ancestral lineage. These results suggested that constantly administering the vaccine with ancestral Wuhan spike is insufficient for the Omicron outbreak. In addition, we found that anti-ACE2 autoantibodies were significantly increased in all four vaccinated groups compared to the unvaccinated pre-pandemic group, which needed to be investigated in the future.
Collapse
|
3
|
Cheng YL, Chao CH, Lai YC, Hsieh KH, Wang JR, Wan SW, Huang HJ, Chuang YC, Chuang WJ, Yeh TM. Antibodies against the SARS-CoV-2 S1-RBD cross-react with dengue virus and hinder dengue pathogenesis. Front Immunol 2022; 13:941923. [PMID: 36045680 PMCID: PMC9420930 DOI: 10.3389/fimmu.2022.941923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/28/2022] [Indexed: 12/27/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally since December 2019. Several studies reported that SARS-CoV-2 infections may produce false-positive reactions in dengue virus (DENV) serology tests and vice versa. However, it remains unclear whether SARS-CoV-2 and DENV cross-reactive antibodies provide cross-protection against each disease or promote disease severity. In this study, we confirmed that antibodies against the SARS-CoV-2 spike protein and its receptor-binding domain (S1-RBD) were significantly increased in dengue patients compared to normal controls. In addition, anti-S1-RBD IgG purified from S1-RBD hyperimmune rabbit sera could cross-react with both DENV envelope protein (E) and nonstructural protein 1 (NS1). The potential epitopes of DENV E and NS1 recognized by these antibodies were identified by a phage-displayed random peptide library. In addition, DENV infection and DENV NS1-induced endothelial hyperpermeability in vitro were inhibited in the presence of anti-S1-RBD IgG. Passive transfer anti-S1-RBD IgG into mice also reduced prolonged bleeding time and decreased NS1 seral level in DENV-infected mice. Lastly, COVID-19 patients’ sera showed neutralizing ability against dengue infection in vitro. Thus, our results suggest that the antigenic cross-reactivity between the SARS-CoV-2 S1-RBD and DENV can induce the production of anti-SARS-CoV-2 S1-RBD antibodies that cross-react with DENV which may hinder dengue pathogenesis.
Collapse
|
4
|
Lai YC, Cheng YW, Chao CH, Chang YY, Chen CD, Tsai WJ, Wang S, Lin YS, Chang CP, Chuang WJ, Chen LY, Wang YR, Chang SY, Huang W, Wang JR, Tseng CK, Lin CK, Chuang YC, Yeh TM. Antigenic Cross-Reactivity Between SARS-CoV-2 S1-RBD and Its Receptor ACE2. Front Immunol 2022; 13:868724. [PMID: 35603169 PMCID: PMC9114768 DOI: 10.3389/fimmu.2022.868724] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/07/2022] [Indexed: 11/27/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging virus responsible for the ongoing COVID-19 pandemic. SARS-CoV-2 binds to the human cell receptor angiotensin-converting enzyme 2 (ACE2) through its receptor-binding domain in the S1 subunit of the spike protein (S1-RBD). The serum levels of autoantibodies against ACE2 are significantly higher in patients with COVID-19 than in controls and are associated with disease severity. However, the mechanisms through which these anti-ACE2 antibodies are induced during SARS-CoV-2 infection are unclear. In this study, we confirmed the increase in antibodies against ACE2 in patients with COVID-19 and found a positive correlation between the amounts of antibodies against ACE2 and S1-RBD. Moreover, antibody binding to ACE2 was significantly decreased in the sera of some COVID-19 patients after preadsorption of the sera with S1-RBD, which indicated that antibodies against S1-RBD can cross-react with ACE2. To confirm this possibility, two monoclonal antibodies (mAbs 127 and 150) which could bind to both S1-RBD and ACE2 were isolated from S1-RBD-immunized mice. Measurement of the binding affinities by Biacore showed these two mAbs bind to ACE2 much weaker than binding to S1-RBD. Epitope mapping using synthetic overlapping peptides and hydrogen deuterium exchange mass spectrometry (HDX-MS) revealed that the amino acid residues P463, F464, E465, R466, D467 and E471 of S1-RBD are critical for the recognition by mAbs 127 and 150. In addition, Western blotting analysis showed that these mAbs could recognize ACE2 only in native but not denatured form, indicating the ACE2 epitopes recognized by these mAbs were conformation-dependent. The protein-protein interaction between ACE2 and the higher affinity mAb 127 was analyzed by HDX-MS and visualized by negative-stain transmission electron microscopy imaging combined with antigen-antibody docking. Together, our results suggest that ACE2-cross-reactive anti-S1-RBD antibodies can be induced during SARS-CoV-2 infection due to potential antigenic cross-reactivity between S1-RBD and its receptor ACE2.
