1
|
Foster B, Bagci U, Mansoor A, Xu Z, Mollura DJ. A review on segmentation of positron emission tomography images. Comput Biol Med 2014; 50:76-96. [PMID: 24845019 DOI: 10.1016/j.compbiomed.2014.04.014] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 03/19/2014] [Accepted: 04/16/2014] [Indexed: 11/20/2022]
Abstract
Positron Emission Tomography (PET), a non-invasive functional imaging method at the molecular level, images the distribution of biologically targeted radiotracers with high sensitivity. PET imaging provides detailed quantitative information about many diseases and is often used to evaluate inflammation, infection, and cancer by detecting emitted photons from a radiotracer localized to abnormal cells. In order to differentiate abnormal tissue from surrounding areas in PET images, image segmentation methods play a vital role; therefore, accurate image segmentation is often necessary for proper disease detection, diagnosis, treatment planning, and follow-ups. In this review paper, we present state-of-the-art PET image segmentation methods, as well as the recent advances in image segmentation techniques. In order to make this manuscript self-contained, we also briefly explain the fundamentals of PET imaging, the challenges of diagnostic PET image analysis, and the effects of these challenges on the segmentation results.
Collapse
|
Review |
11 |
233 |
2
|
Aide N, Lasnon C, Veit-Haibach P, Sera T, Sattler B, Boellaard R. EANM/EARL harmonization strategies in PET quantification: from daily practice to multicentre oncological studies. Eur J Nucl Med Mol Imaging 2017; 44:17-31. [PMID: 28623376 PMCID: PMC5541084 DOI: 10.1007/s00259-017-3740-2] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 01/18/2023]
Abstract
Quantitative positron emission tomography/computed tomography (PET/CT) can be used as diagnostic or prognostic tools (i.e. single measurement) or for therapy monitoring (i.e. longitudinal studies) in multicentre studies. Use of quantitative parameters, such as standardized uptake values (SUVs), metabolic active tumor volumes (MATVs) or total lesion glycolysis (TLG), in a multicenter setting requires that these parameters be comparable among patients and sites, regardless of the PET/CT system used. This review describes the motivations and the methodologies for quantitative PET/CT performance harmonization with emphasis on the EANM Research Ltd. (EARL) Fluorodeoxyglucose (FDG) PET/CT accreditation program, one of the international harmonization programs aiming at using FDG PET as a quantitative imaging biomarker. In addition, future accreditation initiatives will be discussed. The validation of the EARL accreditation program to harmonize SUVs and MATVs is described in a wide range of tumor types, with focus on therapy assessment using either the European Organization for Research and Treatment of Cancer (EORTC) criteria or PET Evaluation Response Criteria in Solid Tumors (PERCIST), as well as liver-based scales such as the Deauville score. Finally, also presented in this paper are the results from a survey across 51 EARL-accredited centers reporting how the program was implemented and its impact on daily routine and in clinical trials, harmonization of new metrics such as MATV and heterogeneity features.
Collapse
|
Review |
8 |
211 |
3
|
Lodge MA. Repeatability of SUV in Oncologic 18F-FDG PET. J Nucl Med 2017; 58:523-532. [PMID: 28232605 DOI: 10.2967/jnumed.116.186353] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/21/2017] [Indexed: 11/16/2022] Open
Abstract
Quantitative analysis can potentially improve the accuracy and consistency of 18F-FDG PET, particularly for the assessment of tumor response to treatment. Although not without limitations, SUV has emerged as the predominant metric for tumor quantification with 18F-FDG PET. Growing literature suggests that the difference between SUVs measured before and after treatment can be used to predict tumor response at an early stage. SUV is, however, associated with multiple sources of variability, and to best use SUV for response assessment, an understanding of the repeatability of the technique is required. Test-retest studies involve repeated scanning of the same patient on the same scanner using the same protocol no more than a few days apart and provide basic information on the repeatability of the technique. Multiple test-retest studies have been performed to assess SUV repeatability, although a comparison of reports is complicated by the use of different methodologies and statistical metrics. This article reviews the available data, addressing issues such as different repeatability metrics, relative units, log transformation, and asymmetric limits of repeatability. When acquired with careful attention to protocol, tumor SUV has a within-subject coefficient of variation of approximately 10%. In a response assessment setting, SUV reductions of more than 25% and increases of more than 33% are unlikely to be due to measurement variability. Broader margins may be required for sites with less rigorous protocol compliance, but in general, SUV is a highly repeatable imaging biomarker that is ideally suited to monitoring tumor response to treatment in individual patients.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
144 |
4
|
Wacker M. Nanocarriers for intravenous injection--the long hard road to the market. Int J Pharm 2013; 457:50-62. [PMID: 24036012 DOI: 10.1016/j.ijpharm.2013.08.079] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 12/19/2022]
Abstract
Nanodispersed drug delivery systems for the intravenous injection have successfully overcome the hurdle of drug approval in the European Union and the United States. Although there is a need for highly advanced nanocarrier devices they have not been the result of a rational formulation design but were developed as stand-alone products in a long chain of case-by-case studies. This review focuses on aspects in development, composition, and manufacture of these innovative dosage forms that are relevant for the translation into new drug products.
