1
|
Yu X, Li H, Miao X, Kang N, Sheng Y, Xu Z, Fu Z, Xu M, Zong R, Lu S. CoFe Oxides-Coated 2D Black Phosphorus for Flame-Retardant Nanocoatings with Tunable Mechanical Strength and Efficient Elimination of Toxic Gases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407060. [PMID: 39388516 DOI: 10.1002/smll.202407060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/10/2024] [Indexed: 10/12/2024]
Abstract
2D black phosphorus (BP) degrades irreversibly into phosphate compounds under ambient conditions, which limits its application in a variety of fields. In this study, by coating amorphous ferric-cobalt oxides (CoFeO) on BP nanosheets, a multifunctional CoFeO@2D BP is successfully developed that effectively inhibited combustion and catalyzed CO oxidation to eliminate toxic gases. Strong affinity between transition-metal cations and BP allowed the uniform growth of amorphous ferric‒cobalt oxides on the BP surface, which effectively prevented the spontaneous degradation of 2D BP. By combining CoFeO@2D BP with gelatin and kosmotropic salts, the as-obtained nanocoatings are used for surface treatment of flammable polyurethane foam (PU). Kosmotropic ions induced strong hydrophobic interactions and bundling within the gelatin chains which significantly enhanced the mechanical performance of the PU. BP accelerates the carbonization of gelatin to inhibit the combustion of PU, and CoFe oxides, which act as true active centers to accelerate the oxidation of CO, effectively inhibiting the production of harmful gas. The release rate of CO decreases by 73% and the limiting oxygen index (LOI) increases from 17% to ≈32% during PU combustion. The developed novel 2D material opens the way for multifunctional coatings with integrated durability, flame retardancy, and high smoke suppression efficiency.
Collapse
|
2
|
Huang YS, Huang YW, Luo QW, Lin CH, Srinophakun P, Alapol S, Lin KYA, Huang CF. Preparations of Polyurethane Foam Composite (PUFC) Pads Containing Micro-/Nano-Crystalline Cellulose (MCC/NCC) toward the Chemical Mechanical Polishing Process. Polymers (Basel) 2024; 16:2738. [PMID: 39408449 PMCID: PMC11479108 DOI: 10.3390/polym16192738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Polyurethane foam (PUF) pads are widely used in semiconductor manufacturing, particularly for chemical mechanical polishing (CMP). This study prepares PUF composites with microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC) to improve CMP performance. MCC and NCC were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), showing average diameters of 129.7 ± 30.9 nm for MCC and 22.2 ± 6.7 nm for NCC, both with high crystallinity (ca. 89%). Prior to preparing composites, the study on the influence of the postbaked step on the PUF was monitored through Fourier-transform infrared spectroscopy (FTIR). After that, PUF was incorporated with MCC/NCC to afford two catalogs of polyurethane foam composites (i.e., PUFC-M and PUFC-N). These PUFCs were examined for their thermal and surface properties using a differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), dynamic mechanical analyzer (DMA), and water contact angle (WCA) measurements. Tgs showed only slight changes but a notable increase in the 10% weight loss temperature (Td10%) for PUFCs, rising from 277 °C for PUF to about 298 °C for PUFCs. The value of Tan δ dropped by up to 11%, indicating improved elasticity. Afterward, tensile and abrasion tests were conducted, and we acquired significant enhancements in the abrasion performance (e.g., from 1.04 mm/h for the PUF to 0.76 mm/h for a PUFC-N) of the PUFCs. Eventually, we prepared high-performance PUFCs and demonstrated their capability toward the practical CMP process.
Collapse
|
3
|
Baidar LA, Medjahdi M, Mahida B, Mechab B, Baillis D. Polyurethane Foam and Algae-Based Activated Carbon Biocomposites for Oil Spill Remediation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4137. [PMID: 39203315 PMCID: PMC11356020 DOI: 10.3390/ma17164137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024]
Abstract
This study investigates the incorporation of algae-based activated carbon into polyurethane foam to improve a biocomposite for gasoil sorption. The biocomposites were thoroughly analyzed using various techniques to examine the properties of both the blank foam and the algae activated carbon foam with a carbon content of 4.41 mass% and particle diameter of 500 µm. These techniques included Scanning Electron Microscopy (SEM), thermogravimetric analysis (TGA), and density analysis. The TGA analysis revealed that the biocomposites had an impact on the onset temperature (Tonset) of the foams. Higher concentrations of the biocomposites resulted in a decrease in Tonset from approximately 310 °C in the blank foam (PUF0) to 300 °C in the composite (PUF3B). The final residue percentage also decreased from around 20% in PUF0 to 10% in PUF3B. Density analysis showed that the apparent density of the foam increased from 0.016 g/cm3 in the blank foam to 0.020 g/cm3 in the biocomposite (PUF3B), while the real density slightly decreased from 0.092 g/cm3 to 0.076 g/cm3, indicating a reduction in overall porosity from 82.5% to 74.4%. All foams that were modified showed an increase in their ability to absorb gasoil in a PUF/gasoil/water system. The optimized biocomposite (PUF1B), with 1.14 mass% of 500 µm algae carbon, displayed the highest sorption capacity, starting at approximately 50 g/g at 1.5 h and increasing to 53 g/g over 72 h. The analysis of adsorption kinetics revealed that by utilizing adsorption isotherms, particularly the Langmuir isotherm, a more accurate fit to the data was achieved. This allowed for the prediction of the maximum gasoil adsorption capacity. This study aims to further develop, analyze, and utilize biocomposites made from algae-based activated carbon and polyurethane. These materials offer a sustainable and environmentally friendly approach to cleaning up oil spills.