Collapse
|
5
|
Tien SM, Chang PC, Lai YC, Chuang YC, Tseng CK, Kao YS, Huang HJ, Hsiao YP, Liu YL, Lin HH, Chu CC, Cheng MH, Ho TS, Chang CP, Ko SF, Shen CP, Anderson R, Lin YS, Wan SW, Yeh TM. Therapeutic efficacy of humanized monoclonal antibodies targeting dengue virus nonstructural protein 1 in the mouse model. PLoS Pathog 2022; 18:e1010469. [PMID: 35486576 PMCID: PMC9053773 DOI: 10.1371/journal.ppat.1010469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/24/2022] [Indexed: 12/27/2022] Open
Abstract
Dengue virus (DENV) which infects about 390 million people per year in tropical and subtropical areas manifests various disease symptoms, ranging from fever to life-threatening hemorrhage and even shock. To date, there is still no effective treatment for DENV disease, but only supportive care. DENV nonstructural protein 1 (NS1) has been shown to play a key role in disease pathogenesis. Recent studies have shown that anti-DENV NS1 antibody can provide disease protection by blocking the DENV-induced disruption of endothelial integrity. We previously demonstrated that anti-NS1 monoclonal antibody (mAb) protected mice from all four serotypes of DENV challenge. Here, we generated humanized anti-NS1 mAbs and transferred them to mice after DENV infection. The results showed that DENV-induced prolonged bleeding time and skin hemorrhage were reduced, even several days after DENV challenge. Mechanistic studies showed the ability of humanized anti-NS1 mAbs to inhibit NS1-induced vascular hyperpermeability and to elicit Fcγ-dependent complement-mediated cytolysis as well as antibody-dependent cellular cytotoxicity of cells infected with four serotypes of DENV. These results highlight humanized anti-NS1 mAb as a potential therapeutic agent in DENV infection. DENV comprising four serotypes has a complicated pathogenesis and remains an unresolved global health problem. To date, supportive therapy is the mainstay for treatment of dengue patients. Despite a licensed Sanofi vaccine and ongoing clinical trials, more effective vaccines and/or licensed therapeutic drugs are required. Therapeutic mAbs are a potential tool to treat many epidemic diseases because of their high target specificity. Humanized anti-NS1 mAbs can recognize the NS1 from all four serotypes of DENV without danger of inducing ADE. In the DENV infection mouse model, we demonstrate that humanized NS1 mAbs have therapeutic benefits such as reducing DENV-induced prolonged bleeding time and skin hemorrhage. In vitro mechanistic studies showed a reduction of NS1-induced vascular permeability and an increase in cytolysis of DENV-infected cells. Our results showed that humanized anti-NS1 mAbs show strong potential for development toward clinical use.