Collapse
|
Review |
12 |
111 |
5
|
Eiber M, Takei T, Souvatzoglou M, Mayerhoefer ME, Fürst S, Gaertner FC, Loeffelbein DJ, Rummeny EJ, Ziegler SI, Schwaiger M, Beer AJ. Performance of whole-body integrated 18F-FDG PET/MR in comparison to PET/CT for evaluation of malignant bone lesions. J Nucl Med 2013; 55:191-7. [PMID: 24309383 DOI: 10.2967/jnumed.113.123646] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Because of its higher soft-tissue contrast, whole-body integrated PET/MR offers potential advantages over PET/CT for evaluation of bone lesions. However, unlike PET/CT, PET/MR ignores the contribution of cortical bone in the attenuation map. Thus, the aims of this study were to evaluate the diagnostic performance of whole-body integrated (18)F-FDG PET/MR specifically for bone lesions and to analyze differences in standardized uptake value (SUV) quantification between PET/MR and PET/CT. METHODS One hundred nineteen patients with (18)F-FDG-avid primary malignancies underwent a single-injection, dual-imaging protocol using (18)F-FDG on a PET/CT scanner and a subsequent PET/MR scan with a T1-weighted volumetric interpolated breath-hold examination (VIBE) Dixon sequence for attenuation correction and an unenhanced coronal T1-weighted turbo spin-echo (TSE) sequence for bone analysis. Three sets of images (CT with PET [from PET/CT; set A], T1-weighted VIBE Dixon with PET [set B], and T1-weighted TSE with PET [both from PET/MR; set C]) were analyzed. Two readers rated every lesion using a 4-point scale for lesion conspicuity on PET, a 4-point scale for anatomic allocation of PET-positive lesions, and a 5-point scale for the nature of every lesion based on its appearance on morphologic imaging and uptake on PET. For all lesions and for representative regions of normal bone, SUV analysis was performed for PET/MR and PET/CT. RESULTS In total, 98 bone lesions were identified in 33 of 119 patients, and 630 regions of normal bone were analyzed. Visual lesion conspicuity on PET was comparable for PET/CT (mean rating, 2.82 ± 0.45) and PET/MR (2.75 ± 0.51; P = 0.3095). Anatomic delineation and allocation of suggestive lesions was significantly superior with T1-weighted TSE MRI (mean rating, 2.84 ± 0.42) compared with CT (2.57 ± 0.54, P = 0.0001) or T1-weighted VIBE Dixon MRI (2.57 ± 0.54, P = 0.0002). No significant difference in correct classification of malignant bone lesions was found among sets A (85/90), B (84/90), and C (86/90). For bone lesions and regions of normal bone, a highly significant correlation existed between the mean SUVs for PET/MR and PET/CT (R = 0.950 and 0.917, respectively, each P < 0.001). However, substantially lower mean SUVs were found for PET/MR than for PET/CT both for bone lesions (12.4% ± 15.5%) and for regions of normal bone (30.1% ± 27.5%). CONCLUSION Compared with PET/CT, fully integrated whole-body (18)F-FDG PET/MR is technically and clinically robust for evaluation of bone lesions despite differences in attenuation correction. PET/MR, including diagnostic T1-weighted TSE sequences, was superior to PET/CT for anatomic delineation and allocation of bone lesions. This finding might be of clinical relevance in selected cases--for example, primary bone tumors, early bone marrow infiltration, and tumors with low uptake on PET. Thus, a diagnostic T1-weighted TSE sequence is recommended as a routine protocol for oncologic PET/MR.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
105 |
6
|
Dendl K, Koerber SA, Finck R, Mokoala KMG, Staudinger F, Schillings L, Heger U, Röhrich M, Kratochwil C, Sathekge M, Jäger D, Debus J, Haberkorn U, Giesel FL. 68Ga-FAPI-PET/CT in patients with various gynecological malignancies. Eur J Nucl Med Mol Imaging 2021; 48:4089-4100. [PMID: 34050777 PMCID: PMC8484099 DOI: 10.1007/s00259-021-05378-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/22/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE 68Ga-FAPI (fibroblast activation protein inhibitor) is a novel and highly promising radiotracer for PET/CT imaging. The aim of this retrospective analysis is to explore the potential of FAPI-PET/CT in gynecological malignancies. We assessed biodistribution, tumor uptake, and the influence of pre- or postmenopausal status on tracer accumulation in hormone-sensitive organs. Furthermore, a comparison with the current standard oncological tracer 18F-FDG was performed in selected cases. PATIENTS AND METHODS A total of 31 patients (median age 59.5) from two centers with several gynecological tumors (breast cancer; ovarian cancer; cervical cancer; endometrial cancer; leiomyosarcoma of the uterus; tubal cancer) underwent 68Ga-FAPI-PET/CT. Out of 31 patients, 10 received an additional 18F-FDG scan within a median time interval of 12.5 days (range 1-76). Tracer uptake was quantified by standardized uptake values (SUV)max and (SUV)mean, and tumor-to-background ratio (TBR) was calculated (SUVmax tumor/ SUVmean organ). Moreover, a second cohort of 167 female patients with different malignancies was analyzed regarding their FAPI uptake in normal hormone-responsive organs: endometrium (n = 128), ovary (n = 64), and breast (n = 147). These patients were categorized by age as premenopausal (<35 years; n = 12), postmenopausal (>65 years; n = 68), and unknown menstrual status (35-65 years; n = 87), followed by an analysis of FAPI uptake of the pre- and postmenopausal group. RESULTS In 8 out of 31 patients, the primary tumor was present, and all 31 patients showed lesions suspicious for metastasis (n = 81) demonstrating a high mean SUVmax in both the primary (SUVmax 11.6) and metastatic lesions (SUVmax 9.7). TBR was significantly higher in 68Ga-FAPI compared to 18F-FDG for distant metastases (13.0 vs. 5.7; p = 0.047) and by trend for regional lymph node metastases (31.9 vs 27.3; p = 0.6). Biodistribution of 68Ga-FAPI-PET/CT presented significantly lower uptake or no significant differences in 15 out of 16 organs, compared to 18F-FDG-PET/CT. The highest uptake of all primary lesions was obtained in endometrial carcinomas (mean SUVmax 18.4), followed by cervical carcinomas (mean SUVmax 15.22). In the second cohort, uptake in premenopausal patients differed significantly from postmenopausal patients in endometrium (11.7 vs 3.9; p < 0.0001) and breast (1.8 vs 1.0; p = 0.004), whereas no significant difference concerning ovaries (2.8 vs 1.6; p = 0.141) was observed. CONCLUSION Due to high tracer uptake resulting in sharp contrasts in primary and metastatic lesions and higher TBRs than 18F-FDG-PET/CT, 68Ga-FAPI-PET/CT presents a promising imaging method for staging and follow-up of gynecological tumors. The presence or absence of the menstrual cycle seems to correlate with FAPI accumulation in the normal endometrium and breast. This first investigation of FAP ligands in gynecological tumor entities supports clinical application and further research in this field.
Collapse
|
research-article |
4 |
104 |
7
|
Comparison of whole-body PET/CT and PET/MRI in breast cancer patients: lesion detection and quantitation of 18F-deoxyglucose uptake in lesions and in normal organ tissues. Eur J Radiol 2013; 83:289-96. [PMID: 24331845 DOI: 10.1016/j.ejrad.2013.11.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 10/30/2013] [Accepted: 11/03/2013] [Indexed: 01/04/2023]
Abstract
PURPOSE To compare the performance of PET/MRI imaging using MR attenuation correction (MRAC) (DIXON-based 4-segment -map) in breast cancer patients with that of PET/CT using CT-based attenuation correction and to compare the quantification accuracy in lesions and in normal organ tissues. METHODS A total of 36 patients underwent a whole-body PET/CT scan 1h after injection and an average of 62 min later a second scan using a hybrid PET/MRI system. PET/MRI and PET/CT were compared visually by rating anatomic allocation and image contrast. Regional tracer uptake in lesions was quantified using volumes of interest, and maximal and mean standardized uptake values (SUVmax and SUVmean, respectively) were calculated. Metabolic tumor volume (MTV) of each lesion was computed on PET/MRI and PET/CT. Tracer uptake in normal organ tissue was assessed as SUVmax and SUVmean in liver, spleen, left ventricular myocardium, lung, and muscle. RESULTS Overall 74 FDG positive lesions were visualized by both PET/CT and PET/MRI. No significant differences in anatomic allocation scores were found between PET/CT and PERT/MRI, while contrast score of lesions on PET/MRI was significantly higher. Both SUVmax and SUVmean of lesions were significantly higher on PET/MRI than on PET/CT, with strong correlations between PET/MRI and PET/CT data (ρ=0.71-0.88). MTVs of all lesions were 4% lower on PET/MRI than on PET/CT, but no statistically significant difference was observed, and an excellent correlation between measurements of MTV with PET/MRI and PET/CT was found (ρ=0.95-0.97; p<0.0001). Both SUVmax and SUVmean were significantly lower by PET/MRI than by PET/CT for lung, liver and muscle, no significant difference was observed for spleen, while either SUVmax and SUVmean of myocardium were significantly higher by PET/MRI. High correlations were found between PET/MRI and PET/CT for both SUVmax and SUVmean of the left ventricular myocardium (ρ=0.91; p<0.0001), while moderate correlations were found for the other normal organ tissues (ρ=0.36-0.61; p<0.05). CONCLUSIONS PET/MRI showed equivalent performance in terms of qualitative lesion detection to PET/CT. Despite significant differences in tracer uptake quantification, due to either methodological and biological factors, PET/MRI and PET/CT measurements in lesions and normal organ tissues correlated well. This study demonstrates that integrated whole-body PET/MRI is feasible in a clinical setting with high quality and in a short examination time.
