1
|
Laude J, Scarsini M, Nef C, Bowler C. Evolutionary conservation and metabolic significance of autophagy in algae. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230368. [PMID: 39343016 PMCID: PMC11449223 DOI: 10.1098/rstb.2023.0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Autophagy is a highly conserved 'self-digesting' mechanism used in eukaryotes to degrade and recycle cellular components by enclosing them in a double membrane compartment and delivering them to lytic organelles (lysosomes or vacuoles). Extensive studies in plants have revealed how autophagy is intricately linked to essential aspects of metabolism and growth, in both normal and stress conditions, including cellular and organelle homeostasis, nutrient recycling, development, responses to biotic and abiotic stresses, senescence and cell death. However, knowledge regarding autophagic processes in other photosynthetic organisms remains limited. In this review, we attempt to summarize the current understanding of autophagy in algae from a metabolic, molecular and evolutionary perspective. We focus on the composition and conservation of the autophagy molecular machinery in eukaryotes and discuss the role of autophagy in metabolic regulation, cellular homeostasis and stress adaptation in algae. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
|
2
|
Moye J, Hess S. Broad-range necrophytophagy in the flagellate Orciraptor agilis (Viridiraptoridae, Cercozoa) and the underappreciated role of scavenging among protists. J Eukaryot Microbiol 2024:e13065. [PMID: 39489698 DOI: 10.1111/jeu.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Protists show diverse lifestyles and fulfill important ecological roles as primary producers, predators, symbionts, and parasites. The degradation of dead microbial biomass, instead, is mainly attributed to bacteria and fungi, while necrophagy by protists remains poorly recognized. Here, we assessed the food range specificity and feeding behavior of the algivorous flagellate Orciraptor agilis (Viridiraptoridae, Cercozoa) with a large-scale feeding experiment. We demonstrate that this species is a broad-range necrophage, which feeds on a variety of eukaryotic and prokaryotic algae, but fails to grow on the tested fungi. Furthermore, our microscopic observations reveal an unexpected flexibility of O. agilis in handling food items of different structures and biochemistry, demonstrating that sophisticated feeding strategies in protists do not necessarily indicate narrow food ranges.
Collapse
|
3
|
Alistair McCormick. THE NEW PHYTOLOGIST 2024; 244:1181-1182. [PMID: 39329431 DOI: 10.1111/nph.20161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
|
4
|
Asin J, Childress AL, Dervas E, Garner MM, Uzal FA, Wellehan JFX, Henderson EE, Armien AG. Helicosporidium sp. infection in a California kingsnake ( Lampropeltis californiae): Spillover of a pathogen of invertebrates to a vertebrate host. Vet Pathol 2024; 61:978-982. [PMID: 38881033 DOI: 10.1177/03009858241259179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Helicosporidium is a genus of nonphotosynthetic, green algae in the family Chlorellaceae, closely related to Prototheca. It is a known pathogen of invertebrates, and its occurrence in vertebrates has not been documented. A captive, 10-month-old, male, albino California kingsnake (Lampropeltis californiae) was submitted for necropsy. Gross examination revealed hemorrhagic laryngitis and a red mottled liver. Histologically, intravascular, intramonocytic/macrophagic and extracellular, eukaryotic organisms were observed in all tissues. These organisms stained positive with Grocott-Gomori methenamine silver and periodic acid-Schiff and were variably acid-fast and gram-positive. Ultrastructural analysis revealed approximately 4 µm vegetative multiplication forms and cysts with 3 parallel ovoid cells and a helically coiled filamentous cell. A polymerase chain reaction with primers targeting Prototheca, amplicon sequencing, and Bayesian phylogenetic analysis confirmed it clustered within Helicosporidium sp. with 100% posterior probability. The genus Helicosporidium was found to nest within the genus Prototheca, forming a clade with Prototheca wickerhamii with 80% posterior probability.
Collapse
|
5
|
Liu S, Huang X, Han J, Yao L, Li H, Xin G, Ho SH, Zhao J, Xing B. Genome-Wide Molecular Adaptation in Algal Primary Productivity Induced by Prolonged Exposure to Environmentally Realistic Concentration of Nanoplastics. ACS NANO 2024; 18:29820-29831. [PMID: 39425676 DOI: 10.1021/acsnano.4c09709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Little information is known about the long-term effects of nanoplastics (NPs) in aquatic environments, especially under environmental-related scenarios. Herein, three differently charged NPs (nPS, nPS-NH2, and nPS-COOH) were exposed at an environmentally realistic concentration (10 μg/L) for 100 days to explore the variation of primary productivity (i.e., algae) in aquatic ecosystems. Our results demonstrated that the algae adapted to all three types of NPs by enhancing the algal number (by 10.34-16.52%), chlorophyll a (by 11.28-17.65%), and carbon-fixing enzyme activity (by 49.19-68.33%), which were further confirmed by the exposure results from natural water culturing experiments. Based on the algal chloroplast number and biovolume at the individual level, only nPS caused algal differentiation into two heterogeneous subpopulations (54.92 vs 45.08%), while nPS-NH2 and nPS-COOH did not cause the differentiation of the algal population. Moreover, the molecular adaptation mechanisms of algae to NPs were unraveled by integrating epigenomics and transcriptomics. Mean methylation rates of algae on exposure to nPS, nPS-NH2, and nPS-COOH were significantly elevated. In addition, the direction of gene expression regulation via differentially methylated regions associated with genes when exposed to nPS-COOH was distinct from those of nPS and nPS-NH2. Our results highlight the importance of assessing the long-term ecotoxicity of NPs and provide useful information for understanding the effect of NPs on aquatic ecosystems.