Collapse
|
6
|
Cheng YW, Chuang YC, Huang SW, Liu CC, Wang JR. An auto-antibody identified from phenotypic directed screening platform shows host immunity against EV-A71 infection. J Biomed Sci 2022; 29:10. [PMID: 35130884 PMCID: PMC8822709 DOI: 10.1186/s12929-022-00794-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/01/2022] [Indexed: 02/08/2023] Open
Abstract
Background Enterovirus A71 (EV-A71) is a neurotropic virus which may cause severe neural complications, especially in infants and children. The clinical manifestations include hand-foot-and-mouth disease, herpangina, brainstem encephalitis, pulmonary edema, and other severe neurological diseases. Although there are some vaccines approved, the post-marketing surveillance is still unavailable. In addition, there is no antiviral drugs against EV-A71 available. Methods In this study, we identified a novel antibody that could inhibit viral growth through a human single chain variable fragment (scFv) library expressed in mammalian cells and panned by infection with lethal dose of EV-A71. Results We identified that the host protein α-enolase (ENO1) is the target of this scFv, and anti-ENO1 antibody was found to be more in mild cases than severe EV-A71 cases. Furthermore, we examined the antiviral activity in a mouse model. We found that the treatment of the identified 07-human IgG1 antibody increased the survival rate after virus challenge, and significantly decreased the viral RNA and the level of neural pathology in brain tissue. Conclusions Collectively, through a promising intracellular scFv library expression and screening system, we found a potential scFv/antibody which targets host protein ENO1 and can interfere with the infection of EV-A71. The results indicate that the usage and application of this antibody may offer a potential treatment against EV-A71 infection.
Collapse
|
7
|
Pinals RL, Ledesma F, Yang D, Navarro N, Jeong S, Pak JE, Kuo L, Chuang YC, Cheng YW, Sun HY, Landry MP. Rapid SARS-CoV-2 Spike Protein Detection by Carbon Nanotube-Based Near-Infrared Nanosensors. NANO LETTERS 2021; 21:2272-2280. [PMID: 33635655 PMCID: PMC10493163 DOI: 10.1021/acs.nanolett.1c00118] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To effectively track and eliminate COVID-19, it is critical to develop tools for rapid and accessible diagnosis of actively infected individuals. Here, we introduce a single-walled carbon nanotube (SWCNT)-based optical sensing approach toward this end. We construct a nanosensor based on SWCNTs noncovalently functionalized with ACE2, a host protein with high binding affinity for the SARS-CoV-2 spike protein. The presence of the SARS-CoV-2 spike protein elicits a robust, 2-fold nanosensor fluorescence increase within 90 min of spike protein exposure. We characterize the nanosensor stability and sensing mechanism and passivate the nanosensor to preserve sensing response in saliva and viral transport medium. We further demonstrate that these ACE2-SWCNT nanosensors retain sensing capacity in a surface-immobilized format, exhibiting a 73% fluorescence turn-on response within 5 s of exposure to 35 mg/L SARS-CoV-2 virus-like particles. Our data demonstrate that ACE2-SWCNT nanosensors can be developed into an optical tool for rapid SARS-CoV-2 detection.
