1
|
Zhang Y, Zhao L, Tian K, Jiang Y, Ma R, Liu Y. [Isolation and degradation characterization of a 1, 4-dioxane-degrading bacterial strain]. SHENG WU GONG CHENG XUE BAO = CHINESE JOURNAL OF BIOTECHNOLOGY 2024; 40:3722-3749. [PMID: 39467761 DOI: 10.13345/j.cjb.240060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
To address the potential pollution caused by the carcinogen 1, 4-dioxane in aquatic environments, we isolated a highly efficient 1, 4-dioxane-degrading bacterial strain, designated as DXTK-010, from the groundwater contaminated by 1, 4-dioxane. According to the morphological characteristics, the phylogenetic tree established based on the 16S rRNA gene sequence, and the whole genome sequence, we identified DXTK-010 as Aminobacter aminovorans. This strain demonstrated robust degradation capacity within a temperature range of 20 ℃ to 37 ℃ and a pH range of 5.0 to 8.0. Furthermore, single-factor experiments indicated the optimal degradation conditions at 30 ℃ and pH 7.5. Under the optimal conditions, the strain completely degraded 200 mg/L of 1, 4-dioxane within 24 h, achieving a maximum degradation rate of 9.367 mg/(L·h). The Monod equation was adopted to fit the degradation kinetics of 1, 4-dioxane at different initial concentrations, which revealed a maximum specific degradation rate of 0.224 mg 1, 4-dioxane/(mg protein·h), a half-saturation constant (Ks) of 41.350 mg/L, and a cell yield of 0.130 mg protein/(mg 1, 4-dioxane). Whole genome sequencing revealed a circular chromosome and three plasmids within DXTK-010. Functional gene annotation and analysis underscored the significance of the propane monooxygenase gene cluster and alcohol dehydrogenase gene in facilitating the efficient degradation of 1, 4-dioxane by this strain. DXTK-010 outperformed the existing degraders for 1, 4-dioxane, expanding the strain resources for the bioremediation of 1, 4-dioxane pollution. This study provides a theoretical basis for the practical application of DXTK-010 in the remediation of 1, 4-dioxane pollution.
Collapse
|
2
|
Pavčnik L, Locatelli I, Trdan Lušin T, Roškar R. Matrixing Designs for Shelf-Life Determination of Parenteral Drug Product: A Comparative Analysis of Full and Reduced Stability Testing Design. Pharmaceutics 2024; 16:1117. [PMID: 39339155 PMCID: PMC11435299 DOI: 10.3390/pharmaceutics16091117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
This article highlights the applicability of matrixing designs in stability studies for parenteral medications. The traditional approach involves extensive testing over the product's shelf-life. However, matrixing designs offer an alternative approach where only a fraction of samples is tested at each time point. The study conducted in this article focused on three parenteral medications and examined stability data under long-term condition. Degradation products were identified as critical parameter, and kinetics of degradation varied among the selected products. A systematic methodology was adopted to evaluate the data using different matrixing designs. The regression models obtained were assessed using statistical parameters S and R2. Also, each of the 28 matrixing designs were compared to the full design with statistical parameter RMSE and the shelf-life. The results confirmed that each of the evaluated matrixing designs can be applied, whether degradation product shows a linear or non-linear increase, and demonstrated that a reduction of two time points per batch is the most appropriate. In conclusion, this research contributes to the understanding of utilizing reduced matrixing designs in stability studies for parenteral medications and can be an effective strategy to reduce costs and time of stability testing while maintaining the necessary level of precision and reliability.
Collapse
|
3
|
Liu H, Yu J. Ozonation degradation of wastewater using rotational hydrodynamic cavitation reactor with a conical rotor. ENVIRONMENTAL TECHNOLOGY 2024:1-16. [PMID: 39157964 DOI: 10.1080/09593330.2024.2391075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Water pollution caused by an abusive discharge of dye-containing wastewater leads to serious ecological risks. Conventional wastewater treatment methods have shortcomings of incomplete degradation, long-time treatment and secondary pollution. For the first time, a rotational hydrodynamic cavitation reactor (RHCR) equipped with a conical rotor has been designed to enhance the ozonation process for effective degradation of pollutants. The effects of rotational speed, discharge voltage, gas flow rate, liquid flow rate and initial pH on methylene blue (MB) degradation were deeply investigated. The optimised conditions were initial pH = 9, rotational speed = 1800 rpm, discharge voltage = 9.3 kV, gas flow rate = 60 mL/min and liquid flow rate = 80 mL/min. With the integration of ozonation and cavitation in RHCR, the MB degradation efficiency reached 95.2%, which was 15.6% higher than that of the individual ozonation method. The degradation process was proven to track the first-order kinetic model, with the reaction rate and synergy index were 0.232 min-1 and 1.78, respectively. Through the quenching experiments, it can be confirmed that the contribution proportion of hydroxyl radical during degradation was increased by 8.7% due to the enhancement of cavitation. A required energy consumption of 74.7 kWh/order/m3 and a total expense of 8.7 $/m3 were calculated. The energy consumption of the RHCR was approximately 80% lower than that of the recently reported degradation system combining ozonation and cavitation, with total expense reduced by 52%. The findings of this work provide a new water treatment method and offered theoretical references for the design of RHCR.