Collapse
|
4
|
Makowska S, Szymborski D, Sienkiewicz N, Kairytė A. Current Progress in Research into Environmentally Friendly Rigid Polyurethane Foams. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3971. [PMID: 39203149 PMCID: PMC11355871 DOI: 10.3390/ma17163971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024]
Abstract
Polyurethane foams are materials characterized by low density and thermal conductivity and can therefore be used as thermal insulation materials. They are synthesized from toxic and environmentally unfriendly petrochemicals called isocyanates and polyols, which react with each other to form a urethane group via the displacement of the movable hydrogen atom of the -OH group of the alcohol to the nitrogen atom of the isocyanate group. The following work describes the synthesis of polyurethane foams, focusing on using environmentally friendly materials, such as polyols derived from plant sources or modifiers, to strengthen the foam interface derived from plant precipitation containing cellulose derived from paper waste. The polyurethane foam industry is looking for new sources of materials to replace the currently used petrochemical products. The solutions described are proving to be an innovative and promising area capable of changing the face of current PU foam synthesis.
Collapse
|
5
|
Taghizadeh S, Niknejad A, Maccioni L, Concli F. Investigating the Mechanical Behavior and Energy Absorption Characteristics of Empty and Foam-Filled Glass/Epoxy Composite Sections under Lateral Indentation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3847. [PMID: 39124511 PMCID: PMC11313404 DOI: 10.3390/ma17153847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
In this study, the crashworthiness behavior and energy absorption capacity of composite tubes under lateral indentation by steel rods aligned parallel to the specimen axis are investigated using experimental methods. Key parameters such as tube diameter, length, wall thickness, and indenter diameter are systematically examined and compared. Additionally, the influence of polyurethane foam fillers on damage modes and energy absorption capacity is rigorously analyzed. Contrary to conventional findings, smaller diameter specimens filled with foam demonstrate superior energy absorption compared to their larger counterparts, primarily due to enhanced compression of the foam volume. Experimental results reveal a complex interplay of damage mechanisms in composite specimens, including matrix cracking, fiber breakage, foam crushing, foam densification, foam fracture, and debonding of composite layers, all contributing to enhanced energy absorption. Increased tube thickness, length, and indenter diameter, alongside decreased tube diameter, are correlated with higher contact forces and improved energy absorption. Smoother shell fractures are promoted, and overall energy absorption capabilities are enhanced by the presence of foam fillers. This investigation provides valuable insights into the structural response and crashworthiness of composite tubes, which is essential for optimizing their design across various engineering applications.
Collapse
|
6
|
Masuda G, Akuta S, Wang W, Suzuki M, Honda Y, Wang Q. Study on Fast Liquefaction and Characterization of Produced Polyurethane Foam Materials from Moso Bamboo. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3751. [PMID: 39124415 PMCID: PMC11312812 DOI: 10.3390/ma17153751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Although bamboo is widely distributed in Japan, its applications are very limited due to its poor combustion efficiency for fuel. In recent years, the expansion of abandoned bamboo forests has become a social issue. In this research, the possibility of a liquefaction process with fast and efficient liquefaction conditions using moso bamboo as raw material was examined. Adding 20 wt% ethylene carbonates to the conventional polyethylene glycol/glycerol mixed solvent system, the liquefaction time was successfully shortened from 120 to 60 min. At the same time, the amount of sulfuric acid used as a catalyst was reduced from 3 wt% to 2 wt%. Furthermore, polyurethane foam was prepared from the liquefied product under these conditions, and its physical properties were evaluated. In addition, the filler effects of rice husk biochar and moso bamboo fine meals for the polyurethane foams were characterized by using scanning electron microscopy (SEM) and thermogravimetry and differential thermal analysis (TG-DTA), and the water absorption and physical density were measured. As a result, the water absorption rate of bamboo fine meal-added foam and the thermal stability of rice husk biochar-added foam were improved. These results suggested that moso bamboo meals were made more hydrophilic, and the carbon content of rice husk biochar was increased.