Collapse
|
8
|
Pinals RL, Ledesma F, Yang D, Navarro N, Jeong S, Pak JE, Kuo L, Chuang YC, Cheng YW, Sun HY, Landry MP. Rapid SARS-CoV-2 Detection by Carbon Nanotube-Based Near-Infrared Nanosensors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 33173881 DOI: 10.1101/2020.11.02.20223404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To effectively track and eliminate COVID-19, it is critical to develop tools for rapid and accessible diagnosis of actively infected individuals. Here, we introduce a single-walled carbon nanotube (SWCNT)-based optical sensing approach towards these ends. We construct a nanosensor based on SWCNTs noncovalently functionalized with ACE2, a host protein with high binding affinity for the SARS-CoV-2 spike protein. Presence of the SARS-CoV-2 spike protein elicits a robust, two-fold nanosensor fluorescence increase within 90 min of spike protein exposure. We characterize the nanosensor stability and sensing mechanism, and passivate the nanosensor to preserve sensing response in saliva and viral transport medium. We further demonstrate that these ACE2-SWCNT nanosensors retain sensing capacity in a surface-immobilized format, exhibiting a 73% fluorescence turn-on response within 5 s of exposure to 35 mg/L SARS-CoV-2 virus-like particles. Our data demonstrate that ACE2-SWCNT nanosensors can be developed into an optical tool for rapid SARS-CoV-2 detection. ABSTRACT FIGURE
Collapse
|
9
|
Wang HF, Chuang YC. 2590 Robotic Block of Uterine Vessels in Different Anatomical Locations. J Minim Invasive Gynecol 2019. [DOI: 10.1016/j.jmig.2019.09.473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Chuang YC, Chen YC. Robotic Control of Heavy Bleeding in Para-Aortic Lymph Node Dissection Without Conversion to Laparotomy - A Video Report. J Minim Invasive Gynecol 2019. [DOI: 10.1016/j.jmig.2019.09.654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Chuang YC, Tiruneh F, Wu CH. A spatial regression analysis of intimate partner violence in the Democratic Republic of the Congo. Eur J Public Health 2017. [DOI: 10.1093/eurpub/ckx186.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Wan SW, Chen PW, Chen CY, Lai YC, Chu YT, Hung CY, Lee H, Wu HF, Chuang YC, Lin J, Chang CP, Wang S, Liu CC, Ho TS, Lin CF, Lee CK, Wu-Hsieh BA, Anderson R, Yeh TM, Lin YS. Therapeutic Effects of Monoclonal Antibody against Dengue Virus NS1 in a STAT1 Knockout Mouse Model of Dengue Infection. THE JOURNAL OF IMMUNOLOGY 2017; 199:2834-2844. [PMID: 28904127 DOI: 10.4049/jimmunol.1601523] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 08/14/2017] [Indexed: 12/17/2022]
Abstract
Dengue virus (DENV) is the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome and is endemic to tropical and subtropical regions of the world. Our previous studies showed the existence of epitopes in the C-terminal region of DENV nonstructural protein 1 (NS1) which are cross-reactive with host Ags and trigger anti-DENV NS1 Ab-mediated endothelial cell damage and platelet dysfunction. To circumvent these potentially harmful events, we replaced the C-terminal region of DENV NS1 with the corresponding region from Japanese encephalitis virus NS1 to create chimeric DJ NS1 protein. Passive immunization of DENV-infected mice with polyclonal anti-DJ NS1 Abs reduced viral Ag expression at skin inoculation sites and shortened DENV-induced prolonged bleeding time. We also investigated the therapeutic effects of anti-NS1 mAb. One mAb designated 2E8 does not recognize the C-terminal region of DENV NS1 in which host-cross-reactive epitopes reside. Moreover, mAb 2E8 recognizes NS1 of all four DENV serotypes. We also found that mAb 2E8 caused complement-mediated lysis in DENV-infected cells. In mouse model studies, treatment with mAb 2E8 shortened DENV-induced prolonged bleeding time and reduced viral Ag expression in the skin. Importantly, mAb 2E8 provided therapeutic effects against all four serotypes of DENV. We further found that mAb administration to mice as late as 1 d prior to severe bleeding still reduced prolonged bleeding time and hemorrhage. Therefore, administration with a single dose of mAb 2E8 can protect mice against DENV infection and pathological effects, suggesting that NS1-specific mAb may be a therapeutic option against dengue disease.