Collapse
|
Journal Article |
12 |
100 |
8
|
Subramanian S, Emami H, Vucic E, Singh P, Vijayakumar J, Fifer KM, Alon A, Shankar SS, Farkouh M, Rudd JHF, Fayad ZA, Van Dyke TE, Tawakol A. High-dose atorvastatin reduces periodontal inflammation: a novel pleiotropic effect of statins. J Am Coll Cardiol 2013; 62:2382-2391. [PMID: 24070911 PMCID: PMC6849694 DOI: 10.1016/j.jacc.2013.08.1627] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/25/2013] [Accepted: 08/12/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The purpose of this study was to test whether high-dose statin treatment would result in a reduction in periodontal inflammation as assessed by (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET)/computed tomography (CT). BACKGROUND Periodontal disease (PD) is an independent risk factor for atherosclerosis. METHODS Eighty-three adults with risk factors or with established atherosclerosis and who were not taking high-dose statins were randomized to atorvastatin 80 mg vs. 10 mg in a multicenter, double-blind trial to evaluate the impact of atorvastatin on arterial inflammation. Subjects were evaluated using FDG-PET/CT at baseline and at 4 and 12 weeks. Arterial and periodontal tracer activity was assessed while blinded to treatment allocation, clinical characteristics, and temporal sequence. Periodontal bone loss (an index of PD severity) was evaluated using contrast-enhanced CT images while blinded to clinical and imaging data. RESULTS Seventy-one subjects completed the study, and 59 provided periodontal images for analysis. At baseline, areas of severe PD had higher target-to-background ratio (TBR) compared with areas without severe PD (mean TBR: 3.83 [95% confidence interval (CI): 3.36 to 4.30] vs. 3.18 [95% CI: 2.91 to 3.44], p = 0.004). After 12 weeks, there was a significant reduction in periodontal inflammation in patients randomized to atorvastatin 80 mg vs. 10 mg (ΔTBR 80 mg vs. 10 mg group: mean -0.43 [95% CI: -0.83 to -0.02], p = 0.04). Between-group differences were greater in patients with higher periodontal inflammation at baseline (mean -0.74 [95% CI: -1.29 to -0.19], p = 0.01) and in patients with severe bone loss at baseline (-0.61 [95% CI: -1.16 to -0.054], p = 0.03). Furthermore, the changes in periodontal inflammation correlated with changes in carotid inflammation (R = 0.61, p < 0.001). CONCLUSIONS High-dose atorvastatin reduces periodontal inflammation, suggesting a newly recognized effect of statins. Given the concomitant changes observed in periodontal and arterial inflammation, these data raise the possibility that a portion of that beneficial impact of statins on atherosclerosis relate to reductions in extra-arterial inflammation, for example, periodontitis. (Evaluate the Utility of 18FDG-PET as a Tool to Quantify Atherosclerotic Plaque; NCT00703261).
Collapse
|
Multicenter Study |
12 |
90 |
9
|
Lamarca A, Barriuso J, Chander A, McNamara MG, Hubner RA, ÓReilly D, Manoharan P, Valle JW. 18F-fluorodeoxyglucose positron emission tomography ( 18FDG-PET) for patients with biliary tract cancer: Systematic review and meta-analysis. J Hepatol 2019; 71:115-129. [PMID: 30797051 DOI: 10.1016/j.jhep.2019.01.038] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/10/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS The role of 18F-fluorodeoxyglucose positron emission tomography (18FDG-PET) in the diagnosis and staging of patients with biliary tract cancers (BTCs) remains controversial, so we aimed to provide robust information on the utility of 18FDG-PET in the diagnosis and management of BTC. METHODS This systematic review and meta-analysis explored the diagnostic test accuracy of 18FDG-PET as a diagnostic tool for diagnosis of primary tumour, lymph node invasion, distant metastases and relapsed disease. Subgroup analysis by study quality and BTC subtype were performed. Changes in management based on 18FDG-PET and impact of maximum standardised uptake values (SUVmax) on prognosis were also assessed. A random effects model was used for meta-analyses. RESULTS A total of 2,125 patients were included from 47 eligible studies. The sensitivity (Se) and specificity (Sp) of 18FDG-PET for the diagnosis of primary tumour were 91.7% (95% CI 89.8-93.2) and 51.3% (95% CI 46.4-56.2), respectively, with an area under the curve (AUC) of 0.8668. For lymph node invasion, Se was 88.4% (95% CI82.6-92.8) and Sp was 69.1% (95% CI 63.8-74.1); AUC 0.8519. For distant metastases, Se was 85.4% (95% CI 79.5-90.2) and Sp was 89.7% (95% CI86.0-92.7); AUC 0.9253. For relapse, Se was 90.1% (95% CI 84.4-94.3) and Sp was 83.5% (95% CI 74.4-90.4); AUC 0.9592. No diagnostic threshold effect was identified. Meta-regression did not identify significant sources of heterogeneity. Sensitivity analysis revealed no change in results when analyses were limited to studies with low risk of bias/concern. The pooled proportion of change in management was 15% (95% CI 11-20); the majority (78%) due to disease upstaging. Baseline high SUVmax was associated with worse survival (pooled hazard ratio of 1.79; 95% CI 1.37-2.33; p <0.001). CONCLUSIONS There is evidence to support the incorporation of 18FDG-PET into the current standard of care for the staging (lymph node and distant metastases) and identification of relapse in patients with BTC to guide treatment selection; especially if the identification of occult sites of disease would change management, or if diagnosis of relapse remains unclear following standard of care imaging. The role for diagnosis of the primary tumour remains controversial due to low sensitivity and 18FDG-PET should not be considered as a replacement for pathological confirmation in this setting. LAY SUMMARY A positron emission tomography (PET scan), using 18F-fluorodeoxyglucose (18FDG), can help doctors identify areas of cancer in the body by highlighting "hot spots". These hotspots may be cancerous (true positive) but may also be non-cancerous, like inflammation (false positive). We show that PET scans are useful to assess how far advanced the cancer is (by assessing spread to lymph glands and to other organs) and also to identify if the cancer has recurred (for example after surgery), thus helping doctors to make treatment decisions. However, a biopsy is still needed for the initial diagnosis of a biliary tract cancer, because of the high chance of a "false positive" with PET scans.