Collapse
|
6
|
Schubert MG, Tang TC, Goodchild-Michelman IM, Ryon KA, Henriksen JR, Chavkin T, Wu Y, Miettinen TP, Van Wychen S, Dahlin LR, Spatafora D, Turco G, Guarnieri MT, Manalis SR, Kowitz J, Hann EC, Dhir R, Quatrini P, Mason CE, Church GM, Milazzo M, Tierney BT. Cyanobacteria newly isolated from marine volcanic seeps display rapid sinking and robust, high-density growth. Appl Environ Microbiol 2024:e0084124. [PMID: 39470214 DOI: 10.1128/aem.00841-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/27/2024] [Indexed: 10/30/2024] Open
Abstract
Cyanobacteria are photosynthetic organisms that play important roles in carbon cycling and are promising bioproduction chassis. Here, we isolate two novel cyanobacteria with 4.6Mbp genomes, UTEX 3221 and UTEX 3222, from a unique marine environment with naturally elevated CO₂. We describe complete genome sequences for both isolates and, focusing on UTEX 3222 due to its planktonic growth in liquid, characterize biotechnologically relevant growth and biomass characteristics. UTEX 3222 outpaces other fast-growing model strains on a solid medium. It can double every 2.35 hours in a liquid medium and grows to high density (>31 g/L biomass dry weight) in batch culture, nearly double that of Synechococcus sp. PCC 11901, whose high-density growth was recently reported. In addition, UTEX 3222 sinks readily, settling more quickly than other fast-growing strains, suggesting favorable economics of harvesting UTEX 3222 biomass. These traits may make UTEX 3222 a compelling choice for marine carbon dioxide removal (CDR) and photosynthetic bioproduction from CO₂. Overall, we find that bio-prospecting in environments with naturally elevated CO₂ may uncover novel CO₂-metabolizing organisms with unique characteristics. IMPORTANCE Cyanobacteria provide a potential avenue for both biomanufacturing and combatting climate change via high-efficiency photosynthetic carbon sequestration. This study identifies novel photosynthetic organisms isolated from a unique geochemical environment and describes their genomes, growth behavior in culture, and biochemical composition. These cyanobacteria appear to make a tractable research model, and cultures are made publicly available alongside information about their culture and maintenance. Application of these organisms to carbon sequestration and/or biomanufacturing is discussed, including unusual, rapid settling characteristics of the strains relevant to scaled culture.
Collapse
|
7
|
Réveillon T, Becks L. Trade-offs between defense and competitive traits in a planktonic predator-prey system. Ecology 2024:e4456. [PMID: 39468750 DOI: 10.1002/ecy.4456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 06/25/2024] [Accepted: 07/25/2024] [Indexed: 10/30/2024]
Abstract
Predator-prey interactions are crucial components of populations and communities. Their dynamics depend on the covariation of traits of the interacting organisms, and there is increasing evidence that intraspecific trade-off relationships between defense and competitive traits are important drivers of trophic interactions. However, quantifying the relevant traits forming defense-competitiveness trade-offs and how these traits determine prey and predator fitness remains a major challenge. Here, we conducted feeding and growth experiments to assess multiple traits related to defense and competitiveness in six different strains of the green alga Chlamydomonas reinhardtii exposed to predation by the rotifer Brachionus calyciflorus. We found large differences in defense and competitive traits among prey strains and negative relationships between these traits for multiple trait combinations. Because we compared trait differences among strains whose ancestors evolved previously in controlled environments where selection favored either defense or competitiveness, these negative correlations suggest the presence of a trade-off between defense and competitiveness. These differences in traits and trade-offs translated into differences in prey and predator fitness, demonstrating the importance of intraspecific trade-offs in predicting the outcome of predator-prey interactions.