Collapse
|
13
|
Chen HR, Chuang YC, Lin YS, Liu HS, Liu CC, Perng GC, Yeh TM. Dengue Virus Nonstructural Protein 1 Induces Vascular Leakage through Macrophage Migration Inhibitory Factor and Autophagy. PLoS Negl Trop Dis 2016; 10:e0004828. [PMID: 27409803 PMCID: PMC4943727 DOI: 10.1371/journal.pntd.0004828] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 06/16/2016] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV) is the most common mosquito-borne flavivirus; it can either cause mild dengue fever or the more severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). One of the characteristic features of DHF/DSS is vascular leakage; although DENV nonstructural protein 1 (NS1) has been proved to induce vascular leakage after binding to Toll-like receptor 4, the down-stream mechanism has not yet been fully understood. In the sera of DENV-infected patients, the concentrations of DENV NS1 and inflammatory cytokine macrophage migration inhibitory factor (MIF) are positively correlated with disease severity, but whether DENV NS1 induces vascular leakage through MIF secretion remains unknown. We demonstrated that recombinant NS1 induced vascular leakage and MIF secretion both in human endothelial cell line HMEC-1 and in mice. Furthermore, these phenomena were inhibited in the presence of anti-NS1 antibodies both in vitro and in vivo. DENV NS1 also induced LC3-I to LC3-II conversion and p62 degradation in endothelial cell line, which indicated the formation of autophagy. To clarify whether MIF or autophagy mediated DENV NS1-induced vascular leakage, various inhibitors were applied. The results showed that DENV NS1-induced vascular leakage and VE-cadherin disarray were blocked in the presence of MIF inhibitors, anti-MIF-antibodies or autophagy inhibitors. An Atg5 knockdown clone further confirmed that autophagy formation of endothelial cells was required in NS1-induced vascular leakage. Furthermore, DENV NS1-induced LC3 puncta were also decreased in the presence of MIF inhibitors, indicating that MIF mediated DENV NS1-induced autophagy. Taken together, the results suggest a potential mechanism of DENV-induced vascular leakage and provide possible therapeutic targets against DHF/DSS.
Collapse
|
14
|
Chuang YC, Lin J, Lin YS, Wang S, Yeh TM. Dengue Virus Nonstructural Protein 1-Induced Antibodies Cross-React with Human Plasminogen and Enhance Its Activation. THE JOURNAL OF IMMUNOLOGY 2015; 196:1218-26. [PMID: 26712948 DOI: 10.4049/jimmunol.1500057] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 11/20/2015] [Indexed: 12/31/2022]
Abstract
Dengue virus (DENV) infection is the most common mosquito-borne viral disease, and it can cause life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Abnormal activation of the coagulation and fibrinolysis system is one of the hallmarks of DHF/DSS. However, the mechanism underlying hemorrhage in DHF/DSS remains elusive. In previous studies, plasminogen (Plg) cross-reactive Abs, which can recognize DENV nonstructural protein (NS) 1, have been found in dengue patients. However, it is unclear whether these Abs are indeed induced by DENV NS1. Thus, we immunized mice with recombinant NS1 from both bacteria and drosophila to determine whether NS1 can induce Plg cross-reactive Abs. The results from the NS1-immunized mouse sera indicated that NS1 immunization induced Abs that could cross-react with Plg. To study the effects of these NS1-induced Plg cross-reactive Abs on fibrinolysis, we isolated several Plg cross-reactive anti-NS1 mAbs from these mice and found that some of them could enhance Plg activation. In addition, epitope mapping with a phage-displayed random peptide library revealed that one of these mAbs (2A5) could recognize NS1 C-terminal residues 305-311, which share sequence homology with Plg residues 590-597. A synthetic peptide of NS1 residues 305-311 could inhibit the binding of both 2A5 and its Fab to Plg and its enhanced activation. Thus, our results suggest that DENV NS1 can induce Plg cross-reactive Abs through molecular mimicry, which can enhance Plg activation and may contribute to the pathogenesis of DHF/DSS.