Collapse
|
4
|
Ayman A, Wahba MEK, El-Gindy AEDMA, El-Shabrawy Y, Mostafa AE. An eco-friendly first and second derivative synchronous spectrofluorimetry for quantification of florfenicol in presence of its different degradation products. Application to kinetic stability study. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231642. [PMID: 39076368 PMCID: PMC11285835 DOI: 10.1098/rsos.231642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/08/2024] [Accepted: 05/29/2024] [Indexed: 07/31/2024]
Abstract
Two rapid, simple, sensitive and selective derivative spectrofluorimetric methods (first and second derivative synchronous spectrofluorimetric (FDSFS and SDSFS) procedures) have been developed for the analysis of florfenicol in the presence of its various degradation products. FDSFS was applied to assay the drug in the presence of its alkaline, oxidative and photolytic degradation products while SDSFS was used to quantify it in the presence of its acidic degradation product. These methods permitted quantification of florfenicol at corresponding λ Em of 288, 287, 279 and 284 nm without interferences from any of its degradation products. Full validation procedures were applied to the suggested method according to International Conference of Harmonization guidelines. Moreover, different degradation kinetic parameters were calculated such as half-life (t 1/2), degradation rate constant (K) and activation energy (E a). Using the analytical eco-scale, green analytical procedure index and analytical greenness metric approach AGREE as greenness assessment tools, the proposed method was found to be environmentally friendly.
Collapse
|
5
|
Drosou C, Krokida M. A Comparative Study of Encapsulation of β-Carotene via Spray-Drying and Freeze-Drying Techniques Using Pullulan and Whey Protein Isolate as Wall Material. Foods 2024; 13:1933. [PMID: 38928875 PMCID: PMC11203211 DOI: 10.3390/foods13121933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The encapsulation of β-carotene was investigated using pullulan and whey protein isolate (WPI) as a composite matrix at a weight ratio of 20:80, employing both spray-drying and freeze-drying techniques. The influence of processing parameters such as the concentration of wall material, flow rate, and inlet temperature for SP encapsulants, as well as wall-material concentration for FZ encapsulants, was examined in terms of encapsulation efficiency (EE). The morphology, structural characterization, moisture sorption isotherms, and thermal properties of the resulting encapsulants at optimum conditions were determined. Their stability was investigated under various levels of water activity, temperature conditions, and exposure to UV-Vis irradiation. β-carotene was efficiently encapsulated within SP and FZ structures, resulting in EE of approximately 85% and 70%, respectively. The degradation kinetics of β-carotene in both structures followed a first-order reaction model, with the highest rate constants (0.0128 day-1 for SP and 0.165 day-1 for FZ) occurring at an intermediate water-activity level (aw = 0.53) across all storage temperatures. The photostability tests showed that SP encapsulants extended β-carotene's half-life to 336.02 h, compared with 102.44 h for FZ encapsulants, under UV-Vis irradiation. These findings highlight the potential of SP encapsulants for applications in functional foods, pharmaceuticals, and carotenoid supplements.
Collapse
|
6
|
Kumar R, De M. Simultaneous bioremediation of diesel-contaminated soil and water ecosystems using mixed culture of Acinetobacter baumannii IITG19 and Providencia vermicola IITG20. ENVIRONMENTAL TECHNOLOGY 2024:1-18. [PMID: 38837716 DOI: 10.1080/09593330.2024.2361171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Diesel degradation and bacterial growth were investigated in soil, marine water, and freshwater ecosystems using Acinetobacter baumannii IITG19, Providencia vermicola IITG20, and their mixed culture. Both bacteria were found to be effective in all three ecosystems, with the best degradation occurring in freshwater. Acinetobacter baumannii IITG19 showed higher degradation (59%, 62%, and 76%) than Providencia vermicola IITG20 (31%, 57%, and 67%) in soil, marine water, and freshwater, respectively. Alkanes showed higher degradation than naphthenes and aromatics for both strains. The mixed culture showed higher diesel degradation efficiency than individual strains in all ecosystems. The overall degradation was similar in soil and marine water (66%), while freshwater showed the highest degradation of 81%. In the presence of the mixed culture, the degradation of alkanes was more than 90%. Bacterial growth was highest in freshwater and lowest in soil for both bacteria and the mixed culture. Metabolite analysis confirmed alcoholic degradation for alkanes and cyclo-alcoholic degradation for naphthenes. The degradation rate for mixed culture was higher than that of both the individual strains. The mixed culture had highest degradation rate constant in freshwater at 0.11 day-1 followed by that in marine ecosystem at 0.078 day-1. The rate constant was lowest for soil ecosystem at 0.066 day-1. Thus the mixed culture showed effectiveness in all three ecosystems, with its highest effectiveness observed in the freshwater ecosystem.