Collapse
|
8
|
Kazeminejad S, Arzhang P, Baniasadi MM, Hatami A, Azadbakht L. The Effect of Algae Supplementation on Anthropometric Indices in Adults: A GRADE-Assessed Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr Rev 2024:nuae151. [PMID: 39461896 DOI: 10.1093/nutrit/nuae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
CONTEXT Inconsistent results have been reported regarding the effects of different types of algae, such as Spirulina and Chlorella, on anthropometric indices. OBJECTIVE To conduct a meta-analysis to assess the efficacy of algae supplementation on anthropometric indices. DATA SOURCES A comprehensive systematic search was conducted to find relevant articles published from January 1990 to January 2024. DATA EXTRACTION Randomized controlled trials (RCTs) comparing algae supplementation with a placebo or control group were included. The risk of bias and certainty of the evidence were evaluated using the Cochrane risk-of-bias tool and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology, respectively. The random-effects model was used to find the Weighted mean differences (WMDs) for each outcome. DATA ANALYSIS Of 9079 distinct articles in the initial screening, 61 clinical trials were included in this meta-analysis. Algae supplementation resulted in lower body mass index (WMD, -0.27 kg/m2 (95% CI, -0.42 to -0.13); GRADE rating, low), body weight (WMD: -0.78 kg [-1.18 to -0.38]; GRADE rating, low), waist circumference (WMD, -0.68 cm [-1.27 to -0.10]; GRADE rating, very low), kilograms of body fat (WMD, -0.65 kg [-1.13 to -0.17]; GRADE rating, low), and body fat percentage (WMD, -0.9% [-1.62 to -0.17]; GRADE rating, very low) compared with placebo or controls. Nevertheless, the statistically significant effects of algae supplementation on hip circumference (WMD, -0.20 cm [-0.73 to 0.32]; GRADE rating, moderate), waist to hip ratio (WMD, -0.01 [-0.01 to 0.00]; GRADE rating, moderate), and lean body mass (WMD, -0.30 kg [-0.62 to 0.02]; GRADE rating, moderate) were not observed. CONCLUSIONS Overall, the findings of this meta-analysis indicate supplementation with algae may exert beneficial effects on anthropometric indices. However, due to between-studies heterogeneity and very low to low levels of GRADE for significant outcomes, the results should be interpreted with caution. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42024522923.
Collapse
|
9
|
Crowell RM, Shainker-Connelly SJ, Krueger-Hadfield SA, Vis ML. Population genetics of the freshwater red alga Batrachospermum gelatinosum (Rhodophyta) II: Phylogeographic analyses reveal spatial genetic structure among and within five major drainage basins in eastern North America. JOURNAL OF PHYCOLOGY 2024. [PMID: 39432367 DOI: 10.1111/jpy.13512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024]
Abstract
The freshwater red alga Batrachospermum gelatinosum has a well-documented distribution spanning historically glaciated and unglaciated eastern North America. This alga has no known desiccation-resistant propagule; thus, long-distance dispersal events are likely rare. We predicted strong genetic structure among drainage basins and admixture among sites within basins. We predicted greater genetic diversity at lower latitude sites because they likely serve as refugia and the origin of northward, post-Pleistocene range expansion. We used 10 microsatellite loci to investigate genetic diversity from 311 gametophytes from 18 sites in five major drainage basins: South Atlantic Gulf, Mid-Atlantic, Ohio River, Great Lakes, and Northeast. Our data showed strong genetic partitioning among drainage basins and among sites within basins, yet no isolation by distance was detected. Genetic diversity varied widely among sites and was not strictly related to latitude as predicted. The results from B. gelatinosum provide strong support that each stream site contributes to the unique genetic variation within the species, potentially due to limited dispersal and the prevailing reproductive mode of intragametophytic selfing. Simulations of migration suggested post-Pleistocene dispersal from the Mid-Atlantic. Batrachospermum gelatinosum potentially persisted in refugia that were just south of the ice margins rather than in the southernmost part of its range. Research of other taxa with similar ranges could determine whether these results are generally applicable for freshwater red algae. Nevertheless, these results from B. gelatinosum add to the growing literature focused on the patterns and genetic consequences of post-Pleistocene range expansion by eastern North American biota.
Collapse
|
10
|
Lucena AMM, de Souza Lucena EE, Neto SPD, Nobre LTDB, Rocha HAO, Câmara RBG. Algal polysaccharides: new perspectives for the treatment of basal ganglia neurodegenerative diseases. Front Neuroanat 2024; 18:1465421. [PMID: 39479366 PMCID: PMC11521925 DOI: 10.3389/fnana.2024.1465421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
The objective of this review was to verify the therapeutic effect of polysaccharides derived from algae in neurodegenerative disease models involving the basal ganglia. To achieve this goal, a literature search was conducted in PubMed, Science Direct, Scopus, Web of Science, Embase, and Google Scholar databases. The descriptors "neuroprotective or neural regenerative or immunomodulatory activity or neuroprotection," "polysaccharide or carbohydrate or carbohydrate polymers," "marine algae or seaweed," and "basal ganglia" according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) methodology were used. This methodology involved the steps of searching, pre-selection, and inclusion of articles. A total of 737 records were identified. Following the data analysis, 698 studies were excluded, resulting in a final sample of 8 studies. Species such as Turbinaria decurrens, Gracilaria cornea, Chlorella pyrenoidosa, Arthrospira (Spirulina) platensis, Fucus vesiculosus, and Laminaria japonica have demonstrated significant neuroprotective effects. This review suggests that polysaccharides derived from marine algae possess therapeutic potential for neuroprotection, modulation of inflammation, and amelioration of functional deficits. Their use in neurodegenerative disease models warrants further consideration.