Collapse
|
Meta-Analysis |
6 |
86 |
10
|
Tahari AK, Chien D, Azadi JR, Wahl RL. Optimum lean body formulation for correction of standardized uptake value in PET imaging. J Nucl Med 2014; 55:1481-4. [PMID: 24963129 DOI: 10.2967/jnumed.113.136986] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Standardized uptake value (SUV) normalized by lean body mass ([LBM] SUL) is becoming a popular metric for quantitative assessment of clinical PET. Sex-specific quantitative effects of different LBM formulations on liver SUV have not been well studied. METHODS (18)F-FDG PET/CT scans from 1,033 consecutive adult (501 women, 532 men) studies were reviewed. Liver SUV was measured with a 3-cm-diameter spheric region of interest in the right hepatic lobe and corrected for LBM using the sex-specific James and Janmahasatian formulations. RESULTS Body weight was 71.0 ± 20.7 kg (range, 18.0-175.0 kg) and 82.9 ± 18.6 kg (range, 23.0-159.0 kg) for women and men, respectively. SUV, based on body weight, has a significantly positive correlation with weight for both women (r = 0.58, P < 0.0001) and men (r = 0.54, P < 0.0001). This correlation is reduced in men (r = 0.11, P = 0.01) and becomes negative for women (r = -0.35, P = 0.0001) with the James formulation of SUL. This negative correlation was eliminated when the very obese women (body mass index ≥ 35) were excluded from the analysis (r = 0.13, P = 0.8). The Janmahasatian formulation annuls the correlation between SUL and weight for women (r = 0.04, P = 0.4) and decreases it for men (r = 0.13, P = 0.003). CONCLUSION Hepatic correction with the more common James formulation for body lean mass breaks down and shows low SUL values in very obese patients. The adoption of the Janmahasatian formula for estimation of LBM in modern PET scanners and display workstations is recommended, in view of the increasing frequency of obesity.
Collapse
|
Journal Article |
11 |
82 |
11
|
Osborn EA, Jaffer FA. The advancing clinical impact of molecular imaging in CVD. JACC Cardiovasc Imaging 2014; 6:1327-41. [PMID: 24332285 DOI: 10.1016/j.jcmg.2013.09.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 01/05/2023]
Abstract
Molecular imaging seeks to unravel critical molecular and cellular events in living subjects by providing complementary biological information to current structural clinical imaging modalities. In recent years, molecular imaging efforts have marched forward into the clinical cardiovascular arena, and are now actively illuminating new biology in a broad range of conditions, including atherosclerosis, myocardial infarction, thrombosis, vasculitis, aneurysm, cardiomyopathy, and valvular disease. Development of novel molecular imaging reporters is occurring for many clinical cardiovascular imaging modalities (positron emission tomography, single-photon emission computed tomography, magnetic resonance imaging), as well as in translational platforms such as intravascular fluorescence imaging. The ability to image, track, and quantify molecular biomarkers in organs not routinely amenable to biopsy (e.g., the heart and vasculature) open new clinical opportunities to tailor therapeutics based on a cardiovascular disease molecular profile. In addition, molecular imaging is playing an increasing role in atherosclerosis drug development in phase II clinical trials. Here, we present state-of-the-art clinical cardiovascular molecular imaging strategies, and explore promising translational approaches positioned for clinical testing in the near term.
Collapse
|
Review |
11 |
69 |
12
|
Groheux D, Martineau A, Teixeira L, Espié M, de Cremoux P, Bertheau P, Merlet P, Lemarignier C. 18FDG-PET/CT for predicting the outcome in ER+/HER2- breast cancer patients: comparison of clinicopathological parameters and PET image-derived indices including tumor texture analysis. Breast Cancer Res 2017; 19:3. [PMID: 28057031 PMCID: PMC5217422 DOI: 10.1186/s13058-016-0793-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Background This study investigated the value of some clinicopathological parameters and 18 F-fluorodeoxyglucose-positron emission tomography/computed tomography (18FDG-PET/CT) indices, including textural features, to predict event-free survival (EFS) in estrogen receptor-positive/human epidermal growth factor receptor 2-negative (ER+/HER2-) locally advanced breast cancer (BC) patients. Methods FDG-PET/CT indices and clinicopathological parameters were assessed before neoadjuvant chemotherapy (NAC). After completion of chemotherapy, all patients had breast surgery with axillary lymph node dissection, followed by radiation therapy and endocrine therapy for 5 years. EFS was estimated using the Kaplan-Meier method. A Cox proportional hazard regression model was used for multivariate analysis. Results One hundred forty-three consecutive patients with stage II–III ER+/HER2- BC and without distant metastases at baseline PET were included. High standardized uptake values (SUVs), were associated with shorter EFS (HR = 3.51, P < 0.01 for SUVmax; HR = 2.76, P = 0.02 for SUVmean; and HR = 4.40 P < 0.01 for SUVpeak). Metabolically active tumor volume (MATV, HR = 3.47, P < 0.01) and total lesion glycolysis (TLG, HR = 3.10, P < 0.01) were also predictive of EFS. Homogeneity was not predictive (HR = 2.27, P = 0.07) and entropy had weak prediction (HR = 2.89, P = 0.02). Among clinicopathological parameters, EFS was shorter in progesterone receptor (PR)-negative tumor (vs. PR-positive tumor; HR = 3.25, P < 0.01); histology was predictive of EFS (lobular vs. ductal invasive carcinoma; HR = 3.74, P = 0.01) but not tumor grade (grade 3 vs. grade 1–2; HR = 1.64, P = 0.32). Pathological complete response after NAC was not correlated to the risk of relapse. Three parameters remained significantly associated with EFS in multivariate analysis. MATV (HR = 1.01, P < 0.01), progesterone receptor expression (HR = 2.90, P = 0.03) and tumor histology (HR = 3.80, P = 0.02). Conclusions Baseline PET parameters measured before neoadjuvant treatment have prognostic values in ER+/HER2- locally advanced breast cancer patients. After multivariate analysis, metabolically active tumor volume remains significant while textural analysis of PET images is not of added value. Considering histopathological parameters, our study shows that patients with PR-negative or lobular invasive tumor have poorer prognosis than patients with PR-positive or ductal carcinoma, respectively.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
63 |
13
|
Abstract
Background Quantification is one of the key benefits of nuclear medicine imaging. Recently, driven by the demand for post radionuclide therapy imaging, quantitative SPECT has moved from relative and semiquantitative measures to absolute quantification in terms of activity concentration, and yet further to normalised uptake using the standard uptake value (SUV). This expansion of quantitative SPECT has the potential to be a useful tool in the nuclear medicine armoury, but key factors must be addressed before it can meet its full potential. Discussion Quantitative SPECT should address an unmet clinical need and give metrics that are clinically meaningful. Using the technique in a similar manner to PET with longitudinal assessments of disease in terms of SUV is one example that meets these criteria. Having metrics that are evaluated to ensure that they are correct, that are optimised to maximise their sensitivity, and that are transferrable to allow multi-centre learning and applicability to all users of the technology are other areas of quantitative SPECT that need to be addressed and that have specific challenges associated with them. Finally, ensuring quantitative SPECT is cost-effective in times when healthcare budgets are being squeezed is also very important. Conclusion Quantitative SPECT offers the possibility to continue and expand the potential of quantitative nuclear medicine applications. The time is now to ensure that our community works together to make this potential a reality.