Collapse
|
7
|
Zhan J, Mao L, Qin R, Qian J, Mu X. Thermal and Combustion Properties of Biomass-Based Flame-Retardant Polyurethane Foams Containing P and N. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3473. [PMID: 39063764 PMCID: PMC11277700 DOI: 10.3390/ma17143473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Biomass has been widely used due to its environmental friendliness, sustainability, and low toxicity. In this study, aminophosphorylated cellulose (PNC), a biomass flame retardant containing phosphorus and nitrogen, was synthesized by esterification from cellulose and introduced into polyurethane to prepare flame-retardant rigid polyurethane foam. The combustion properties of the PU and PU/PNC composites were studied using the limiting oxygen index (LOI), UL-94, and cone calorimeter (CCT) methods. The thermal degradation behavior of the PU and PU/PNC composites was analyzed by thermogravimetric analysis (TGA) and thermogravimetric infrared spectroscopy (TG-IR). The char layer after combustion was characterized using SEM, Raman, and XPS. The experimental results showed that the introduction of PNC significantly improved the flame-retardant effect and safety of PU/PNC composites. Adding 15 wt% PNC to PU resulted in a vertical burning grade of V-0 and a limiting oxygen index of 23.5%. Compared to the pure sample, the residual char content of PU/PNC15 in a nitrogen atmosphere increased by 181%, and the total heat release (THR) decreased by 56.3%. A Raman analysis of the char layer after CCT combustion revealed that the ID/IG ratio of PU/PNC15 decreased from 4.11 to 3.61, indicating that the flame retardant could increase the stability of the char layer. The TG-IR results showed that PNC diluted the concentration of O2 and combustible gases by releasing inert gases such as CO2. These findings suggest that the developed PU/PNC composites have significant potential for real-world applications, particularly in industries requiring enhanced fire safety, such as construction, transportation, and electronics. The use of PNC provides an eco-friendly alternative to traditional flame retardants. This research paves the way for the development of safer, more sustainable, and environmentally friendly fire-resistant materials for a wide range of applications.
Collapse
|
8
|
Fang Y, Ma Z, Wei D, Yu Y, Liu L, Shi Y, Gao J, Tang LC, Huang G, Song P. Engineering Sulfur-Containing Polymeric Fire-Retardant Coatings for Fire-Safe Rigid Polyurethane Foam. Macromol Rapid Commun 2024; 45:e2400068. [PMID: 38593218 DOI: 10.1002/marc.202400068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/31/2024] [Indexed: 04/11/2024]
Abstract
With the advantages of lightweight and low thermal conductivity properties, polymeric foams are widely employed as thermal insulation materials for energy-saving buildings but suffer from inherent flammability. Flame-retardant coatings hold great promise for improving the fire safety of these foams without deteriorating the mechanical-physical properties of the foam. In this work, four kinds of sulfur-based flame-retardant copolymers are synthesized via a facile radical copolymerization. The sulfur-containing monomers serve as flame-retardant agents including vinyl sulfonic acid sodium (SPS), ethylene sulfonic acid sodium (VS), and sodium p-styrene sulfonate (VSS). Additionally, 2-hydroxyethyl acrylate (HEA) and 4-hydroxybutyl acrylate are employed to enable a strong interface adhesion with polymeric foams through interfacial H-bonding. By using as-synthesized waterborne flame-retardant polymeric coating with a thickness of 600 µm, the coated polyurethane foam (PUF) can achieve a desired V-0 rating during the vertical burning test with a high limiting oxygen index (LOI) of >31.5 vol%. By comparing these sulfur-containing polymeric fire-retardant coatings, poly(VS-co-HEA) coated PUF demonstrates the best interface adhesion capability and flame-retardant performance, with the lowest peak heat release rate of 166 kW m-2 and the highest LOI of 36.4 vol%. This work provides new avenues for the design and performance optimization of advanced fire-retardant polymeric coatings.
Collapse
|
9
|
Cherednichenko K, Smirnov E, Rubtsova M, Repin D, Semenov A. New Fire-Retardant Open-Cell Composite Polyurethane Foams Based on Triphenyl Phosphate and Natural Nanoscale Additives. Polymers (Basel) 2024; 16:1741. [PMID: 38932089 PMCID: PMC11207528 DOI: 10.3390/polym16121741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the mechanical and physical properties of polyurethane foams (PUF), their application is still hindered by high inflammability. The elaboration of effective, low-cost, and environmentally friendly fire retardants remains a pressing issue that must be addressed. This work aims to show the feasibility of the successful application of natural nanomaterials, such as halloysite nanotubes and nanocellulose, as promising additives to the commercial halogen-free, fire-retardant triphenyl phosphate (TPP) to enhance the flame retardance of open-cell polyurethane foams. The nanocomposite foams were synthesized by in situ polymerization. Investigation of the mechanical properties of the nanocomposite PUF revealed that the nanoscale additives led to a notable decrease in the foam's compressibility. The obtained results of the flammability tests clearly indicate that there is a prominent synergetic effect between the fire-retardant and the natural nanoscale additives. The nanocomposite foams containing a mixture of TPP (10 and 20 parts per hundred polyol by weight) and either 10 wt.% of nanocellulose or 20 wt.% of halloysite demonstrated the lowest burning rate without dripping and were rated as HB materials according to UL 94 classification.