Collapse
|
11
|
Laureano G, Bermudez AE, Rivera Vicéns RE, Arun A. Metagenome-assembled genome of Pseudomonas sp. from coenocytic alga Vaucheria bursata. Microbiol Resour Announc 2024:e0048524. [PMID: 39400140 DOI: 10.1128/mra.00485-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Here, we report a draft metagenome-assembled genome and annotation of Pseudomonas sp. obtained from the sequenced genome of Vaucheria bursata. The genome completeness was 97.9% with a total of 5,322 open reading frames, of which 3,147 genes were annotated. The availability of the metagenome will elucidate the possible epiphytic interactions of bacteria with Vaucheria bursata.
Collapse
|
12
|
Zhu Z, Li Y, Wu X, Li J, Mo X, Yan X, Chen H. Intricate Evolution of Multifunctional Lipoxygenase in Red Algae. Int J Mol Sci 2024; 25:10956. [PMID: 39456739 PMCID: PMC11507377 DOI: 10.3390/ijms252010956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Lipoxygenases (LOXs) from lower organisms have substrate flexibility and function versatility in fatty acid oxidation, but it is not clear how these LOXs acquired the ability to execute multiple functions within only one catalytic domain. This work studied a multifunctional LOX from red alga Pyropia haitanensis (PhLOX) which combined hydroperoxidelyase (HPL) and allene oxide synthase (AOS) activity in its active pocket. Molecular docking and site-directed mutagenesis revealed that Phe642 and Phe826 jointly regulated the double peroxidation of fatty acid, Gln777 and Asn575 were essential to the AOS function, and the HPL activity was improved when Asn575, Gln777, or Phe826 was replaced by leucine. Phylogenetic analysis indicated that Asn575 and Phe826 were unique amino acid sites in the separated clades clustered with PhLOX, whereas Phe642 and Gln777 were conserved in plant or animal LOXs. The N-terminal START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC (SRPBCC) domain of PhLOX was another key variable, as the absence of this domain disrupted the versatility of PhLOX. Moreover, the functions of two homologous LOXs from marine bacterium Shewanella violacea and red alga Chondrus crispus were examined. The HPL activity of PhLOX appeared to be inherited from a common ancestor, and the AOS function was likely acquired through mutations in some key residues in the active pocket. Taken together, our results suggested that some LOXs from red algae attained their versatility by amalgamating functional domains of ancestral origin and unique amino acid mutations.
Collapse
|
13
|
Yimam MA, Andreini M, Carnevale S, Muscaritoli M. The role of algae, fungi, and insect-derived proteins and bioactive peptides in preventive and clinical nutrition. Front Nutr 2024; 11:1461621. [PMID: 39449824 PMCID: PMC11499197 DOI: 10.3389/fnut.2024.1461621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
The current global trend in the nutrition, epidemiologic and demographic transitions collectively alarms the need to pursue a sustainable protein diet that respects ecosystem and biodiversity from alternative sources, such as algae, fungi and edible insects. Then, changing the nutrition reality is extremely important to impede the global syndemic of obesity, undernutrition and climate change. This review aims to synthesize the published literature on the potential roles of alternative proteins and their derived bioactive peptides in preventive and clinical nutrition, identify research gaps and inform future research areas. Google Scholar and PubMed databases from their inception up to 30 June 2024 were searched using keywords to access pertinent articles published in English language for the review. Overall, proteins derived from algae, fungi, and edible insects are high-quality proteins as animal sources and demonstrate significant potential as a sustainable source of bioactive peptides, which are metabolically potent and have negligible adverse effects. They show promise to prevent and treat diseases associated with oxidative stress, obesity, diabetes, cancer, cardiovascular disease (especially hypertension), and neurodegenerative diseases. Given the abundance of algae, fungi and insect peptides performed in vitro or in vivo animals, further clinical studies are needed to fully establish their safety, efficacy and practical application in preventive and clinical nutrition. Additionally, social and behavioral change communication strategies would be important to increase health awareness of nutritional benefits and promote consumer acceptance of alternative protein sources.