Collapse
|
7
|
Yao Y, Yuan H, Zheng Y, Wang M, Li C. An Insight into the Thermal Degradation Pathway of γ-Oryzanol and the Effect on the Oxidative Stability of Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5757-5765. [PMID: 38445360 DOI: 10.1021/acs.jafc.3c08903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Thermal stability and antioxidant ability of γ-oryzanol in oil have been widely studied. However, further research is needed to explore its thermal degradation products and degradation pathways. The thermal degradation products of γ-oryzanol in stripped soybean oil were identified and quantified by employing high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) during heating at 180 °C. The results revealed that γ-oryzanol undergoes ester bond cleavage to form trans-ferulic acid and free sterols, and trans-ferulic acid generated intermediate compound 4-vinylguaiacol, which ultimately generated vanillin. Analysis of kinetic and thermodynamic parameters revealed the thermal stability ranking of the four components of γ-oryzanol as follows: CampFA > CAFA > 24MCAFA > SitoFA. Furthermore, γ-oryzanol exhibited superior antioxidant activity at lower temperatures. The results of this study provide a theoretical basis for a better understanding of the thermal stability and antioxidant properties of γ-oryzanol in oil under thermal oxidation conditions.
Collapse
|
8
|
Hu CY, Xiong C, Lin YL, Zhang TY. Degradation kinetics and disinfection by-products formation of benzophenone-4 during UV/persulfate process. ENVIRONMENTAL TECHNOLOGY 2024:1-12. [PMID: 38164528 DOI: 10.1080/09593330.2023.2298669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
The degradation kinetics, reaction pathways, and disinfection by-products formation of an organic UV filter, benzophenone-4 (BP4) during UV/persulfate oxidation were investigated. BP4 can hardly be degraded by UV alone, but can be effectively decomposed by UV/persulfate following pseudo-first order kinetics. BP4 degradation rate was enhanced with increasing persulfate dosage and decreasing pH from 8 to 5. However, the degradation rate of BP4 at pH 9 was higher than that at pH 8 because of the presence of phenolic group in BP4 structure. and SO 4 - ⋅ were confirmed as the major contributors to BP4 decomposition in radical scavenging experiments, and the second-order rate constants between HO ⋅ and BP4 as well as those between SO 4 - ⋅ and BP4 were estimated by establishing and solving a kinetic model. The presence of B r - and humic acid inhibited the decomposition of BP4, while N O 3 - promoted it. The mineralisation of BP4 was only 9.1% at the persulfate concentration of 50 μM. Six degradation intermediates were identified for the promulgation of the reaction pathways of BP4 during UV/persulfate oxidation were proposed as a result. In addition, the formation of DBP in the sequential chlorination was evaluated at different persulfate dosages, pH values, and water matrix. The results of this study can provide essential knowledge for the effective control of DBP formation with reducing potential hazard to provide safe drinking water to the public.
Collapse
|
9
|
Millan F, Hanik N. Degradation kinetics of medium chain length Polyhydroxyalkanoate degrading enzyme: a quartz crystal microbalance study. Front Bioeng Biotechnol 2023; 11:1303267. [PMID: 38162181 PMCID: PMC10756687 DOI: 10.3389/fbioe.2023.1303267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
This study investigates the enzymatic degradation processes of different classes of polyhydroxyalkanoates (PHAs), a group of biopolymers naturally synthesized by various microorganisms. Medium chain length PHAs (mcl-PHAs) are distinguished biopolymers due to their biodegradability and diverse material properties. Using quartz crystal microbalance measurements as a valuable tool for accurate real-time monitoring of the enzymatic degradation process, the research provides detailed kinetic data, describing the interaction between enzymes and substrates during the enzymatic degradation process. Thin films of poly-3-hydroxybutyrate (PHB) and polyhydroxyoctanoate copolymer (PHO), containing molar fractions of about 84% 3-hydroxyoctanoate and 16% 3-hydroxyhexanoate, were exposed to scl-depolymerases from Pseudomonas lemoignei LMG 2207 and recombinant mcl-depolymerase produced in Escherichia coli DH5α harboring the plasmid pMAD8, respectively. Analyses based on a heterogeneous kinetic model for the polymer degradation indicated a six-fold stronger adsorption equilibrium constant of mcl-depolymerase to PHO. Conversely, the degradation rate constant was approximately twice as high for scl-depolymerases acting on PHB. Finally, the study highlights the differences in enzyme-substrate interactions and degradation mechanisms between the investigated scl- and mcl-PHAs.
Collapse
|
10
|
Xiang DH, Feng WH, Yi H, Li C, Cui QP, Liu XQ, Wang ZM, Xiao PG. [ Degradation kinetics of β-nicotinamide mononucleotide based on reliable HPLC quantitative method]. ZHONGGUO ZHONG YAO ZA ZHI = ZHONGGUO ZHONGYAO ZAZHI = CHINA JOURNAL OF CHINESE MATERIA MEDICA 2023; 48:6635-6644. [PMID: 38212023 DOI: 10.19540/j.cnki.cjcmm.20230905.301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
To explore the stability characteristics of β-nicotinamide mononucleotide(NMN) and provide data support for NMN production, preparation, and related product development, this study established a simple HPLC content determination method for NMN in simple substrate and investigated the degradation behavior, degradation products, and degradation kinetics of NMN under various chemical, physical, and biological conditions. The HPLC method employed a Welch Xtimate AQ-C_(18) column(4.6 mm×250 mm, 5 μm), a detection wavelength of 266 nm, a column temperature of 30 ℃, a flow rate of 1.0 mL·min~(-1), an injection volume of 5 μL, and a mobile phase consisting of methanol(A) and a 10 mmol·L~(-1) ammonium formate aqueous solution(B) with a gradient elution(0-6.7 min, 0-4% A; 6.7-13 min, 4%-18% A; 13-14.2 min, 18% A; 14.2-15 min, 18%-0 A; 15-22 min, 0 A). This method provided good separation between NMN and potential impurities and degradation products, and had a wide linear range, short analysis time, good durability, high accuracy, an average sample recovery rate of 98.71%, and an RSD of 1.2%. The instrument precision had an RSD of 0.26%, and the linearity within the examined range was excellent(R~2≥0.999 9). This method can be applied for NMN content determination in simple substrate. The degradation process of NMN in aqueous solution followed apparent first-order kinetics, with the degradation rate primarily influenced by high temperature and pH. NMN was more stable in low-temperature, neutral, or weakly acidic/alkaline environments. Strong acids or strong alkalis could accelerate its degradation, and its degradation rate was less affected by pepsin and trypsin. In an aqueous solution at room temperature, it followed the kinetic equation lg C_t=0.005 7t + 4.817 2, with t_(0.9) and t_(1/2) values of 95.58, 860.26 h, respectively. The results suggest that pH and temperature are the main factors affecting the stability of NMN in aqueous solution, and low temperature, moisture protection, and a weakly acidic environment are more conducive to the storage and application of NMN and its products.