Collapse
|
10
|
Wang Z, Liu Z, Liu Y, Ma W, Zhang Z, Zhao C, Yang C. On the Crush Behavior and Energy Absorption of Sustainable Beverage Cans and Their Polyurethane Foam-Filled Structures: An Experimental Study. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2655. [PMID: 38893919 PMCID: PMC11174009 DOI: 10.3390/ma17112655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
In the pursuit of global energy conservation and emissions reductions, utilizing beverage cans as energy-absorbing components offers potential for a sustainable economy. This study examines the impact of foam filling on the crushing behaviors and energy absorption of various types of beverage cans. Quasi-static compression tests were conducted on five geometrically sized cans filled with three densities of polyurethane foam to study their deformation modes and calculate crashworthiness parameters within the effective stroke. Results show that empty beverage cans have lower energy absorption capacities, and deformation modes become less consistent as can size increases. Higher foam density leads to increased total energy absorption, a slight reduction in the effective compression stroke, and a tendency for specific energy absorption to initially increase and then decrease. Regarding crush behavior, smaller cans transition from a diamond mode to a concertina mode, while larger cans exhibit a columnar bending mode. Next, the coupling effect of energy absorption between foam and cans was analyzed so as to reveal the design method of energy-absorbing components. The specific energy absorption of smaller cans filled with polyurethane foam is superior to that of similar empty cans. These findings provide valuable insights for selecting next-generation sustainable energy absorption structures.
Collapse
|
11
|
Orhan ZD, Ciğerim L. Evaluation of Effect of Different Insertion Speeds and Torques on Implant Placement Condition and Removal Torque in Polyurethane Dense D1 Bone Model. Polymers (Basel) 2024; 16:1361. [PMID: 38794554 PMCID: PMC11125928 DOI: 10.3390/polym16101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The aim of this study was to evaluate the effect of two different insertion speeds at eight different insertion torque values ranging from 25 to 60 during implantation in a dense polyurethane (PU) D1 bone model on the placement condition and removal torque of dental implants. In this study, 50 pcf single-layer PU plates were used. In the study, a total of 320 implant sockets were divided into two groups, Group 1 (30 rpm) and Group 2 (50 rpm), in terms of insertion speed. Group 1 and Group 2 were divided into eight subgroups with 25, 30, 35, 40, 45, 50, 55 and 60 torques. There were 20 implant sockets in each subgroup. During the implantations, the implant placement condition and removal torque values were assessed. There was a statistically significant difference between the 30 and 50 rpm groups in terms of overall implant placement condition (p < 0.01). It was found that the removal torque values at 50 rpm were statistically significantly higher than those at 30 rpm (p < 0.01). This study showed that in dense D1 bone, the minimum parameters at which all implants could be placed at the bone level were 50 torque at 30 rpm and 40 torque at 50 rpm.
Collapse
|
12
|
Takagi T, Tomita N, Sato S, Yamamoto M, Takamatsu S, Itoh T. Wearable EMG Measurement Device Using Polyurethane Foam for Motion Artifact Suppression. SENSORS (BASEL, SWITZERLAND) 2024; 24:2985. [PMID: 38793840 PMCID: PMC11124951 DOI: 10.3390/s24102985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
We propose the use of a specially designed polyurethane foam with a plateau region in its mechanical characteristics-where stress remains nearly constant during deformation-between the electromyography (EMG) electrode and clothing to suppress motion artifacts in EMG measurement. Wearable EMG devices are receiving attention for monitoring muscle weakening due to aging. However, daily EMG measurement has been challenging due to motion artifacts caused by changes in the contact pressure between the bioelectrode and the skin. Therefore, this study aims to measure EMG signals in daily movement environments by controlling the contact pressure using polyurethane foam between the bioelectrode on the clothing and the skin. Through mechanical calculations and finite element method simulations of the polyurethane foam's effect, we clarified that the characteristics of the polyurethane foam significantly influence contact pressure control and that the contact pressure is adjustable through the polyurethane foam thickness. The optimization of the design successfully controlled the contact pressure between the bioelectrode and skin from 1.0 kPa to 2.0 kPa, effectively suppressing the motion artifact in EMG measurement.
Collapse
|
13
|
Bennie S, Crowley JD, Wang T, Pelletier MH, Walsh WR. Pedicle screw pull-out testing in polyurethane foam blocks: Effect of block orientation and density. Proc Inst Mech Eng H 2024; 238:455-460. [PMID: 38480483 DOI: 10.1177/09544119241236873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Synthetic bone models such as polyurethane (PU) foam are a well-established substitute to cadaveric bone for screw pull-out testing; however, little attention has been given to the effect of PU foam anisotropy on orthopaedic implant testing. Compressive and screw pull-out performance in three PU foam densities; 0.16 g/cm3 (PCF 10), 0.32 g/cm3 (PCF 20) and 0.64 g/cm3 (PCF 40) were performed in each of the X, Y or Z orientations. The maximum compressive force, stiffness in the linear region, maximum stress and modulus were determined for all compression tests. Pedicle screws were inserted and pulled out axially to determine maximum pull-out force, energy to failure and stiffness. One-way ANOVA and post hoc tests were used to compare outcome variables between PU foam densities and orientations, respectively. Compression tests demonstrated the maximum force was significantly different between all orientations for PCF 20 (X, Y and Z) while stiffness and maximum stress were different between X versus Y and X versus Z. Maximum pull-out force was significantly different between all orientations for PCF 10 foam. No significant differences were noted for other foam densities. There is potential for screw pull-out testing results to be significantly affected by orientation in lower density PU foams. It is recommended that a single, known orientation of the PU foam block be used for experimental testing.