Collapse
|
Journal Article |
6 |
59 |
14
|
Boktor RR, Walker G, Stacey R, Gledhill S, Pitman AG. Reference range for intrapatient variability in blood-pool and liver SUV for 18F-FDG PET. J Nucl Med 2013; 54:677-82. [PMID: 23512357 DOI: 10.2967/jnumed.112.108530] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED (18)F-FDG PET qualitative tumor response assessment or tumor-to-background ratios compare targets against blood-pool or liver activity; standardized uptake value (SUV) semiquantitation has artifacts and is validated by a stable normal-tissue baseline. The aim of this study was to document the normal intrapatient range of scan-to-scan variation in blood-pool SUV and liver SUV and to identify factors that may adversely affect it (increase its spread). METHODS Between July 2009 and June 2010, 132 oncology patients had 2 PET/CT scans. Patient preparation, acquisition, and reconstruction protocols were held stable, uniform, and reproducible. Mean SUV (body weight) values were obtained from 2-dimensional regions of interest in the aortic arch blood pool and in the right lobe of the liver. RESULTS Of the 132 patients, 65 had lymphoma. Their mean age was 62.5 y. The group's mean serum glucose level was 6.0 mmol/L at the first visit and 5.9 mmol/L at the second visit. The mean (18)F-FDG dose was 4.1 MBq/kg at the first visit and 4.0 at the second. At the first visit, the group's mean blood-pool SUV was 1.55 (SD, 0.38); at the second, 1.58 (SD, 0.37)-not statistically different. The group's mean liver SUV was 2.17 (SD, 0.44) at the first visit and 2.29 (SD, 0.44) at the second (P = 0.005). Visit-to-visit intrapatient variation in blood-pool and liver SUVs had gaussian distributions. The variation in blood-pool SUV had a mean of 0.03 and SD of 0.42. The variation in liver SUV had a mean of 0.12 and SD of 0.50. Using 95th percentiles, the reference range in our patient population for intrapatient variation was -0.8 to 0.9 for blood pool SUV and -0.9 to 1.1 for liver SUV. Subanalysis by cancer type and chemotherapy suggested that the rise in liver SUV between the 2 visits was largely due to the commencement of chemotherapy, but no factors were identified as systematically affecting intrapatient variation, and no factors were identified as increasing its spread. CONCLUSION In our patient cohort, the reference range for intrapatient variation in blood-pool and liver SUVs is -0.8 to 0.9 and -0.9 to 1.1, respectively.
Collapse
|
Journal Article |
12 |
59 |
15
|
Covello M, Cavaliere C, Aiello M, Cianelli MS, Mesolella M, Iorio B, Rossi A, Nicolai E. Simultaneous PET/MR head-neck cancer imaging: Preliminary clinical experience and multiparametric evaluation. Eur J Radiol 2015; 84:1269-76. [PMID: 25958189 DOI: 10.1016/j.ejrad.2015.04.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 03/26/2015] [Accepted: 04/11/2015] [Indexed: 12/26/2022]
Abstract
PURPOSE To evaluate the role of simultaneous hybrid PET/MR imaging and to correlate metabolic PET data with morpho-functional parameters derived by MRI in patients with head-neck cancer. METHODS Forty-four patients, with histologically confirmed head and neck malignancy (22 primary tumors and 22 follow-up) were studied. Patients initially received a clinical exam and endoscopy with direct biopsy. Next patients underwent whole body PET/CT followed by PET/MR of the head/neck region. PET and MRI studies were separately evaluated by two blinded groups (both included one radiologist and one nuclear physician) in order to define the presence or absence of lesions/recurrences. Regions of interest (ROIs) analysis was conducted on the primary lesion at the level of maximum size on metabolic (SUV and MTV), diffusion (ADC) and perfusion (K(trans), Ve, kep and iAUC) parameters. RESULTS PET/MR examinations were successfully performed on all 44 patients. Agreement between the two blinded groups was found in anatomic allocation of lesions by PET/MR (Primary tumors: Cohen's kappa 0.93; FOLLOW-UP Cohen's kappa 0.89). There was a significant correlation between CT-SUV measures and MR (e.g., CT-SUV VOI vs. MR-SUV VOI ρ=0.97, p<0.001 for the entire sample). There was also significant positive correlations between the ROI area, SUV measures, and the metabolic parameters (SUV and MTV) obtained during both PET/CT and PET/MR. A significant negative correlation was observed between ADC and K(trans) values in the primary tumors. In addition, a significant negative correlation existed between MR SUV and ADC in recurrent tumors. CONCLUSION Our study demonstrates the feasibility of PET/MR imaging for primary tumors and recurrent tumors evaluations of head/neck malignant lesions. When assessing HNC, PET/MR allows simultaneous collection of multiparametric metabolic and functional data. This technique therefore allows for a more complete characterization of malignant lesions.
Collapse
|
Journal Article |
10 |
55 |
16
|
Armstrong IS, Kelly MD, Williams HA, Matthews JC. Impact of point spread function modelling and time of flight on FDG uptake measurements in lung lesions using alternative filtering strategies. EJNMMI Phys 2014; 1:99. [PMID: 26501457 PMCID: PMC4545221 DOI: 10.1186/s40658-014-0099-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 09/02/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The use of maximum standardised uptake value (SUVmax) is commonplace in oncology positron emission tomography (PET). Point spread function (PSF) modelling and time-of-flight (TOF) reconstructions have a significant impact on SUVmax, presenting a challenge for centres with defined protocols for lesion classification based on SUVmax thresholds. This has perhaps led to the slow adoption of these reconstructions. This work evaluated the impact of PSF and/or TOF reconstructions on SUVmax, SUVpeak and total lesion glycolysis (TLG) under two different schemes of post-filtering. METHODS Post-filters to match voxel variance or SUVmax were determined using a NEMA NU-2 phantom. Images from 68 consecutive lung cancer patients were reconstructed with the standard iterative algorithm along with TOF; PSF modelling - Siemens HD·PET (HD); and combined PSF modelling and TOF - Siemens ultraHD·PET (UHD) with the two post-filter sets. SUVmax, SUVpeak, TLG and signal-to-noise ratio of tumour relative to liver (SNR(T-L)) were measured in 74 lesions for each reconstruction. Relative differences in uptake measures were calculated, and the clinical impact of any changes was assessed using published guidelines and local practice. RESULTS When matching voxel variance, SUVmax increased substantially (mean increase +32% and +49% for HD and UHD, respectively), potentially impacting outcome in the majority of patients. Increases in SUVpeak were less notable (mean increase +17% and +23% for HD and UHD, respectively). Increases with TOF alone were far less for both measures. Mean changes to TLG were <10% for all algorithms for either set of post-filters. SNR(T-L) were greater than ordered subset expectation maximisation (OSEM) in all reconstructions using both post-filtering sets. CONCLUSIONS Matching image voxel variance with PSF and/or TOF reconstructions, particularly with PSF modelling and in small lesions, resulted in considerable increases in SUVmax, inhibiting the use of defined protocols for lesion classification based on SUVmax. However, reduced partial volume effects may increase lesion detectability. Matching SUVmax in phantoms translated well to patient studies for PSF reconstruction but less well with TOF, where a small positive bias was observed in patient images. Matching SUVmax significantly reduced voxel variance and potential variability of uptake measures. Finally, TLG may be less sensitive to reconstruction methods compared with either SUVmax or SUVpeak.