Collapse
|
14
|
Roussel L, Dumont M, Gascoin S, Monteiro D, Bavay M, Nabat P, Ezzedine JA, Fructus M, Lafaysse M, Morin S, Maréchal E. Snowmelt duration controls red algal blooms in the snow of the European Alps. Proc Natl Acad Sci U S A 2024; 121:e2400362121. [PMID: 39312681 PMCID: PMC11474047 DOI: 10.1073/pnas.2400362121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024] Open
Abstract
Algae populate multiple habitats, including snow and ice, where they can form red blooms. These decrease snow albedo, accelerating snowmelt and potentially feeding back on snow and glacier decline caused by climate change. Quantifying this feedback requires the understanding of bloom evolution with climate change. Little, however, is known about the drivers of red snow blooms. Here, we develop an algorithm to analyze 5 y of satellite data from the European Alps and separate bloom occurrences from similarly colored Saharan dust depositions. In a second step, we combine the occurrences of blooms with meteorological data and snow simulations to identify the drivers of blooms. Results show that the upward migration of algae from the ground and blooming requires the presence of liquid water throughout the whole snow column for at least 46 d. Our limited data suggest that moderate dust amounts provide nutrients favorable to bloom, whereas large dust amounts hasten snowmelt and reduce its duration below the threshold required for blooming. Over the period studied, blooms cover 1.3% of the area above 1,800 m elevation, advancing the snow melt-out date by 4 to 21 d in these areas. Under warmer climates, maximum snow mass will decrease whereas snowmelt duration, that controls algal blooms' occurrences, is less sensitive to global temperature increase. In this respect, the impact of bloom on snowmelt will either remain stable (RCP4.5) or decrease (RCP8.5). Algal blooms in the Alps therefore do not constitute a positive climate feedback.
Collapse
|
15
|
Stancheva R, Cantonati M, Manoylov K, Furey PC, Cahoon AB, Jones RC, Gillevet P, Amsler CD, Wehr JD, Salerno JL, Krueger-Hadfield SA. The importance of integrating phycological research, teaching, outreach, and engagement in a changing world. JOURNAL OF PHYCOLOGY 2024. [PMID: 39364681 DOI: 10.1111/jpy.13507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 10/05/2024]
Abstract
The ecological, evolutionary, economic, and cultural importance of algae necessitates a continued integration of phycological research, education, outreach, and engagement. Here, we comment on several topics discussed during a networking workshop-Algae and the Environment-that brought together phycological researchers from a variety of institutions and career stages. We share some of our perspectives on the state of phycology by examining gaps in teaching and research. We identify action areas where we urge the phycological community to prepare itself to embrace the rapidly changing world. We emphasize the need for more trained taxonomists as well as integration with molecular techniques, which may be expensive and complicated but are important. An essential benefit of these integrative studies is the creation of high-quality algal reference barcoding libraries augmented with morphological, physiological, and ecological data that are important for studies of systematics and crucial for the accuracy of the metabarcoding bioassessment. We highlight different teaching approaches for engaging undergraduate students in algal studies and the importance of algal field courses, forays, and professional phycological societies in supporting the algal training of students, professionals, and citizen scientists.
Collapse
|
16
|
Sittisaree W, Yokthongwattana K, Aonbangkhen C, Yingchutrakul Y, Krobthong S. Effect of NH4Cl supplementation on growth, photosynthesis, and triacylglycerol content in Chlamydomonas reinhardtii under mixotrophic cultivation. J Appl Microbiol 2024; 135:lxae233. [PMID: 39257021 DOI: 10.1093/jambio/lxae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
AIM Ammonium chloride (NH4Cl) is one of the nitrogen sources for microalgal cultivation. An excessive amounts of NH4Cl are toxic for microalgae. However, combining mixotrophic conditions and excessive quantities of NH4Cl positively affects microalgal biomass and lipid production. In this study, we investigated the impact of NH4Cl on the growth, biomass, and triglyceride (TAG) content of the green microalga Chlamydomonas reinhardtii especially under mixotrophic conditions. METHODS AND RESULTS Under photoautotrophic conditions (without organic carbon supplementation), adding 25 mM NH4Cl had no significant effect on microalgal growth or TAG content. However, under mixotrophic condition (with acetate supplementation), NH4Cl interfered with microalgal growth while inducing TAG content. To explore these effects further, we conducted a two-step cultivation process and found that NH4Cl reduced microalgal growth, but induced total lipid and TAG content, especially after 4-day cultivation. The photosynthesis performances showed that NH4Cl completely inhibited oxygen evolution on day 4. However, NH4Cl slightly reduced the Fv/Fm ratio indicating that the NH4Cl supplementation directly affects microalgal photosynthesis. To investigate the TAG induction effect by NH4Cl, we compared the protein expression profiles of microalgae grown mixotrophically with and without 25 mM NH4Cl using a proteomics approach. This analysis identified 1782 proteins, with putative acetate uptake transporter GFY5 and acyl-coenzyme A oxidase being overexpressed in the NH4Cl-treated group. CONCLUSION These findings suggested that NH4Cl supplementation may stimulate acetate utilization and fatty acid synthesis pathways in microalgae cells. Our study indicated that NH4Cl supplementation can induce microalgal biomass and lipid production, particularly when combined with mixotrophic conditions.