Collapse
|
14
|
Kosmela P, Sałasińska K, Kowalkowska-Zedler D, Barczewski M, Piasecki A, Saeb MR, Hejna A. Fire-Retardant Flexible Foamed Polyurethane (PU)-Based Composites: Armed and Charmed Ground Tire Rubber (GTR) Particles. Polymers (Basel) 2024; 16:656. [PMID: 38475340 DOI: 10.3390/polym16050656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Inadequate fire resistance of polymers raises questions about their advanced applications. Flexible polyurethane (PU) foams have myriad applications but inherently suffer from very high flammability. Because of the dependency of the ultimate properties (mechanical and damping performance) of PU foams on their cellular structure, reinforcement of PU with additives brings about further concerns. Though they are highly flammable and known for their environmental consequences, rubber wastes are desired from a circularity standpoint, which can also improve the mechanical properties of PU foams. In this work, melamine cyanurate (MC), melamine polyphosphate (MPP), and ammonium polyphosphate (APP) are used as well-known flame retardants (FRs) to develop highly fire-retardant ground tire rubber (GTR) particles for flexible PU foams. Analysis of the burning behavior of the resulting PU/GTR composites revealed that the armed GTR particles endowed PU with reduced flammability expressed by over 30% increase in limiting oxygen index, 50% drop in peak heat release rate, as well as reduced smoke generation. The Flame Retardancy Index (FRI) was used to classify and label PU/GTR composites such that the amount of GTR was found to be more important than that of FR type. The wide range of FRI (0.94-7.56), taking Poor to Good performance labels, was indicative of the sensitivity of flame retardancy to the hybridization of FR with GTR components, a feature of practicality. The results are promising for fire protection requirements in buildings; however, the flammability reduction was achieved at the expense of mechanical and thermal insulation performance.
Collapse
|
15
|
ÖZTAŞKIN D, YİVLİK LY, ACAROĞLU DEGITZ İ, EREN T. Phosphorus and nitrogen-containing soybean oil polyols: Effect on the mechanical properties and flame retardancy of polyurethane foam. Turk J Chem 2024; 48:237-250. [PMID: 39050506 PMCID: PMC11265880 DOI: 10.55730/1300-0527.3656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 04/25/2024] [Accepted: 01/22/2024] [Indexed: 07/27/2024] Open
Abstract
In recent years, there has been an increasing interest in producing new materials that use renewable resources and halogen-free flame retardants with nonleaching properties. This research focuses on designing and synthesizing phosphorus-nitrogen-based biopolyols for use in polyurethane (PU) foam production. Polyol (ESBO-DYM) with dual functionalities, renewability, and nonflammability is synthesized through the epoxy ring-opening reaction of epoxidized soybean oil with phosphorus and nitrogen-containing tetraol products (DYM). The mechanical and flame retardant properties of PU foams with the addition of an ESBO-DYM were investigated. Increasing the amount of phosphorus in the PU foams increased the thermal stability properties. Using 100% ESBO-DYM as a polyol in the foam formulation increased the limiting oxygen index (LOI) value to 22.9% and resulted in the highest char yield according to the thermal gravimetric analysis (17% at 600 °C). Additionally, the introduction of ESBO-DYM polyol into the formulation resulted in a decrease in the compression strength of the foams. The foam density decreased as the amount of ESBO-DYM polyol in the formulation increased. The foam with the highest amount of ESBO-DYM had a foam density of 29.1 kg/m3. The morphology of the foams was characterized using a scanning electron microscope (SEM). As a result of this study, flame retardant polyurethane foams were formulated using a renewable source, polyol, along with commercial compounds.
Collapse
|
16
|
Zhang Z, Shen G, Li R, Yuan L, Feng H, Chen X, Qiu F, Yuan G, Zhuang X. Long-Service-Life Rigid Polyurethane Foam Fillings for Spent Fuel Transportation Casks. Polymers (Basel) 2024; 16:229. [PMID: 38257028 PMCID: PMC10819990 DOI: 10.3390/polym16020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Soft materials bearing rigid, lightweight, and vibration-dampening properties offer distinct advantages over traditional wooden and metal-based fillings for spent fuel transport casks, due to their low density, tunable structure, excellent mechanical properties, and ease of processing. In this study, a novel type of rigid polyurethane foam is prepared using a conventional polycondensation reaction between isocyanate and hydroxy groups. Moreover, the density and size of the pores in these foams are precisely controlled through simultaneous gas generation. The as-prepared polyurethane exhibits high thermal stability exceeding 185 °C. Lifetime predictions based on thermal testing indicate that these polyurethane foams could last up to over 60 years, which is double the lifetime of conventional materials of about 30 years. Due to their occlusive structure, the mechanical properties of these polymeric materials meet the design standards for spent fuel transport casks, with maximum compression and tensile stresses of 6.89 and 1.37 MPa, respectively, at a testing temperature of -40 °C. In addition, these polymers exhibit effective flame retardancy; combustion ceased within 2 s after removal of the ignition source. All in all, this study provides a simple strategy for preparing rigid polymeric foams, presenting them as promising prospects for application in spent fuel transport casks.