Collapse
|
11
|
Chau J, Altan S, Burggraeve A, Coppenolle H, Kifle YW, Prokopcova H, Van Daele T, Sterckx H. A Bayesian Approach to Kinetic Modeling of Accelerated Stability Studies and Shelf Life Determination. AAPS PharmSciTech 2023; 24:250. [PMID: 38036798 DOI: 10.1208/s12249-023-02695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Kinetic modeling of accelerated stability data serves an important purpose in the development of pharmaceutical products, providing support for shelf life claims and expediting the path to clinical implementation. In this context, a Bayesian kinetic modeling framework is considered, accommodating different types of nonlinear kinetics with temperature and humidity dependent rates of degradation and accounting for the humidity conditions within the packaging to predict the shelf life. In comparison to kinetic modeling based on nonlinear least-squares regression, the Bayesian approach allows for interpretable posterior inference, flexible error modeling and the opportunity to include prior information based on historical data or expert knowledge. While both frameworks perform comparably for high-quality data from well-designed studies, the Bayesian approach provides additional robustness when the data are sparse or of limited quality. This is illustrated by modeling accelerated stability data from two solid dosage forms and is further examined by means of artificial data subsets and simulated data.
Collapse
|
12
|
Kovačević M, Živković S, Ognjanović M, Momčilović M, Relić D, Vasić Anićijević D. In Silico Guided Design of Metal/Semiconductor Photocatalysts: A Case of Cu-Modified TiO 2 for Ciprofloxacin Degradation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5708. [PMID: 37629999 PMCID: PMC10456727 DOI: 10.3390/ma16165708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
(1) Background: An increasing use of pharmaceutics imposes a need for the permanent development of efficient strategies, including the tailoring of highly specific new materials for their removal from the environment. Photocatalytic degradation has been the subject of increasing interest of the researchers in the field. (2) Methods: This paper is focused on the investigation of the possibility to deposit a thin metal layer on a TiO2 surface and study its photocatalytic performance for the degradation of ciprofloxacin using a combination of theoretical and experimental methods. (3) Results: Based on the extensive DFT screening of 24 d-metals' adhesion on TiO2, Cu was selected for further work, due to the satisfactory expected stability and good availability. The (Cu)TiO2 was successfully synthesized and characterized with XRD, SEM+EDS and UV-Vis spectrophotometry. The uniformly distributed copper on the TiO2 surface corresponds to the binding on high-affinity oxygen-rich sites, as proposed with DFT calculations. The photocatalytic degradation rate of ciprofloxacin was improved by about a factor of 1.5 compared to the bare non-modified TiO2. (4) Conclusions: The observed result was ascribed to the ability of adsorbed Cu to impede the agglomeration of TiO2 and increase the active catalytic area, and bandgap narrowing predicted with DFT calculations.
Collapse
|
13
|
Schwalm MP, Krämer A, Dölle A, Weckesser J, Yu X, Jin J, Saxena K, Knapp S. Tracking the PROTAC degradation pathway in living cells highlights the importance of ternary complex measurement for PROTAC optimization. Cell Chem Biol 2023:S2451-9456(23)00157-5. [PMID: 37354907 DOI: 10.1016/j.chembiol.2023.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/03/2023] [Accepted: 06/01/2023] [Indexed: 06/26/2023]
Abstract
The multi-step degradation process of PROteolysis TArgeting Chimeras (PROTACs) poses a challenge for their rational development, as the rate-limiting steps that determine PROTACs efficiency remain largely unknown. Moreover, the slow throughput of currently used endpoint assays does not allow the comprehensive analysis of larger series of PROTACs. Here, we developed cell-based assays using the NanoLuciferase and HaloTag that allow measuring PROTAC-induced degradation and ternary complex formation kinetics and stability in cells. Using PROTACs developed for the degradation of WD40 repeat domain protein 5 (WDR5), the characterization of the mode of action of these PROTACs in the early degradation cascade revealed a key role of ternary complex formation and stability. Comparing a series of ternary complex crystal structures highlighted the importance of an efficient E3-target interface for ternary complex stability. The developed assays outline a strategy for the rational optimization of PROTACs using a series of live cell assays monitoring key steps of the early PROTAC-induced degradation pathway.