Collapse
|
17
|
Coleman LJM, Martone PT. Grow with the flow: Is phenotypic plasticity across hydrodynamic gradients common in seaweeds? JOURNAL OF PHYCOLOGY 2024; 60:1058-1067. [PMID: 39269426 DOI: 10.1111/jpy.13503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Seaweeds are widely assumed to be phenotypically plastic across hydrodynamic gradients, yet while many marine macroalgae exhibit intraspecific phenotypic variation that correlates with flow, researchers often fail to test whether such variation is due to plasticity or another mechanism, such as local adaptation. In this minireview, we considered mechanisms for sensing flow in seaweeds that could facilitate adaptive phenotypic plasticity across hydrodynamic gradients. We then reviewed the literature from 1900 to 2024 to see how often phenotypic variation and plasticity across hydrodynamic gradients had been observed and demonstrated in different groups of seaweeds. In the last 124 years, phenotypic variation and plasticity in response to flow have been well documented in brown algae but scarcely documented in red and green algae. This could suggest that brown algae are better able to sense and respond to flow than red and green algae, perhaps due to the intercalary meristem of many brown algae, including most kelps. However, this skewed distribution could also be the result of publication bias, as most studies involving flow have been conducted on brown algae. Only 30% of 141 papers specifically investigated if observations of phenotypic variation along hydrodynamic gradients were due to plasticity. To date, phenotypic plasticity in response to flow has been demonstrated in 20 brown algal species, five red algal species, and two green algal species. Thus, the assumption that phenotypic plasticity to flow is common across seaweeds is not particularly well supported by the literature. Mechanisms underlying plasticity to flow are poorly understood and remain a critical avenue for future research.
Collapse
|
18
|
Quattrone A, Belabbas R, Fehri NE, Agradi S, Mazzola SM, Barbato O, Dal Bosco A, Mattioli S, Failla S, Abdel-Kafy ESM, Jemmali B, Salem IB, Mandara MT, Giglia G, Colin M, Guillevic M, Muça G, Sulçe M, Castrica M, Bilgiç B, Marongiu ML, Brecchia G, Curone G, Menchetti L. The Effect of Dietary Plant-Derived Omega 3 Fatty Acids on the Reproductive Performance and Gastrointestinal Health of Female Rabbits. Vet Sci 2024; 11:457. [PMID: 39453049 PMCID: PMC11512234 DOI: 10.3390/vetsci11100457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
This study examined the effects of extruded linseed and algae Padina pavonica extract on the reproductive performance, milk production, and gastrointestinal health of female rabbits. Thirty-six nulliparous New Zealand White female rabbits were randomly assigned to three groups (n = 12) with different diets. The control group (CNT) received a standard diet, while the other two groups received modified isoenergetic diets in which part of the CNT diet ingredients were replaced with 5% extruded linseed (L5%) and 5% extruded linseed plus 0.2% Padina pavonica algae extract (L5%PP). The rabbits were monitored from artificial insemination until the weaning of the rabbit kits, evaluating different reproductive parameters. Our results indicate that extruded linseed and alga Padina pavonica extract did not affect the feed intake or body weight of female rabbits. Additionally, no clinically significant histological changes were observed at the gastrointestinal level. The reproductive parameters, including litter size, litter weight, and milk yield, showed no significant differences among groups. Notably, perinatal and pre-weaning mortalities were reduced in litters born to females receiving omega-3 integrated diets (p < 0.05). While these findings are promising, further studies are needed to confirm these results and explore the specific mechanisms by which omega-3 affects reproductive function and litter health.
Collapse
|
19
|
Perez-Boerema A, Engel BD, Wietrzynski W. Evolution of Thylakoid Structural Diversity. Annu Rev Cell Dev Biol 2024; 40:169-193. [PMID: 38950450 DOI: 10.1146/annurev-cellbio-120823-022747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Oxygenic photosynthesis evolved billions of years ago, becoming Earth's main source of biologically available carbon and atmospheric oxygen. Since then, phototrophic organisms have diversified from prokaryotic cyanobacteria into several distinct clades of eukaryotic algae and plants through endosymbiosis events. This diversity can be seen in the thylakoid membranes, complex networks of lipids, proteins, and pigments that perform the light-dependent reactions of photosynthesis. In this review, we highlight the structural diversity of thylakoids, following the evolutionary history of phototrophic species. We begin with a molecular inventory of different thylakoid components and then illustrate how these building blocks are integrated to form membrane networks with diverse architectures. We conclude with an outlook on understanding how thylakoids remodel their architecture and molecular organization during dynamic processes such as biogenesis, repair, and environmental adaptation.