Collapse
|
Journal Article |
11 |
54 |
17
|
Longitudinal analysis of bone metabolism using SPECT/CT and (99m)Tc-diphosphono-propanedicarboxylic acid: comparison of visual and quantitative analysis. EJNMMI Res 2016; 6:60. [PMID: 27464623 PMCID: PMC4963336 DOI: 10.1186/s13550-016-0217-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/16/2016] [Indexed: 11/15/2022] Open
Abstract
Background The therapy response of osseous metastases (OM) is commonly monitored by bone scintigraphies (BS). The aim of this study was to compare visual evaluation of changes in tracer uptake with quantitation in absolute units in OMs; 52 OMs from 19 patients who underwent BS with SPECT/CT at time points one and two (TP1/2) were analyzed retrospectively, with an average of 10.3 months between TP1 and 2. Tracer uptake in lesions was visually compared by two independent readers in both planar scintigraphies and SPECT/CT across both TPs and classified as regressive, stable, or progressive. Quantitative analysis was performed by measuring peak standardized uptake values (SUV). Based on quantitation, lesions were similarly classified as regressive (>30 % decrease), progressive (>30 % increase), or stable (rest). If available, uptake in reference regions in the lower thoracic or lumbar spine was used for normalization. Results In OMs at TP1 and TP2, mean SUVpeak (±SD) was found to be 20.4 (±20.8) and 16.4 (±11.5), respectively. For the reference region, mean SUVmean was 5.6 (±1.9) and 4.9 (±2.2). Agreement between quantitative and visual assessment was only moderate, with an average Cohen’s kappa of 0.42 for planar scintigraphy and 0.62 for SPECT/CT. Discrepancies occurred in between 11 and 22 of the 52 lesions, depending on the reader and whether planar or SPECT imaging was considered. Conclusions Compared to measuring uptake in absolute units, visual evaluation of skeletal scintigraphies for change in tumor metabolism yields inconsistent results in roughly one third of the cases.
Collapse
|
Journal Article |
9 |
53 |
18
|
Kuji I, Yamane T, Seto A, Yasumizu Y, Shirotake S, Oyama M. Skeletal standardized uptake values obtained by quantitative SPECT/CT as an osteoblastic biomarker for the discrimination of active bone metastasis in prostate cancer. Eur J Hybrid Imaging 2017; 1:2. [PMID: 29782587 PMCID: PMC5954671 DOI: 10.1186/s41824-017-0006-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/01/2017] [Indexed: 11/18/2022] Open
Abstract
Purpose To investigate the improvement of prognostication of active bone metastatic burden by discriminating bone metastases from degenerative changes in hot foci, using skeletal standardized uptake values (SUVs) by quantitative bone single photon emission tomography/computed tomography (SPECT/CT) in patients with prostate cancer. Methods We investigated 170 patients with prostate cancer who underwent skeletal quantitative SPECT/CT using 99mTc-methylene-diphosphonate (MDP), through conjugate gradient reconstruction with tissue zoning, attenuation, and scatter corrections applied, called as CGZAS reconstruction, in a retrospective cohort study. The maximum, peak, and average SUVs (SUVmax, SUVpeak, and SUVave, respectively) were obtained for visually normal thoracic (T; n = 100) and lumbar (L; n = 140) vertebral bodies as controls, as well as for bone metastases (n = 126) and degenerative changes (n = 114) as hot foci. They were also correlated with age, body-weight, height, biochemistry data, and extent of disease (EOD). Discrimination accuracy of the SUVs for bone metastases in hot foci was evaluated by a patient-based and lesion-based receiver-operator characteristic curve (ROC) analysis. Results The skeletal SUVmax was 7.58 ± 2.42 for T, 8.12 ± 12.24 for L, 16.73 ± 6.74 for degenerative changes, and 40.90 ± 33.46 for bone metastases. The SUVs of the bone metastasis group were significantly (p < 0.001) greater than of the other three groups. With disease extent, serum alkaline phosphatase and prostate specific antigen were increased, while SUVs for bone metastases were decreased in EOD grade 4. In ROC analyses for bone metastases by skeletal SUVs demonstrating the diagnostic accuracy of skeletal SUVs for discriminating bone metastasis from degenerative changes in hot foci, area under curves were 0.840, 0.817, and 0.845 in patient-based mode, and 0.932, 0.920, and 0.930 in lesion-based mode. Conclusions The skeletal SUVs by 99mTc-MDP SPECT/CT for active bone metastases were greater than those for degenerative changes in patients with prostate cancer, with a feasible discrimination accuracy in the hot foci. Therefore, skeletal SUVs, especially SUVmax, in quantitative bone SPECT/CT may be helpful indices for the prognostication of bone metastatic burden, improving discrimination of active bone osteoblastic metastases in patients with prostate cancer from frequently coexisting degenerative changes.
Collapse
|
Journal Article |
8 |
53 |
19
|
Nakahara T, Daisaki H, Yamamoto Y, Iimori T, Miyagawa K, Okamoto T, Owaki Y, Yada N, Sawada K, Tokorodani R, Jinzaki M. Use of a digital phantom developed by QIBA for harmonizing SUVs obtained from the state-of-the-art SPECT/CT systems: a multicenter study. EJNMMI Res 2017. [PMID: 28639254 PMCID: PMC5479776 DOI: 10.1186/s13550-017-0300-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Although quantitative analysis using standardized uptake value (SUV) becomes realistic in clinical single-photon emission computed tomography/computed tomography (SPECT/CT) imaging, reconstruction parameter settings can deliver different quantitative results among different SPECT/CT systems. This study aims to propose a use of the digital reference object (DRO), which is a National Electrical Manufacturers Association (NEMA) phantom-like object developed by the Quantitative Imaging Biomarker Alliance (QIBA) fluorodeoxyglucose-positron emission tomography technical committee, for the purpose of harmonizing SUVs in Tc-99m SPECT/CT imaging. METHODS The NEMA body phantom with determined Tc-99m concentration was scanned with the four state-of-the-art SPECT/CT systems. SPECT data were reconstructed using different numbers of the product of subset and iteration numbers (SI) and the width of 3D Gaussian filter (3DGF). The mean (SUVmean), maximal (SUVmax), and peak (SUVpeak) SUVs for six hot spheres (10, 13, 17, 22, 28, and 37 mm) were measured after converting SPECT count into SUV using Becquerel calibration factor. DRO smoothed by 3DGF with a FWHM of 17 mm (DRO17 mm) was generated, and the corresponding SUVs were measured. The reconstruction condition to yield the lowest root mean square error (RMSE) of SUVmeans for all the spheres between DRO17 mm and actual phantom images was determined as the harmonized condition for each SPECT/CT scanner. Then, inter-scanner variability in all quantitative metrics was measured before (i.e., according to the manufacturers' recommendation or the policies of their own departments) and after harmonization. RESULTS RMSE was lowest in the following reconstruction conditions: SI of 100 and 3DGF of 13 mm for Brightview XCT, SI of 160 and 3DGF of 3 pixels for Discovery NM/CT, SI of 60 and 3DGF of 2 pixels for Infinia, and SI of 140 and 3DGF of 15 mm for Symbia. In pre-harmonized conditions, coefficient of variations (COVs) among the SPECT/CT systems were greater than 10% for all quantitative metrics in three of the spheres, SUVmax and SUVmean, in one of the spheres. In contrast, all metrics except SUVmax in the 17-mm sphere yielded less than 10% of COVs after harmonization. CONCLUSIONS Our proposed method clearly reduced inter-scanner variability in SUVs. A digital phantom developed by QIBA would be useful for harmonizing SUVs in multicenter trials using SPECT/CT.