Collapse
|
14
|
Chandran Y, Thakur D, Raju Naik B, Balakrishnan V. Arresting the Surface Oxidation Kinetics of Bilayer 1T'-MoTe2 by Sulphur Passivation. NANOTECHNOLOGY 2023. [PMID: 37311420 DOI: 10.1088/1361-6528/acddea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
MoTe2 garnered much attention among 2D materials due to stable polymorphs with distinctive structural and electronic properties. Among the polymorphs, 1T'-MoTe2 in bulk form is type - II Weyl semimetal while, in monolayer form is a quantum spin Hall insulator. Thus, it is suitable for a wide variety of applications. Nevertheless, 1T'-MoTe2 degrades within a few hours when exposed to the atmosphere and causes hindrances in device fabrication. Here the degradation kinetics of CVD-synthesized 1T'-MoTe2 was investigated using Raman spectroscopy, XPS, and microscopic characterizations. The degradation rate of as-grown 1T'-MoTe2 obtained was 9.2 x 10-3 min-1. Further, we prevented the degradation of 1T'-MoTe2 by introducing a thin coating of S that encapsulates the flakes. 1T'-MoTe2 flakes showed stability for several days when covered using Sulphur, indicating 25 times enhanced structural stability.
.
Collapse
|
15
|
Jaiswal A, Tripathi A, Dubey SK. Biodegradation of fipronil: Molecular characterization, degradation kinetics, and metabolites. RESEARCH SQUARE 2023:rs.3.rs-2885549. [PMID: 37333229 PMCID: PMC10275034 DOI: 10.21203/rs.3.rs-2885549/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Fipronil (C12H4Cl2F6N4OS), is a commonly used insecticide effective against numerous insects and pests. Its immense application poses harmful effects on various non-target organisms as well. Therefore, searching the effective methods for the degradation of fipronil is imperative and logical. In this study, fipronil-degrading bacterial species are isolated and characterized from diverse environments using a culture-dependent method followed by 16S rRNA gene sequencing. Phylogenetic analysis showed the homology of organisms with Acinetobacter sp., Streptomyces sp., Pseudomonas sp., Agrobacterium sp., Rhodococcus sp., Kocuria sp., Priestia sp., Bacillus sp., Pantoea sp. The bacterial degradation potential for fipronil was analyzed through High-Performance Liquid Chromatography. Incubation-based degradation studies revealed that Pseudomonas sp. and Rhodococcus sp. were found to be the most potent isolates that degraded fipronil at 100 mg L-1 concentration, with removal efficiencies of 85.97 % and 83.64 %, respectively. Kinetic parameter studies, following the Michaelis-Menten model, also revealed the high degradation efficiency of these isolates. Gas Chromatography-Mass Spectrometry (GC-MS) analysis revealed fipronil sulfide, benzaldehyde, (phenyl methylene) hydrazone, isomenthone, etc., as major metabolites of fipronil degradation. Overall investigation suggests that native bacterial species isolated from the contaminated environments could be efficiently utilized for the biodegradation of fipronil. The outcome derived from this study has immense significance in formulating an approach for bioremediation of fipronil-contaminated surroundings.
Collapse
|
16
|
Amer MM, Habib AA, Hammad SF, Kamal AH. Green micellar stability-indicating high-performance liquid chromatography method for determination of rupatadine fumarate in the presence of its main impurity desloratadine: Oxidative degradation kinetics study. J Sep Sci 2023:e2300135. [PMID: 37232201 DOI: 10.1002/jssc.202300135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/10/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
A green micellar stability-indicating high-performance liquid chromatography method was developed for rupatadine fumarate determination in existence with its main impurity desloratadine. Separation was attained using Hypersil ODS column (150 × 4.6 mm, 5 μm), the micellar mobile phase consisted of 0.13 M sodium dodecyl sulfate, 0.1 M disodium hydrogen phosphate adjusted by phosphoric acid to pH 2.8 and 10% n-butanol. The column was maintained at 45◦ C and detection was carried out at 267 nm. A linear response was achieved over the range of 2-160 μg/ml for rupatadine and 0.4-8 μg/ml for desloratadine. The method was applied for rupatadine determination in alergoliber tablets and alergoliber syrup without the interference of methyl paraben and propyl paraben present as main excipients. Rupatadine fumarate revealed pronounced susceptibility to oxidation; further study of oxidative degradation kinetics was carried out. Rupatadine was found to follow pseudo-first-order kinetics when exposed to 10% H2 O2 at 60 and 80°C and the activation energy was found to be 15.69 Kcal/mol. At a lower temperature (40°C), degradation kinetics regression was best fitted as a polynomial quadratic relationship, thus rupatadine oxidation at a lower temperature tends to adopt a second-order kinetics rate. Oxidative degradation product structure was revealed using infrared and found to be rupatadine N-oxide at all temperature values.