Collapse
|
17
|
Donadini R, Boaretti C, Scopel L, Lorenzetti A, Modesti M. Deamination of Polyols from the Glycolysis of Polyurethane. Chemistry 2024; 30:e202301919. [PMID: 37844012 DOI: 10.1002/chem.202301919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
Methylenedianiline (MDA) is a secondary, undesired, product of the glycolysis process of polyurethane (PU) scraps due to hydrolysis and pyrolysis side reactions. As an aromatic and carcinogen amine, MDA poses different problems in handling, transporting, and labelling recycled polyols derived from glycolysis, hindering the closure of PU recycling loop. Aiming to provide a solution to this issue, in this work different deaminating agents (DAs) were investigated with the purpose of analyzing their reactivity with MDA. A first part of the study was devoted to the analysis of MDA formation as a function of reaction time and catalyst concentration (potassium acetate) during glycolysis. It was observed that the amount of MDA increases almost linearly with the extent of PU depolymerization and catalyst content. Among the DAs analyzed 2-ethylhexyl glycidyl ether (2-EHGE), and acetic anhydride (Ac2 O) showed interesting performance, which allowed MDA content to be diminished below the limit for labelling prescription in 30 minutes. PU rigid foams were, therefore, synthesized from the corresponding recycled products and characterized in terms of thermal and mechanical performance. Ac2 O-deaminated polyols led to structurally unstable foams with poor compressive strength, while 2-EHGE-deaminated products allowed the production of foams with improved mechanical performance and unaltered thermal conductivity.
Collapse
|
18
|
Hajizadeh R, Ghiasvand F, Azimi Pirsaraei SR, Khani F, Feiz-Arefi M, Beheshti MH. Investigating the effect of hot and cold polyurethane foam on reducing whole body vibration of forklift operators. Work 2024; 79:267-275. [PMID: 38517832 DOI: 10.3233/wor-230421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Vibration is one of the harmful factors for forklift drivers. The use of non- standard seats and not paying attention to how the seats are maintained can be affected by the amount of vibration transmitted to the person. OBJECTIVE This study investigates the amount of vibration transmitted from the forklift and the effect of different types of polyurethane foam in reducing the vibration transmitted from the forklift seat. METHODS This descriptive-analytical study was performed on 38 forklifts in 4 diesel models with the same weight class. The amount of vibration transmitted from forklift seats according to ISO2631 standard, taking into account the effect of various factors such as foam type (hot and cold), thickness (6-12 cm), load and year Function was measured. The amount of vibration caused by the forklift on the seat and under the seat was evaluated using ISO7096 standard. RESULTS The average total vibration of the whole body in all foams in no-load mode is more than with load. The transmission vibration of cold polyurethane foam is less than that of hot polyurethane foam. With increasing thickness, the efficiency of cold polyurethane foam increases by 12 cm and in the loaded state 40.63% and in the unloaded state 49.58% in reducing the vibration transmitted to drivers. CONCLUSION The results of this study show that cold foam has better effectiveness and efficiency than hot polyurethane foam. Also, the thicker the foam, the less vibration is transmitted to the driver.
Collapse
|
19
|
He C, Thai PK, Bertrand L, Jayarathne A, van Mourik L, Phuc DH, Banks A, Mueller JF, Wang XF. Calibration and Application of PUF Disk Passive Air Samplers To Assess Chlorinated Paraffins in Ambient Air in Australia, China, and Vietnam. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21061-21070. [PMID: 37939218 DOI: 10.1021/acs.est.3c06703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Ambient air samples were collected in Brisbane (Australia), Dalian (China), and Hanoi (Vietnam) during Mar 2013-Feb 2018 using polyurethane foam based passive air samplers. A sampling rate calibration experiment was conducted for chlorinated paraffins (CPs, i.e., short-chain, medium-chain, and long-chain CPs), where the sampling rates were 4.5 ± 0.7, 4.8 ± 0.3, and 4.8 ± 2.1 m3 day-1 for SCCPs, MCCPs, and LCCPs, respectively. The atmospheric concentration of CPs was then calculated and the medians of ∑CPs were 0.079, 1.0, and 0.89 ng m-3 in Brisbane, Dalian, and Hanoi, respectively. The concentration of CPs in Brisbane's air remained at low levels, with no significant differences observed between the city background site and the city center site, indicating limited usage and production of CPs in this city. The highest concentration of MCCPs was detected in Dalian, while the highest concentration of SCCPs was detected in Hanoi. A decrease of SCCP concentration and an increase of MCCPs' were found in Brisbane's air from 2016 to 2018, while increasing trends for both SCCPs and MCCPs were observed in Dalian. These results indicated impacts from different sources of CPs in the investigated cities.