Collapse
|
Journal Article |
8 |
50 |
20
|
Quantitative bone SPECT/CT: high specificity for identification of prostate cancer bone metastases. BMC Musculoskelet Disord 2019; 20:619. [PMID: 31878904 PMCID: PMC6933900 DOI: 10.1186/s12891-019-3001-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose Bone scintigraphy with 99mTc-labeled diphosphonates can identify prostate cancer bone metastases with high sensitivity, but relatively low specificity, because benign conditions such as osteoarthritis can also trigger osteoblastic reactions. We aimed to investigate the diagnostic performance of 99mTc-2,3-dicarboxy propane-1,1-diphosphonate (99mTc-DPD) uptake quantification by single-photon emission computed tomography coupled with computed tomography (SPECT/CT) for distinguishing prostate cancer bone metastases from spinal and pelvic osteoarthritic lesions. Methods We retrospectively assessed 26 bone scans from 26 patients with known prostate cancer bone metastases and 13 control patients with benign spinal and pelvic osteoarthritic changes without known neoplastic disease. Quantitative SPECT/CT (xSPECT, Siemens Symbia Intevo, Erlangen, Germany) was performed and standardized uptake values (SUVs) were quantified with measurements of SUVmax and SUVmean (g/mL) in all bone metastases for the prostate cancer group and in spinal and pelvic osteoarthritic changes for the control group. We used receiver operating characteristics (ROC) curves to determine the optimum SUVmax cutoff value to distinguish between bone metastases and benign spinal and pelvic lesions. Results In total, 264 prostate cancer bone metastases were analyzed, showing a mean SUVmax and SUVmean of 34.6 ± 24.6 and 20.8 ± 14.7 g/mL, respectively. In 24 spinal and pelvic osteoarthritic lesions, mean SUVmax and SUVmean were 14.2 ± 3.8 and 8.9 ± 2.2 g/mL, respectively. SUVmax and SUVmean were both significantly different between the bone metastases and osteoarthritic groups (p ≤ 0.0001). Using a SUVmax cutoff of 19.5 g/mL for prostate cancer bone metastases in the spine and pelvis, sensitivity, specificity, positive and negative predictive values were 87, 92, 99 and 49%, respectively. Conclusion This study showed significant differences in quantitative 99mTc-DPD uptake on bone SPECT/CT between prostate cancer bone metastases and spinal and pelvic osteoarthritic changes, with higher SUVmax and SUVmean in metastases. Using a SUVmax cutoff of 19.5 g/mL, high specificity and positive predictive value for metastases identification in the spine and pelvis were found, thus increasing accuracy of bone scintigraphy.
Collapse
|
Journal Article |
6 |
49 |
21
|
Nitta Y, Tahara N, Tahara A, Honda A, Kodama N, Mizoguchi M, Kaida H, Ishibashi M, Hayabuchi N, Ikeda H, Yamagishi SI, Imaizumi T. Pioglitazone decreases coronary artery inflammation in impaired glucose tolerance and diabetes mellitus: evaluation by FDG-PET/CT imaging. JACC Cardiovasc Imaging 2014; 6:1172-82. [PMID: 24229770 DOI: 10.1016/j.jcmg.2013.09.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/14/2013] [Accepted: 09/13/2013] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The aim of this study was to compare the effect of pioglitazone with glimepiride on coronary arterial inflammation with serial (18)F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) combined with computed tomography (CT) angiography. BACKGROUND Recent studies have shown that FDG-PET combined with CT is a reliable tool to visualize and quantify vascular inflammation. Although pioglitazone significantly prevented the progression of coronary atherosclerosis and reduced the recurrence of myocardial infarction in patients with type 2 diabetes mellitus (DM), it remains unclear whether pioglitazone could attenuate coronary artery inflammation. METHODS Fifty atherosclerotic patients with impaired glucose tolerance or type 2 DM underwent determination of blood chemistries, anthropometric and inflammatory variables, and FDG-PET/CT angiography, and then were randomized to receive either pioglitazone or glimepiride for 16 weeks. Effects of the treatments on vascular inflammation of the left main trunk were evaluated by FDG-PET/CT angiography at baseline and end of the study. Vascular inflammation of the left main trunk was measured by blood-normalized standardized uptake value, known as a target-to-background ratio. RESULTS Three patients dropped out of the study during the assessment or treatment. Finally, 25 pioglitazone-treated patients and 22 glimepiride-treated patients (37 men; mean age: 68.1 ± 8.3 years; glycosylated hemoglobin: 6.72 ± 0.70%) completed the study. After 16-week treatments, fasting plasma glucose and glycosylated hemoglobin values were comparably reduced in both groups. Changes in target-to-background ratio values from baseline were significantly greater in the pioglitazone group than in the glimepiride group (-0.12 ± 0.06 vs. 0.09 ± 0.07, p = 0.032), as well as changes in high-sensitivity C-reactive protein (pioglitazone vs. glimepiride group: median: -0.24 [interquartile range (IQR): -1.58 to -0.04] mg/l vs. 0.08 [IQR: -0.07 to 0.79] mg/l, p = 0.031). CONCLUSIONS Our study indicated that pioglitazone attenuated left main trunk inflammation in patients with impaired glucose tolerance or DM in a glucose-lowering independent manner, suggesting that pioglitazone may protect against cardiac events in patients with impaired glucose tolerance or DM by suppressing coronary inflammation. (Anti-Inflammatory Effects of Pioglitazone; NCT00722631).