Collapse
|
17
|
Gonzalez-Ortega R, Di Mattia CD, Pittia P, Natasa PU. Effect of heat treatment on phenolic composition and radical scavenging activity of olive leaf extract at different pH conditions: a spectroscopic and kinetic study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2047-2056. [PMID: 36461135 DOI: 10.1002/jsfa.12371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 09/21/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The present study focused on the effect of isothermal treatment (5-90 °C) and pH (2.0-6.0) of aqueous olive leaf phenolic extract solutions on the kinetics of degradation of single and total phenolic compounds and radical scavenging activity, with the objective of predicting and optimizing the thermal treatments in foods enriched with olive leaf extracts. RESULTS The major compound, oleuropein, showed higher degradation at low pH 2.0 and temperature-dependent reaction rates, which fitted well a first-order kinetic model, with an estimated activation energy of 98.03 ± 0.08 kJ mol-1 . Oleuropein hydrolysis resulted in a zero-order increase in hydroxytyrosol concentration at same pH (Ea = 71.59 ± 1.5 kJ mol-1 ), whereas a 100-fold slower degradation rate was observed at higher pH. Verbascoside was only degraded at pH 6.0, also following first-order kinetics. These changes in oleuropein and hydroxytyrosol concentrations led to significant changes in fluorescence maximum intensities centered around 315 and 360 nm and in the 425-500 nm spectral zone for samples at pH 6.0, which could be associated with verbacoside degradation. Conversely, analysis of total phenolic content and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity showed little changes, indicating a rather constant overall reducing capacity of the resulting pool of compounds after thermal treatments. CONCLUSION The present study can contribute to the knowledge related to oleuropein and phenolic fraction degradation as a result of matrix (pH) and processing. The kinetic parameters obtained could be applied for predicting and optimizing the thermal treatments in foods and drinks enriched with olive leaf extracts. © 2022 Society of Chemical Industry.
Collapse
|
18
|
Zhang Y, Guo L, Hoffmann MR. Ozone- and Hydroxyl Radical-Mediated Oxidation of Pharmaceutical Compounds Using Ni-Doped Sb-SnO 2 Anodes: Degradation Kinetics and Transformation Products. ACS ES&T ENGINEERING 2023; 3:335-348. [PMID: 36935895 PMCID: PMC10012175 DOI: 10.1021/acsestengg.2c00337] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Electrochemical oxidation provides a versatile technique for treating wastewater streams onsite. We previously reported that a two-layer heterojunction Ni-Sb-SnO2 anode (NAT/AT) can produce both ozone (O3) and hydroxyl radical (•OH). In this study, we explore further the applicability of NAT/AT anodes for oxidizing pharmaceutical compounds using carbamazepine (CBZ) and fluconazole (FCZ) as model probe compounds. Details of the oxidation reaction kinetics and subsequent reaction products are investigated in the absence and presence of chloride (Cl-) and sulfate (SO4 2-). In all cases, faster or comparable degradation kinetics of CBZ and FCZ are achieved using the double-layered NAT/AT anode coupled with a stainless steel (SS) cathode in direct comparison to an identical setup using a boron-doped diamond anode. Production of O3 on NAT/AT enhances the elimination of both parent compounds and their transformation products (TPs). Very fast CBZ degradation is observed during NAT/AT-SS electrolysis in both NaClO4 and NaCl electrolytes. However, more reaction products are identified in the presence of Cl- than ClO4 - (23 TPs vs 6). Rapid removal of FCZ is observed in NaClO4, while the degradation rate is retarded in NaCl depending on the [Cl-]. In SO4 2--containing electrolytes, altered reaction pathways and transformation product distributions are observed due to sulfate radical generation. SO4 ·- oxidation produces fewer hydroxylated products and promotes the oxidation of aldehydes to carboxylic acids. Similar trend in treatment performance is observed in mixtures of CBZ and FCZ with other pharmaceutical compounds in latrine wastewater and secondary WWTP effluent.
Collapse
|
19
|
Jia Q, Cai Y, Yuan X, Li B, Li B. The Degradation Process of Typical Neonicotinoid Insecticides in Tidal Streams in Subtropical Cities: A Case Study of the Wuchong Stream, South China. TOXICS 2023; 11:203. [PMID: 36976968 PMCID: PMC10057386 DOI: 10.3390/toxics11030203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Neonicotinoid insecticides (NEOs) are commonly used to prevent unwanted insects in urban fields. Degradation processes have been one of the important environmental behaviors of NEOs in an aquatic environment. In this research, hydrolysis, biodegradation, and photolysis processes of four typical NEOs (i.e., thiacloprid (THA), clothianidin (CLO), acetamiprid (ACE), and imidacloprid (IMI)) were examined through the adoption of response surface methodology-central composite design (RSM-CCD) for an urban tidal stream in South China. The influences of multiple environmental parameters and concentration levels on the three degradation processes of these NEOs were then evaluated. The results indicated that the three degradation processes of the typical NEOs followed a pseudo-first-order reaction kinetics model. The primary degradation process of the NEOs were hydrolysis and photolysis processes in the urban stream. The hydrolysis degradation rate of THA was the highest (1.97 × 10-5 s-1), and that of CLO was the lowest (1.28 × 10-5 s-1). The temperature of water samples was the main environmental factor influencing the degradation processes of these NEOs in the urban tidal stream. Salinity and humic acids could inhibit the degradation processes of the NEOs. Under the influence of extreme climate events, the biodegradation processes of these typical NEOs could be suppressed, and other degradation processes could be further accelerated. In addition, extreme climate events could pose severe challenges to the migration and degradation process simulation of NEOs.