Collapse
|
20
|
Li C, Zhang G, Yuan B. Exceptional Performance of Flame-Retardant Polyurethane Foam: The Suppression Effect on Explosion Pressure and Flame Propagation of Methane-Air Premixed Gas. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7602. [PMID: 38138744 PMCID: PMC10745016 DOI: 10.3390/ma16247602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
A self-built gas explosion testing platform was used to explore the quenching effect of flame-retardant polyurethane foam on a gas explosion. The effect of the foam's filling position and length on the explosion suppression performance was explored. The results demonstrate that polyurethane foam exhibits an excellent flame-quenching performance, with a minimum of a 5 cm length of porous material being sufficient to completely quench the flame during propagation. Furthermore, the attenuation function of this porous material on the pressure wave is insignificantly affected by the change in ignition energy. Compared with the explosive state of the empty pipeline, the best suppression effect is obtained when the polyurethane foam is 20 cm in length with a filling position at 1.8 m, and the maximum explosion pressure and maximum rise rate are attenuated by 86.2% and 84.7%, respectively. This work has practical significance for the application of porous materials in explosion suppression and explosion-proof technologies in the chemical industrial processing and oil (gas) storage fields.
Collapse
|
21
|
Kim Y, Kong CG, Park HY, Lee KS, Sur YJ. Clinical and radiographic outcomes of negative pressure wound therapy combined with polymethylmethacrylate sealant for wound management of Gustilo type III open tibia fractures. ACTA ORTHOPAEDICA ET TRAUMATOLOGICA TURCICA 2023; 57:366-371. [PMID: 37737582 PMCID: PMC10837575 DOI: 10.5152/j.aott.2023.22104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/19/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVE This study aimed to introduce a new wound management method combining negative pressure wound therapy and polymethylmethacrylate sealant for Gustilo type III open tibia fractures and to evaluate its clinical outcomes. METHODS Among 186 patients who visited our institution for the treatment of open tibia fractures between January 2016 and December 2019, 20 male patients who sustained Gustilo type III open tibia fractures and were compelled to undergo delayed flap coverage using negative pressure wound therapy combined with polymethylmethacrylate sealant due to initial critical condition were enrolled in this study. We retrospectively investigated patients' demographics, interval between the injury and flap coverage, number of negative pressure wound therapy changes, flap survival, bone union time, and infection-induced complications. RESULTS The mean interval from injury until flap coverage was 27.8 (range, 8-63) days. Most soft-tissue defects were reconstructed using free flaps (14/20, 70%); the anterolateral thigh flap was the most frequently used flap (12/20, 60%) in this study. Among 20 flaps trans- ferred, 16 flaps (80%) survived uneventfully, 1 flap (5%) developed partial necrosis, and 3 flaps (15%) failed. The mean follow-up period was 22.7 (range, 12- 43) months. A total of 17 patients (85%) achieved tibia fracture union. The mean bone union time was 31 (range, 12-81) weeks. With regard to infection-induced complications, 3 patients (15%) developed osteomyelitis and no patient showed superficial surgical site infection. CONCLUSION Combination therapy using negative pressure wound therapy and polymethylmethacrylate sealant serves as a useful and reliable therapeutic strategy for wound management of Gustilo type III open tibia fractures, especially when delayed soft-tissue recon- struction is unavoidable. Corresponding author: Yoo Joon Sur yoojoon@catholic.ac.kr Content of this journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. LEVEL OF EVIDENCE Level IV, Therapeutic Study.
Collapse
|
22
|
Furletov A, Apyari V, Volkov P, Torocheshnikova I, Dmitrienko S. Solid-Phase Spectrometric Determination of Organic Thiols Using a Nanocomposite Based on Silver Triangular Nanoplates and Polyurethane Foam. SENSORS (BASEL, SWITZERLAND) 2023; 23:7994. [PMID: 37766049 PMCID: PMC10536471 DOI: 10.3390/s23187994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Adsorption of silver nanoparticles on polymers may affect the processes in which they participate, adjusting the analytical characteristics of methods for the quantitation of various substances. In the present study, a composite material based on silver triangular nanoplates (AgTNPs) and polyurethane foam was proposed for chemical analysis. The prospects of its application for the solid-phase/colorimetric determination of organic thiols were substantiated. It was found that aggregation of AgTNPs upon the action of thiols is manifested by a decrease in the AgTNPs' localized surface plasmon resonance band and its significant broadening. Spectral changes accompanying the process can be registered using household color-recording devices and even visually. Four thiols differing in their functional groups were tested. It was found that their limits of detection increase in the series cysteamine < 2-mercaptoethanol < cysteine = 3-mercaptopropionic acid and come to 50, 160, 500, and 500 nM, respectively. The applicability of the developed approach was demonstrated during the analysis of pharmaceuticals and food products.
