1
|
Liu X, Wang C, Gai W, Sun Z, Fang L, Hua Z. Critical role of msgA in invasive capacity and intracellular survivability of Salmonella. Appl Environ Microbiol 2024; 90:e0020124. [PMID: 39136487 PMCID: PMC11409701 DOI: 10.1128/aem.00201-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/04/2024] [Indexed: 09/19/2024] Open
Abstract
Salmonella enterica serovar Typhimurium, which is a common foodborne pathogen, causes both intestinal and systemic infections in hosts. Salmonella has a complex pathogenic mechanism that involves invasive capacity and intracellular survivability, which hampers research on virulence of Salmonella. The virulence of Salmonella is primarily studied through Salmonella pathogenicity islands (SPIs). However, there are also genes outside these SPIs that significantly impact virulence. Macrophage survival gene msgA is positioned at a region independent of the SPIs and conserved in Salmonella. However, there has been limited research on msgA to date. This study aims to investigate the virulent function of msgA to deepen our understanding of Salmonella virulence. Proteomic and RT-qPCR analyses reveal that MsgA influences multiple metabolic pathways and the expression of SPIs. The depletion of msgA led to the significantly reduced invasive capacity and intracellular survivability, and thus the decreased virulence of Salmonella. In conclusion, our study suggests that MsgA is an important regulator that mainly regulates virulence. Further research into the function of MsgA will enhance the understanding of Salmonella pathogenesis and promote the application of Salmonella for medical treatment. IMPORTANCE Salmonella enterica serovar Typhimurium is a common foodborne pathogen, it has a complex pathogenic mechanism that involves invasive capacity and intracellular survivability. The virulence of Salmonella is primarily studied through its pathogenicity islands. In contrast, virulence genes located outside the Salmonella pathogenicity islands (SPIs) have received less attention. Macrophage survival gene (MsgA) is positioned at a region independent of the SPIs and conserved in Salmonella. Our research indicates that MsgA is a novel global regulator influencing the metabolic pathways and SPIs. Further research into the function of MsgA will enhance the understanding of Salmonella pathogenesis and promote the application of Salmonella for medical treatment.
Collapse
|
2
|
Matoba Y, Oda K, Wataeda M, Kanemori H, Matsuo K. pH-dependent regulation of an acidophilic O-acetylhomoserine sulfhydrylase from Lactobacillus plantarum. Appl Environ Microbiol 2024; 90:e0011824. [PMID: 38568076 PMCID: PMC11107162 DOI: 10.1128/aem.00118-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/16/2024] [Indexed: 05/22/2024] Open
Abstract
Bacteria have two routes for the l-methionine biosynthesis. In one route called the direct sulfuration pathway, acetylated l-homoserine is directly converted into l-homocysteine. The reaction using H2S as the second substrate is catalyzed by a pyridoxal 5'-phosphate-dependent enzyme, O-acetylhomoserine sulfhydrylase (OAHS). In the present study, we determined the enzymatic functions and the structures of OAHS from Lactobacillus plantarum (LpOAHS). The LpOAHS enzyme exhibited the highest catalytic activity under the weak acidic pH condition. In addition, crystallographic analysis revealed that the enzyme takes two distinct structures, open and closed forms. In the closed form, two acidic residues are sterically clustered. The proximity may cause the electrostatic repulsion, inhibiting the formation of the closed form under the neutral to the basic pH conditions. We concluded that the pH-dependent regulation mechanism using the two acidic residues contributes to the acidophilic feature of the enzyme. IMPORTANCE In the present study, we can elucidate the pH-dependent regulation mechanism of the acidophilic OAHS. The acidophilic feature of the enzyme is caused by the introduction of an acidic residue to the neighborhood of the key acidic residue acting as a switch for the structural interconversion. The strategy may be useful in the field of protein engineering to change the optimal pH of the enzymes. In addition, this study may be useful for the development of antibacterial drugs because the l-methionine synthesis essential for bacteria is inhibited by the OAHS inhibitors. The compounds that can inhibit the interconversion between the open and closed forms of OAHS may become antibacterial drugs.