Collapse
|
15
|
Feng MC, Yu CT, Liang ZW, Liu SF, Chuang YC, Lu PL. P18.12 People seeking sexually transmitted diseases screening, medical professionals, and members of the general public surveyed regarding knowledge about non-occupational post-exposure prophylaxis for hiv. Br J Vener Dis 2015. [DOI: 10.1136/sextrans-2015-052270.635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Yu CT, Feng MC, Chen LH, Wen WH, Liu SF, Chuang YC. P18.11 Examining the effect of case management on levels of depression among newly diagnosed people living with hiv in taiwan. Br J Vener Dis 2015. [DOI: 10.1136/sextrans-2015-052270.634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Chen HR, Chuang YC, Chao CH, Yeh TM. Macrophage migration inhibitory factor induces vascular leakage via autophagy. Biol Open 2015; 4:244-52. [PMID: 25617421 PMCID: PMC4365493 DOI: 10.1242/bio.201410322] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Vascular leakage is an important feature of acute inflammatory shock, which currently has no effective treatment. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that can induce vascular leakage and plays an important role in the pathogenesis of shock. However, the mechanism of MIF-induced vascular leakage is still unclear. In this study, using recombinant MIF (rMIF), we demonstrated that MIF induced disorganization and degradation of junction proteins and increased the permeability of human endothelial cells in vitro. Western blotting analysis showed that rMIF treatment induced LC3 conversion and p62 degradation. Inhibition of autophagy with a PI3K inhibitor (3-MA), a ROS scavenger (NAC) or autophagosomal-lysosomal fusion inhibitors (bafilomycin A1 and chloroquine) rescued rMIF-induced vascular leakage, suggesting that autophagy mediates MIF-induced vascular leakage. The potential involvement of other signaling pathways was also studied using different inhibitors, and the results suggested that MIF-induced vascular leakage may occur through the ERK pathway. In conclusion, we showed that MIF triggered autophagic degradation of endothelial cells, resulting in vascular leakage. Inhibition of MIF-induced autophagy may provide therapeutic targets against vascular leakage in inflammatory shock.
Collapse
|
18
|
Yang HS, Chen IC, Lee YT, Lee KC, Chuang YC, Chang CY, Wei J. Cardiac transplantation and concomitant coronary artery bypass grafting: our experiences in 11 cases. Transplant Proc 2014; 46:900-2. [PMID: 24767376 DOI: 10.1016/j.transproceed.2013.11.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/07/2013] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The shortage of donor hearts for transplantation could be alleviated by including the hearts of older donors. Previous literature revealed similar early and medium-term survival outcomes compared with those of younger donors. This study presents our experience with patients who underwent orthotopic heart transplantation and concomitant coronary artery bypass grafting at our institution. METHODS We present our experience with 11 patients with end-stage cardiomyopathy (8 men and 3 women) undergoing orthotopic heart transplantation and concomitant coronary artery bypass grafting from September 2002 to November 2011 at our institute. RESULTS All 11 donor organs would otherwise have been rejected, depriving potential recipients of organ transplantation. Two patients received concurrent 2-coronary-artery bypass, and the other 9 patients received concurrent single-coronary-artery bypass during orthotopic heart transplantation. All patients had an uneventful postoperative course, with follow-up completed 3 to 128 months after cardiac transplantation and concomitant coronary artery bypass grafting surgery. CONCLUSIONS Our experiences suggest that donor hearts requiring coronary artery bypass grafting, which form a small but significant donor subgroup, can be used effectively and safely when matched to the recipients' age and medical condition.