Collapse
|
20
|
Smol JP, Rühland KM, Michelutti N, Evans MS. From Arctic ponds to the "Northern Great Lakes": Algae as first responders of climate-driven regime shifts. JOURNAL OF PHYCOLOGY 2024; 60:1029-1035. [PMID: 39213038 DOI: 10.1111/jpy.13494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Arctic freshwater ecosystems are on the "frontline" of climate change, but due to a lack of direct long-term monitoring data, indirect approaches, such as algal-based paleolimnology, must be used to reconstruct past limnological conditions. Our understanding of the responses of small- to mid-sized Arctic lakes to climate warming has increased over the last ~30 years. However, until recently, little was known about even the basic limnological conditions of Canada's "Northern Great Lakes," such as Lake Hazen, Great Bear Lake, and Great Slave Lake. In this summary, we show that a continuum of algal changes, observable in the sedimentary archives of shallow ponds to very large Arctic lakes, signals the crossing of key aquatic thresholds linked to changing ice covers and thermal regimes, declining wind speeds, and other climate-related variables. With recent accelerated warming, even the largest and most resilient Arctic waterbodies are now fundamentally different than they were just a few decades ago. These changes will undoubtedly cascade throughout the food web leading to important changes for local Indigenous populations as well as the global community.
Collapse
|
21
|
Kurtz KR, Green-Gavrielidis L, Maranda L, Thornber CS, Moloney DM, Oyanedel-Craver V. A comparison of the biofouling potential of field-collected and laboratory-cultured Ulva. BIOFOULING 2024; 40:632-644. [PMID: 39297291 DOI: 10.1080/08927014.2024.2403371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
The marine algae Ulva spp. are commonly used as model biofouling organisms. As biofouling studies are primarily conducted using field-collected specimens, factors including species identity, seasonal availability, and physiological status can hinder the replicability of the results. To address these limitations, a protocol was developed for the on-demand laboratory culture and release of Ulva zoospores. The biofouling potential of laboratory-cultured and field-collected Ulva blades was compared using a waterjet. No significant differences were found between field and laboratory-cultured samples in either spore adhesion (before waterjet) or the proportion of spores retained after waterjet exposure. However, there was significant variability within each session type in pre- and post-waterjet exposures, indicating that spore adhesion and retention levels vary significantly among trial runs. In addition, all our laboratory cultures were Ulva Clade C (LPP complex). In contrast, our field samples contained a mix of Ulva Clade C, U. compressa clade I, and U. flexuosa Clade D. This protocol for on-demand production of Ulva spores can improve biofouling research approaches, enables comparison of results across laboratories and regions, and accelerate the development of anti-biofouling strategies.
Collapse
|
22
|
Bačkor M, Kecsey D, Drábová B, Urminská D, Šemeláková M, Goga M. Secondary Metabolites from Australian Lichens Ramalina celastri and Stereocaulon ramulosum Affect Growth and Metabolism of Photobiont Asterochloris erici through Allelopathy. Molecules 2024; 29:4620. [PMID: 39407550 PMCID: PMC11477754 DOI: 10.3390/molecules29194620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
In the present work, the phytotoxic effects of secondary metabolites extracted from lichen Ramalina celastri (usnic acid) and lichen Stereocaulon ramulosum (a naturally occurring mixture of atranorin and perlatolic acid, approx. 3:1) on cultures of the aposymbiotically grown lichen photobiont Asterochloris erici were evaluated. Algae were cultivated on the surface of glass microfiber disks with applied crystals of lichen extracts for 14 days. The toxicity of each extract was tested at the two selected doses in quantities of 0.01 mg/disk and 0.1 mg/disk. Cytotoxicity of lichen extracts was assessed using selected physiological parameters, such as growth (biomass production) of photobiont cultures, content of soluble proteins, chlorophyll a fluorescence, chlorophyll a integrity, contents of chlorophylls and total carotenoids, hydrogen peroxide, superoxide anion, TBARS, ascorbic acid (AsA), reduced (GSH) and oxidized (GSSG) glutathione, and composition of selected organic acids of the Krebs cycle. The application of both tested metabolic extracts decreased the growth of photobiont cells in a dose-dependent manner; however, a mixture of atranorin and perlatolic acid was more effective when compared to usnic acid at the same dose tested. A higher degree of cytotoxicity of extracts from lichen S. ramulosum when compared to identical doses of extracts from lichen R. celastri was also confirmed by a more pronounced decrease in chlorophyll a fluorescence and chlorophyll a integrity, decreased content of chlorophylls and total carotenoids, increased production of hydrogen peroxide and superoxide anion, peroxidation of membrane lipids (assessed as TBARS), and a strong decrease in non-enzymatic antioxidants such as AsA, GSH, and GSSG. The cytotoxicity of lichen compounds was confirmed by a strong alteration in the composition of selected organic acids included in the Krebs cycle. The increased ratio between pyruvic acid and citric acid was a very sensitive parameter of phytotoxicity of lichen secondary metabolites to the algal partner of symbiosis. Secondary metabolites of lichens are potent allelochemicals and play significant roles in maintaining the balance between mycobionts and photobionts, forming lichen thallus.