Collapse
|
23
|
Wang Z, Wang C, Gao Y, Li Z, Shang Y, Li H. Porous Thermal Insulation Polyurethane Foam Materials. Polymers (Basel) 2023; 15:3818. [PMID: 37765672 PMCID: PMC10537539 DOI: 10.3390/polym15183818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
Porous thermal insulation materials (PTIMs) are a class of materials characterized by low thermal conductivity, low bulk density and high porosity. The low thermal conductivity of the gas enclosed in their pores allows them to achieve efficient thermal insulation, and are they among the most widely used and effective materials in thermal insulation material systems. Among the PTIMs, polyurethane foam (PUF) stands out as particularly promising. Its appeal comes from its multiple beneficial features, such as low density, low thermal conductivity and superior mechanical properties. Such attributes have propelled its broad application across domains encompassing construction, heterogeneous chemical equipment, water conservation and hydropower, and the aviation and aerospace fields. First, this article outlines the structure and properties of porous thermal insulation PUF materials. Next, it explores the methods of preparing porous thermal insulation PUF materials, evaluating the associated advantages and disadvantages of each technique. Following this, the mechanical properties, thermal conductivity, thermal stability, and flame-retardant characteristics of porous thermal insulation PUF materials are characterized. Lastly, the article provides insight into the prospective development trends pertaining to porous thermal insulation PUF materials.
Collapse
|
24
|
Rubtsova S, Dahman Y. Biomimetic Orthopedic Footwear Advanced Insole Materials to Be Used in Medical Casts for Weight-Bearing Monitoring. Biomimetics (Basel) 2023; 8:334. [PMID: 37622939 PMCID: PMC10452612 DOI: 10.3390/biomimetics8040334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Fabrication, characterization and testing of protective biomimetic orthopedic footwear advanced insole materials are introduced. The main objective of this material is to preserve and isolate a set of sensors for the Weight-Bearing Monitoring System (WBMS) device. Twenty-one samples of renewably sourced Polyurethane Foam (PUF) composed of poly(trimethylene ether) glycol (PO3G) and unmodified castor oil (CO) were synthesized and evaluated according to predetermined criteria. Response surface methodology of Box-Behnken design was applied to study the effect of the polyols ratio, isocyanate index (II), and blowing agent ratio on the properties (hardness, density) of PUFs. Results showed that CO/PO3G/Tolyene Diisocyanate (TDI) PUFs with hardness Shore A 17-22 and density of 0.19-0.25 g/cm3 demonstrate the required characteristics and can potentially be used as a durable and functional insole material. Phase separation studies have found the presence of well-segregated structures in PUFs having polyols ratio of CO:PO3G 1:3 and low II, which further explains their extraordinary elastic properties (400% elongation). Analysis of cushioning performance of PUF signified that five samples have Cushioning Energy (CE) higher than 70 N·mm and Cushioning Factor (CF) in the range of 4-8, hence are recommended for application in WBMS due to superior weight-bearing and pressure-distributing properties. Moreover, the developed formulation undergoes anaerobic soil bacterial degradation and can be categorized as a "green" bio-based material.
Collapse
|
25
|
Junaedi H, Khan T, Sebaey TA. Characteristics of Carbon-Fiber-Reinforced Polymer Face Sheet and Glass-Fiber-Reinforced Rigid Polyurethane Foam Sandwich Structures under Flexural and Compression Tests. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5101. [PMID: 37512375 PMCID: PMC10385354 DOI: 10.3390/ma16145101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Composite sandwich structures are extensively used in aircraft applications. Aircraft components are required to be robust and lightweight. Sandwich structures made of carbon-fiber-reinforced polymer as the facing sheets and milled-glass-fiber-reinforced rigid polyurethane foam with a different glass fiber content as the core structure were prepared. The influence of glass fiber content in the foam on the sandwich structure's mechanical properties was investigated. Flexural and compression tests were performed to assess the mechanical properties of the sandwich structures. Visual inspection and an optical microscope were used to observe the morphology of the polyurethane composite foams at different contents. From the flexural test, the force, facing stress and core shear stress improved with the increase in the milled fiber loading with the maximum increase at 10 wt.% loading and then a drop. Meanwhile, the compression modulus and strength increased up to 20 wt.% loadings and then dropped subsequently. The increase in the polyurethane composite foam's compression strength shifted the bending load's failure type from facing crack failure into core shear failure. The loadings range of 8-10 wt.% showed a transitional of the bending loading failure type. The density of the foams increased with the increase in milled glass fiber loading. At 10 wt.% loading, the density increased by 20%, and it increased by 47% at 30 wt.% loading. At 30 wt% loading, the optical microscope images of the foam showed wall thinning and broken walls that were responsible for the drop in the mechanical properties of the sandwich.
Collapse
|