Collapse
|
19
|
Li HB, Liao HY, Lin ST, Liu SK, Singh L, Singh MK, Soma AK, Wong HT, Wu YC, Zhao W, Asryan G, Chuang YC, Deniz M, Fang JM, Hsu CL, Huang TR, Kiran Kumar G, Lee SC, Li J, Li JM, Li YJ, Li YL, Lin CW, Lin FK, Liu YF, Ma H, Ruan XC, Shen YT, Singh V, Tang CJ, Tseng CH, Xu Y, Yang SW, Yu CX, Yue Q, Zeng Z, Zeyrek M, Zhou ZY. Limits on spin-independent couplings of WIMP dark matter with a p-type point-contact germanium detector. PHYSICAL REVIEW LETTERS 2013; 110:261301. [PMID: 23848861 DOI: 10.1103/physrevlett.110.261301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/21/2013] [Indexed: 06/02/2023]
Abstract
We report new limits on a spin-independent weakly interacting massive particle (WIMP)-nucleon interaction cross section using 39.5 kg days of data taken with a p-type point-contact germanium detector of 840 g fiducial mass at the Kuo-Sheng Reactor Neutrino Laboratory. Crucial to this study is the understanding of the selection procedures and, in particular, the bulk-surface events differentiation at the sub-keV range. The signal-retaining and background-rejecting efficiencies were measured with calibration gamma sources and a novel n-type point-contact germanium detector. Part of the parameter space in the cross section versus WIMP-mass implied by various experiments is probed and excluded.
Collapse
|
20
|
Chuang YC, Wang SY, Lin YS, Chen HR, Yeh TM. Re-evaluation of the pathogenic roles of nonstructural protein 1 and its antibodies during dengue virus infection. J Biomed Sci 2013; 20:42. [PMID: 23806052 PMCID: PMC3704815 DOI: 10.1186/1423-0127-20-42] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/18/2013] [Indexed: 11/21/2022] Open
Abstract
Dengue virus (DENV) infection can cause life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Vascular leakage and abnormal hemorrhage are the two major pathogenic changes found in these patients. From previous studies, it is known that both antibodies and cytokines induced in response to DENV infection are involved in the immunopathogenesis of DHF/DSS. However, the role of viral factors during DENV infection remains unclear. Nonstructural protein 1 (NS1), which is secreted in the sera of patients, is a useful diagnostic marker for acute DENV infection. Nevertheless, the roles of NS1 and its antibodies in the pathogenesis of DHF/DSS are unclear. The focus of this review is to evaluate the possible contributions of NS1 and the antibodies it induces to vascular leakage and abnormal hemorrhage during DENV infection, which may provide clues to better understanding the pathogenesis of DHF/DSS.
Collapse
|
21
|
Chuang YC, Lin YS, Liu HS, Wang JR, Yeh TM. Antibodies against thrombin in dengue patients contain both anti-thrombotic and pro-fibrinolytic activities. Thromb Haemost 2013; 110:358-65. [PMID: 23740201 DOI: 10.1160/th13-02-0149] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/02/2013] [Indexed: 11/05/2022]
Abstract
Dengue virus (DENV) infection may result in severe life-threatening Dengue haemorrhagic fever (DHF). The mechanisms causing haemorrhage in those with DHF are unclear. In this study, we demonstrated that antibodies against human thrombin were increased in the sera of Dengue patients but not in that of patients infected with other viruses. To further characterise the properties of these antibodies, affinity-purified anti-thrombin antibodies (ATAs) were collected from Dengue patient sera by thrombin and protein A/L affinity columns. Most of the ATAs belonged to the IgG class and recognized DENV nonstructural protein 1 (NS1). In addition, we found that dengue patient ATAs also cross-reacted with human plasminogen (Plg). Functional studies in vitro indicated that Dengue patient ATAs could inhibit thrombin activity and enhance Plg activation. Taken together, these results suggest that DENV NS1-induced thrombin and Plg cross-reactive antibodies may contribute to the development of haemorrhage in patients with DHF by interfering with coagulation and fibrinolysis.