Collapse
|
20
|
Liu XH, Bai FY, Meng TT, Ni S, Zhao Z. Theoretical Study of the Hydroxyl-Radical-Initiated Degradation Mechanism, Kinetics, and Subsequent Evolution of Methyl and Ethyl Iodides in the Atmosphere. Chemphyschem 2023; 24:e202300021. [PMID: 36781393 DOI: 10.1002/cphc.202300021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/15/2023]
Abstract
The degradation and transformation of iodinated alkanes are crucial in the iodine chemical cycle in the marine boundary layer. In this study, MP2 and CCSD(T) methods were adopted to study the atmospheric transformation mechanism and degradation kinetic properties of CH3 I and CH3 CH2 I mediated by ⋅OH radical. The results show that there are three reaction mechanisms including H-abstraction, I-substitution and I-abstraction. The H-abstraction channel producing ⋅CH2 I and CH3 C ⋅ HI radicals are the main degradation pathways of CH3 I and CH3 CH2 I, respectively. By means of the variational transition state theory and small curvature tunnel correction method, the rate constants and branching ratios of each reaction are calculated in the temperature range of 200-600 K. The results show that the tunneling effect contributes more to the reaction at low temperatures. Theoretical reaction rate constants of CH3 I and CH3 CH2 I with ⋅OH are calculated to be 1.42×10-13 and 4.44×10-13 cm3 molecule-1 s-1 at T=298 K, respectively, which are in good agreement with the experimental values. The atmospheric lifetimes of CH3 I and CH3 CH2 I are evaluated to be 81.51 and 26.07 day, respectively. The subsequent evolution mechanism of ⋅CH2 I and CH3 C ⋅ HI in the presence of O2 , NO and HO2 indicates that HCHO, CH3 CHO, and I-atom are the main transformation end-products. This study provides a theoretical basis for insight into the diurnal conversion and environmental implications of iodinated alkanes.
Collapse
|
21
|
Fu Y, McClements DJ, Luo S, Ye J, Liu C. Degradation kinetics of rutin encapsulated in oil-in-water emulsions: impact of particle size. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:770-778. [PMID: 36053972 DOI: 10.1002/jsfa.12188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Rutin is a natural bioactive flavonoid that is poor in water solubility and chemical stability. Encapsulation can be used to protect bioactive molecules from chemical or physical decomposition during food processing and storage. Thus, the effect of initial particle size on the ability of oil-in-water emulsions to retain rutin during storage was investigated. RESULTS Rutin was encapsulated in oil-in-water emulsions with different mean surface-weighted diameters: d3,2 = 0.56 μm (small), 0.73 μm (medium), and 2.32 μm (large). As expected, the resistance of the emulsions to coalescence and creaming during storage increased as the particle size decreased due to weakening of the colloidal and gravitational forces acting on the droplets. The concentration of rutin in the emulsions decreased during storage (28 days), which was mainly attributed to photodegradation of the flavonoid. The loss of rutin from the emulsions during storage was fitted using a second-order equation. The rutin degradation rate constant k decreased and the half-life t1/2 increased with decreasing droplet size, which was attributed to the stronger encapsulation and light scattering by smaller oil droplets reducing the amount of light that can penetrate into the emulsions. CONCLUSION This study has important implications for the design of more efficacious emulsion-based delivery systems for incorporating health-promoting nutraceuticals into foods. © 2022 Society of Chemical Industry.
Collapse
|
22
|
Draz ME, El Wasseef D, El Enany N, Wahba MEK. Green approach for tracking the photofate of ciprofloxacin and levofloxacin in different matrices adopting synchronous fluorescence spectroscopy: a kinetic study. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221086. [PMID: 36686550 PMCID: PMC9845973 DOI: 10.1098/rsos.221086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
First derivative synchronous fluorescence spectroscopy (FDSFS) was applied to detect and quantify either ciprofloxacin (CIP) or levofloxacin (LEV) simultaneously with their photodegradation products, where the photolytic pathway for each analyte was found to be pH dependent. Under the guidance of early published articles, the structure of the produced photolytic products could be concluded, and further related to their resultant fluorescence spectra. The proposed method was subjected to full validation procedure which enables its application in investigating the photodegradation kinetics for both drugs. The obtained kinetic parameters were in accordance with previous reports and could be linked to predict the antibacterial activity of the resultant photodegradation products. These facts prove the suitability of the suggested FDSFS to serve as a stability-indicating assay method and to trace the photofate of CIP and LEV in the ecosystem as potential contaminants. Furthermore, the greenness of the suggested analytical methodology was evaluated via 'Green Analytical Procedure Index' (GAPI), which classifies it as an eco-friendly assay. Eventually, no extraction, treatment or preparation steps were needed during all analysis steps, which renders the proposed assay an appealing tool in environmental analysis.