Collapse
|
23
|
Neyrot S, Acha D, Morales-Belpaire I. The fate of sulfamethoxazole in microcosms of the macrophyte Schoenoplectus californicus and its impact on microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024:124947. [PMID: 39278559 DOI: 10.1016/j.envpol.2024.124947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Sulfamethoxazole is a widely used antibiotic frequently found as an environmental pollutant. It can alter microbial communities and increase antibiotic resistance, becoming a public health risk. Constructed wetlands have the potential for removing sulfamethoxazole from polluted waters, but the role of different macrophytes in this process is not well understood. We investigated the fate of sulfamethoxazole and its effect on bacterial communities in microcosms containing Schoenoplectus californicus, an altitude-tolerant macrophyte. Within the first ten hours after introducing sulfamethoxazole (initial concentration 5 mg/L) to the microcosms, the concentration in the liquid phase significantly differed between microcosms with and without S. californicus. However, over the long term (15 and 30 days post-addition), the removal percentage (around 75%) in the liquid phase was not significantly influenced by S. californicus, indicating that sediments might be primarily responsible for removing the antibiotic. The presence of S. californicus promoted algae growth in the microcosms, and we determined that algae contributed to sulfamethoxazole removal from the liquid phase, likely through adsorption. Additionally, we characterized bacterial communities in the microcosm sediments via nanopore sequencing to identify changes following sulfamethoxazole addition. The relative abundance of Proteobacteria increased from 37-46% to 48-99% with the addition of the antibiotic. Conversely, the relative abundance of cyanobacteria decreased significantly after sulfamethoxazole was added (from 17-35% to less than 2%), suggesting it may serve as a biological marker for sulfamethoxazole pollution. In addition, the functional profile of the community was estimated from taxonomic diversity using PICRUST.
Collapse
|
24
|
Sousa D, Fortunato MAG, Silva J, Pingo M, Martins A, Afonso CAM, Pedrosa R, Siopa F, Alves C. Sphaerococcenol A Derivatives: Design, Synthesis, and Cytotoxicity. Mar Drugs 2024; 22:408. [PMID: 39330289 PMCID: PMC11432771 DOI: 10.3390/md22090408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Sphaerococcenol A is a cytotoxic bromoditerpene biosynthesized by the red alga Sphaerococcus coronopifolius. A series of its analogues (1-6) was designed and semi-synthesized using thiol-Michael additions and enone reduction, and the structures of these analogues were characterized by spectroscopic methods. Cytotoxic analyses (1-100 µM; 24 h) were accomplished on A549, DU-145, and MCF-7 cells. The six novel sphaerococcenol A analogues displayed an IC50 range between 14.31 and 70.11 µM on A549, DU-145, and MCF-7 malignant cells. Compound 1, resulting from the chemical addition of 4-methoxybenzenethiol, exhibited the smallest IC50 values on the A549 (18.70 µM) and DU-145 (15.82 µM) cell lines, and compound 3, resulting from the chemical addition of propanethiol, exhibited the smallest IC50 value (14.31 µM) on MCF-7 cells. The highest IC50 values were exhibited by compound 4, suggesting that the chemical addition of benzylthiol led to a loss of cytotoxic activity. The remaining chemical modifications were not able to potentiate the cytotoxicity of the original compounds. Regarding A549 cell viability, analogue 1 exhibited a marked effect on mitochondrial function, which was accompanied by an increase in ROS levels, Caspase-3 activation, and DNA fragmentation and condensation. This study opens new avenues for research by exploring sphaerococcenol A as a scaffold for the synthesis of novel bioactive molecules.
Collapse
|
25
|
Bertrand C, Martins R, Nunes F, Brandão P, Nascimento FX. Genomic insights into indole-3-acetic acid catabolism in the marine algae-associated bacterium, Marinomonas sp. NFXS50. Access Microbiol 2024; 6:000856.v3. [PMID: 39239567 PMCID: PMC11373566 DOI: 10.1099/acmi.0.000856.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024] Open
Abstract
Auxins, mainly in the form of indole-3-acetic acid (IAA), regulate several aspects of plant and algal growth and development. Consequently, plant and algae-associated bacteria developed the ability to modulate IAA levels, including IAA catabolism. In this work, we present and analyse the genome sequence of the IAA-degrading and marine algae-associated bacterium, Marinomonas sp. NFXS50, analyse its IAA catabolism gene cluster and study the prevalence of IAA catabolism genes in other Marinomonas genomes. Our findings revealed the presence of homologs of the Pseudomonas iac gene cluster, implicated in IAA catabolism, in the genome of strain NFXS50; however, differences were observed in the content and organization of the Marinomonas iac gene cluster when compared to that of the model iac-containing Pseudomonas putida 1290. These variations suggest potential adaptations in the IAA catabolism pathway, possibly influenced by substrate availability and evolutionary factors. The prevalence of iac genes across several Marinomonas species underscores the significance of IAA catabolism in marine environments, potentially influencing plant/algae-bacteria interactions. This study provides novel insights into the IAA catabolism in Marinomonas, laying the groundwork for future investigations into the role of iac genes in Marinomonas physiology and the regulation of marine plant/algae-bacteria interactions.
Collapse
|