Collapse
|
22
|
Chuang YC, Lin YS, Liu CC, Liu HS, Liao SH, Shi MD, Lei HY, Yeh TM. Factors contributing to the disturbance of coagulation and fibrinolysis in dengue virus infection. J Formos Med Assoc 2012; 112:12-7. [PMID: 23332424 DOI: 10.1016/j.jfma.2012.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 10/27/2022] Open
Abstract
Hemorrhage is one of the hallmarks of dengue hemorrhagic fever. However, the mechanisms that cause hemorrhage are unclear. In this review we focus on the possible factors that may be involved in the disturbance of coagulation and fibrinolysis during dengue virus (DENV) infection. Factors such as autoantibodies and cytokines induced by DENV infection as well as hemostatic molecules expressed on DENV-infected cells, and DENV viral proteins may all contribute to the defect of hemostasis during DENV infection. It is the combination of these viral and host factors that may tilt the balance of coagulation and fibrinolysis toward bleeding in dengue patients.
Collapse
|
23
|
Chuang YC, Su WH, Lei HY, Lin YS, Liu HS, Chang CP, Yeh TM. Macrophage migration inhibitory factor induces autophagy via reactive oxygen species generation. PLoS One 2012; 7:e37613. [PMID: 22629429 PMCID: PMC3358253 DOI: 10.1371/journal.pone.0037613] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/23/2012] [Indexed: 12/21/2022] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process that maintains cellular homeostasis under stress conditions such as starvation and pathogen infection. Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine that plays important roles in inflammation and tumorigenesis. Cytokines such as IL-1β and TNF-α that are induced by MIF have been shown to be involved in the induction of autophagy. However, the actual role of MIF in autophagy remains unclear. Here, we have demonstrated that incubation of human hepatoma cell line HuH-7 cells with recombinant MIF (rMIF) induced reactive oxygen species (ROS) production and autophagy formation, including LC3-II expression, LC3 punctae formation, autophagic flux, and mitochondria membrane potential loss. The autophagy induced by rMIF was inhibited in the presence of MIF inhibitor, ISO-1 as well as ROS scavenger N-acetyl-L-cysteine (NAC). In addition, serum starvation-induced MIF release and autophagy of HuH-7 cells were partly blocked in the presence of NAC. Moreover, diminished MIF expression by shRNA transfection or inhibition of MIF by ISO-1 decreased serum starvation-induced autophagy of HuH-7 cells. Taken together, these data suggest that cell autophagy was induced by MIF under stress conditions such as inflammation and starvation through ROS generation.
Collapse
|
24
|
Yeh TM, Chuang YC. Macrophage migration inhibitory factor induces autophagy via reactive oxygen species generation (174.10). THE JOURNAL OF IMMUNOLOGY 2012. [DOI: 10.4049/jimmunol.188.supp.174.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Autophagy is an evolutionarily conserved catabolic process which maintains cellular homeostasis under stress conditions such as starvation and pathogen infection. Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine that plays important roles in inflammation and tumorigenesis. Cytokines such as IL-1β and TNF-α that are induced by MIF have been shown to be involved in the induction of autophagy. However, the actually role of MIF in autophagy is still unclear. Here, we demonstrated that incubation of human hepatoma cell line Huh-7 cells with recombinant MIF (rMIF) induced reactive oxygen species (ROS) production and autophagy formation, including LC3-II expression, LC3 punctae formation and mitochondria membrane potential loss. The autophagy induced by rMIF was inhibited in the presence of MIF inhibitor, ISO-1 as well as ROS scavenger N-acetyl-L-cysteine (NAC). In addition, serum starvation-induced MIF release and autophagy of Huh-7 cells were partly blocked in the presence of NAC. Moreover, diminished MIF expression by shRNA transfection or inhibition of MIF by ISO-1 decreased serum starvation-induced autophagy of Huh-7 cells. Taken together, these data suggest that MIF is involved in autophagy through ROS generation to prevent cell death.
Collapse
|
25
|
Lin SW, Chuang YC, Lin YS, Lei HY, Liu HS, Yeh TM. Dengue virus nonstructural protein NS1 binds to prothrombin/thrombin and inhibits prothrombin activation. J Infect 2012; 64:325-34. [DOI: 10.1016/j.jinf.2011.11.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 10/15/2022]
|