Collapse
|
23
|
Liu Q, Wen M, Guo Y, Song S, Li G, An T. Efficient Catalytic Combustion of Cyclohexane over PdAg/Fe 2O 3 Catalysts under Low-Temperature Conditions: Establishing the Degradation Mechanism Using PTR-TOF-MS and in Situ DRIFTS. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55503-55516. [PMID: 36456474 DOI: 10.1021/acsami.2c14515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cyclohexane, a typical volatile organic compound (VOC), poses high risks to the environment and humans. Herein, synthesized PdAg/Fe2O3 catalysts exhibited exceptional catalytic performance for cyclohexane combustion at lower temperatures (50% mineralization temperature (T50) of 199 °C, 90% mineralization temperature (T90) of 315 °C) than Pd/Fe2O3 (T50 of 262 °C, T90 of 335 °C) and Fe2O3 (T50 of 305 °C, T90 of 360 °C). In addition, PdAg/Fe2O3 displayed enhanced stability by alloying Ag with Pd. The redox and acidity of the PdAg/Fe2O3 were studied by XPS, H2-TPR, and NH3-TPD. In situ diffuse reflectance infrared Fourier transform spectroscopy and proton-transfer-reaction time-of-flight mass spectrometry were applied to identify the intermediates formed on the catalyst surface and in the tail gas during oxidation, respectively. Results suggested that loading PdAg onto Fe2O3 significantly enhanced the adsorption and activation of oxygen and cyclohexane, oxidative dehydrogenation of cyclohexane to benzene, and catalytic cracking of cyclohexane to olefins at low temperatures. This in-depth study will benefit the design and application of efficient catalysts for the effective combustion of VOCs at low temperatures.
Collapse
|
24
|
Piotrowicz-Cieślak AI, Maciejczyk M, Margas M, Rydzyński D, Grajek H, Michalczyk DJ, Wasilewski J, Smyk B. Studies on the Efficiency of Iron Release from Fe(III)-EDTA and Fe(III)-Cit and the Suitability of These Compounds for Tetracycline Degradation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238498. [PMID: 36500591 PMCID: PMC9739602 DOI: 10.3390/molecules27238498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/07/2022]
Abstract
Iron ions can be used to degrade tetracycline dispersed in nature. Studies of absorption and fluorescence spectra and quantum chemistry calculations showed that iron is more readily released from Fe(III)-citrate than from Fe(III)-EDTA, so Fe(III)-citrate (Fe(III)-Cit) is more suitable for tetracycline (TC) degradation. At 30 °C, a severe degradation of TC by Fe(III)-Cit occurred as early as after 3 days of incubation in the light, and after 5 days in the dark. In contrast, the degradation of TC by Fe(III)-EDTA proceeded very slowly in the dark. By the fifth day of incubation of TC with Fe(III)-Cit in darkness, the concentrations of the former compound dropped by 55% and 75%, at 20 °C and 30 °C, respectively. The decrease in tetracycline concentrations caused by Fe(III)-EDTA in darkness at the same temperatures was only 2% and 6%, respectively. Light increased the degradation rates of TC by Fe(III)-EDTA to 20% and 56% at 20 °C and 30 °C, respectively. The key role of the light in the degradation of tetracycline by Fe(III)-EDTA was thus demonstrated. The TC degradation reaction showed a second-order kinetics. The rate constants of Fe(III)-Cit-induced TC degradation at 20 °C and 30 °C in darkness were k = 4238 M-1day-1 and k = 11,330 M-1day-1, respectively, while for Fe(III)-EDTA were 55 M-1day-1 and 226 M-1day-1. In light, these constants were k = 15,440 M-1day-1 and k = 40,270 M-1day-1 for Fe(III)-Cit and k = 1012 M-1day-1 and 2050 M-1day-1 at 20 °C and 30 °C; respectively. A possible reason for the higher TC degradation rate caused by Fe(III)-Cit can be the result of its lower thermodynamical stability compared with Fe(III)-EDTA, which we confirmed with our quantum chemistry calculations. Two quantum chemistry calculations showed that the iron complex with EDTA is more stable (the free energy of the ensemble is 15.8 kcal/mol lower) than the iron complex with Cit; hence, Fe release from Fe(III)-EDTA is less effective.
Collapse
|
25
|
Xu Y, Jia Z, Wang J, Sun J, Song R. Property and Stability of Astaxanthin Emulsion Based on Pickering Emulsion Templating with Zein and Sodium Alginate as Stabilizer. Int J Mol Sci 2022; 23:9386. [PMID: 36012651 PMCID: PMC9408833 DOI: 10.3390/ijms23169386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
Astaxanthin loaded Pickering emulsion with zein/sodium alginate (SA) as a stabilizer (named as APEs) was developed, and its structure and stability were characterized. The encapsulation efficiency of astaxanthin (Asta) in APEs was up to 86.7 ± 3.8%, with a mean particle size of 4.763 μm. Freeze-dried APEs showed particles stacked together under scanning electronic microscope; whereas dispersed spherical nanoparticles were observed in APEs dilution under transmission electron microscope images. Confocal laser scanning microscope images indicated that zein particles loaded with Asta were aggregated with SA coating. X-ray diffraction patterns and Fourier transform infrared spectra results showed that intermolecular hydrogen bonding, electrostatic attraction and hydrophobic effect were involved in APEs formation. APEs demonstrated non-Newtonian shear-thinning behavior and fit well to the Cross model. Compared to bare Asta extract, APEs maintained high Asta retention and antioxidant activity when heated from 50 to 10 °C. APEs showed different stability at pH (3.0-11.0) and Na+, K+, Ca2+, Cu2+ and Fe2+ conditions by visual, zeta potential and polydispersity index measurements. Additionally, the first order kinetics fit well to describe APEs degradation at pH 3.0 to 9.0, Na+, and K+ conditions. Our results suggest the potential application of Asta-loaded Pickering emulsion in food systems as a fortified additive.
Collapse
|