Collapse
|
Randomized Controlled Trial |
11 |
46 |
22
|
Lee SJ, Choi JY, Lee HJ, Baek CH, Son YI, Hyun SH, Moon SH, Kim BT. Prognostic value of volume-based (18)F-fluorodeoxyglucose PET/CT parameters in patients with clinically node-negative oral tongue squamous cell carcinoma. Korean J Radiol 2012; 13:752-9. [PMID: 23118574 PMCID: PMC3484296 DOI: 10.3348/kjr.2012.13.6.752] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 04/13/2012] [Indexed: 12/22/2022] Open
Abstract
Objective To evaluate the prognostic value of volume-based metabolic parameters measured with 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in patients with clinically node-negative (cN0) oral tongue squamous cell carcinoma (OTSCC) as compared with other prognostic factors. Materials and Methods In this study, we included a total of 57 patients who had been diagnosed with cN0 tongue cancer by radiologic, 18F-FDG PET/CT, and physical examinations. The maximum standardized uptake value (SUVmax), average SUV (SUVavg), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) for primary tumors were measured with 18F-FDG PET. The prognostic significances of these parameters and other clinical variables were assessed by Cox proportional hazards regression analysis. Results In the univariate analysis, pathological node (pN) stage, American Joint Committee on Cancer (AJCC) stage, SUVmax, SUVavg, MTV, and TLG were significant predictors for survival. On a multivariate analysis, pN stage (hazard ratio = 10.555, p = 0.049), AJCC stage (hazard ratio = 13.220, p = 0.045), and MTV (hazard ratio = 2.698, p = 0.033) were significant prognostic factors in cN0 OTSCC patients. The patients with MTV ≥ 7.78 cm3 showed a worse prognosis than those with MTV < 7.78 cm3 (p = 0.037). Conclusion The MTV of primary tumor as a volumetric parameter of 18F-FDG PET, in addition to pN stage and AJCC stage, is an independent prognostic factor for survival in cN0 OTSCC.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
45 |
23
|
Bailly C, Bodet-Milin C, Bourgeois M, Gouard S, Ansquer C, Barbaud M, Sébille JC, Chérel M, Kraeber-Bodéré F, Carlier T. Exploring Tumor Heterogeneity Using PET Imaging: The Big Picture. Cancers (Basel) 2019; 11:cancers11091282. [PMID: 31480470 PMCID: PMC6770004 DOI: 10.3390/cancers11091282] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 01/02/2023] Open
Abstract
Personalized medicine represents a major goal in oncology. It has its underpinning in the identification of biomarkers with diagnostic, prognostic, or predictive values. Nowadays, the concept of biomarker no longer necessarily corresponds to biological characteristics measured ex vivo but includes complex physiological characteristics acquired by different technologies. Positron-emission-tomography (PET) imaging is an integral part of this approach by enabling the fine characterization of tumor heterogeneity in vivo in a non-invasive way. It can effectively be assessed by exploring the heterogeneous distribution and uptake of a tracer such as 18F-fluoro-deoxyglucose (FDG) or by using multiple radiopharmaceuticals, each providing different information. These two approaches represent two avenues of development for the research of new biomarkers in oncology. In this article, we review the existing evidence that the measurement of tumor heterogeneity with PET imaging provide essential information in clinical practice for treatment decision-making strategy, to better select patients with poor prognosis for more intensive therapy or those eligible for targeted therapy.
Collapse
|
Review |
6 |
43 |
24
|
Kuhnert G, Boellaard R, Sterzer S, Kahraman D, Scheffler M, Wolf J, Dietlein M, Drzezga A, Kobe C. Impact of PET/CT image reconstruction methods and liver uptake normalization strategies on quantitative image analysis. Eur J Nucl Med Mol Imaging 2015; 43:249-258. [PMID: 26280981 DOI: 10.1007/s00259-015-3165-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/05/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND In oncological imaging using PET/CT, the standardized uptake value has become the most common parameter used to measure tracer accumulation. The aim of this analysis was to evaluate ultra high definition (UHD) and ordered subset expectation maximization (OSEM) PET/CT reconstructions for their potential impact on quantification. PATIENTS AND METHODS We analyzed 40 PET/CT scans of lung cancer patients who had undergone PET/CT. Standardized uptake values corrected for body weight (SUV) and lean body mass (SUL) were determined in the single hottest lesion in the lung and normalized to the liver for UHD and OSEM reconstruction. Quantitative uptake values and their normalized ratios for the two reconstruction settings were compared using the Wilcoxon test. The distribution of quantitative uptake values and their ratios in relation to the reconstruction method used were demonstrated in the form of frequency distribution curves, box-plots and scatter plots. The agreement between OSEM and UHD reconstructions was assessed through Bland-Altman analysis. RESULTS A significant difference was observed after OSEM and UHD reconstruction for SUV and SUL data tested (p < 0.0005 in all cases). The mean values of the ratios after OSEM and UHD reconstruction showed equally significant differences (p < 0.0005 in all cases). Bland-Altman analysis showed that the SUV and SUL and their normalized values were, on average, up to 60 % higher after UHD reconstruction as compared to OSEM reconstruction. CONCLUSION OSEM and HD reconstruction brought a significant difference for SUV and SUL, which remained constantly high after normalization to the liver, indicating that standardization of reconstruction and the use of comparable SUV measurements are crucial when using PET/CT.
Collapse
|
Journal Article |
10 |
42 |
25
|
Vanderhoek M, Perlman SB, Jeraj R. Impact of different standardized uptake value measures on PET-based quantification of treatment response. J Nucl Med 2013; 54:1188-94. [PMID: 23776199 DOI: 10.2967/jnumed.112.113332] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED PET-based treatment response studies typically measure the change in the standardized uptake value (SUV) to quantify response. The relative changes of different SUV measures, such as maximum, peak, mean, or total SUVs (SUV(max), SUV(peak), SUV(mean), or SUV(total), respectively), are used across the literature to classify patients into response categories, with quantitative thresholds separating the different categories. We investigated the impact of different SUV measures on the quantification and classification of PET-based treatment response. METHODS Sixteen patients with solid malignancies were treated with a multitargeted receptor tyrosine kinase inhibitor, resulting in a variety of responses. Using the cellular proliferation marker 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT), we acquired whole-body PET/CT scans at baseline, during treatment, and after treatment. The highest (18)F-FLT uptake lesions (~2/patient) were segmented on PET images. Tumor PET response was assessed via the relative change in SUV(max), SUV(peak), SUV(mean), and SUV(total), thereby yielding 4 different responses for each tumor at mid- and posttreatment. For each SUV measure, a population average PET response was determined over all tumors. Standard deviation (SD) and range were used to quantify variation of PET response within individual tumors and population averages. RESULTS Different SUV measures resulted in substantial variation of individual tumor PET response assessments (average SD, 20%; average range, 40%). The most extreme variation between 4 PET response measures was 90% in individual tumors. Classification of tumor PET response depended strongly on the SUV measure, because different SUV measures resulted in conflicting categorizations of PET response (ambiguous treatment response assessment) in more than 80% of tumors. Variation of the population average PET response was considerably smaller (average SD, 7%; average range, 16%), and this variation was not statistically significant. Differences in tumor PET response were greatest between SUV(mean) and SUV(total) and smallest between SUV(max) and SUV(peak). Variations of tumor PET response at midtreatment and posttreatment were similar. CONCLUSION Quantification and classification of PET-based treatment response in individual patients were strongly affected by the SUV measure used to assess response. This substantial uncertainty in individual patient PET response was present despite the concurrent robustness of the population average PET response. Given the ambiguity of individual patient PET responses, selection of PET-based treatment response measures and their associated thresholds should be carefully optimized.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
40 |