Collapse
|
3
|
Bloch I, Haviv H, Rapoport I, Cohen E, Shushan RSB, Dotan N, Sher I, Hacham Y, Amir R, Gal M. Discovery and characterization of small molecule inhibitors of cystathionine gamma-synthase with in planta activity. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1785-1797. [PMID: 33773037 PMCID: PMC8428831 DOI: 10.1111/pbi.13591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
The synthesis of essential amino acids in plants is pivotal for their viability and growth, and these cellular pathways are therefore targeted for the discovery of new molecules for weed control. Herein, we describe the discovery and design of small molecule inhibitors of cystathionine gamma-synthase, a key enzyme in the biosynthesis of methionine. Based on in silico screening and filtering of a large molecular database followed by the in vitro selection of molecules, we identified small molecules capable of binding the target enzyme. Molecular modelling of the interaction and direct biophysical binding enabled us to explore a focussed chemical expansion set of molecules characterized by an active phenyl-benzamide chemical group. These molecules are bio-active and efficiently inhibit the viability of BY-2 tobacco cells and seedlings growth of Arabidopsis thaliana on agar plates.
Collapse
|
4
|
Wang H, Li Y, Che Y, Yang D, Wang Q, Yang H, Boutet J, Huet R, Yin S. Production of l-Methionine from 3-Methylthiopropionaldehyde and O-Acetylhomoserine by Catalysis of the Yeast O-Acetylhomoserine Sulfhydrylase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7932-7937. [PMID: 34232654 DOI: 10.1021/acs.jafc.1c02419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
l-Methionine is an essential bioactive amino acid with high commercial value for diverse applications. Sustained attentions have been paid to efficient and economical preparation of l-methionine. In this work, a novel method for l-methionine production was established using O-acetyl-homoserine (OAH) and 3-methylthiopropionaldehyde (MMP) as substrates by catalysis of the yeast OAH sulfhydrylase MET17. The OAH sulfhydrylase gene Met17 was cloned from Saccharomyces cerevisiae S288c and overexpressed in Escherichia coli BL21. A 49 kDa MET17 was detected in the supernatant of the recombinant E. coli strain BL21-Met17 lysate with IPTG induction, which exhibited the biological activity of l-methionine biosynthesis from OAH and MMP. The recombinant MET17 was then purified from E. coli BL21-Met17 and used for in vitro biosynthesis of l-methionine. The maximal conversion rate (86%) of OAH to l-methionine catalyzed by purified MET17 was achieved by optimization of the molar ratio of OAH to MMP. The method proposed in this study provides a possible novel route for the industrial production of l-methionine.
Collapse
|
5
|
Benabdelkader T, Guitton Y, Pasquier B, Magnard JL, Jullien F, Kameli A, Legendre L. Functional characterization of terpene synthases and chemotypic variation in three lavender species of section Stoechas. PHYSIOLOGIA PLANTARUM 2015; 153:43-57. [PMID: 24943828 DOI: 10.1111/ppl.12241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/09/2014] [Accepted: 05/14/2014] [Indexed: 05/28/2023]
Abstract
Lavandula pedunculata (Mill.) Cav. subsp. lusitanica, Lavandula stoechas L. subsp. stoechas and Lavandula viridis l'Hér. are three lavender taxa that belong to the botanical section Stoechas and are widely used as aromatherapy, culinary herb or folk medicine in many Mediterranean regions. The analysis of their bioactive volatile constituents revealed the presence of 124 substances, the most abundant being the bicyclic monoterpenes fenchone, camphor and 1,8-cineole that give these three species their respective chemotypes. Most noteworthy was fenchone which, with its reduced form fenchol, made 48% of the total volatile constituents of L. pedunculata while present at 2.9% in L. stoechas and undetectable in L. viridis. In order to provide a molecular explanation to the differences in volatile compounds of these three species, two monoterpene synthases (monoTPS) and one sesquiterpene synthase (sesquiTPS) were cloned in L. pedunculata and functionally characterized as fenchol synthase (LpFENS), α-pinene synthase (LpPINS) and germacrene A synthase (LpGEAS). The two other lavender species contained a single orthologous gene for each of these three classes of TPS with similar enzyme product specificities. Expression profiles of FENS and PINS genes matched the accumulation profile of the enzyme products unlike GEAS. This study provides one of the rare documented cases of chemotype modification during plant speciation via changes in the level of plant TPS gene expression, and not functionality.
Collapse
|
6
|
Horzempa J, Dean CR, Goldberg JB, Castric P. Pseudomonas aeruginosa 1244 pilin glycosylation: glycan substrate recognition. J Bacteriol 2006; 188:4244-52. [PMID: 16740931 PMCID: PMC1482975 DOI: 10.1128/jb.00273-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pilin of Pseudomonas aeruginosa 1244 is glycosylated with an oligosaccharide that is structurally identical to the O-antigen repeating unit of this organism. Concordantly, the metabolic source of the pilin glycan is the O-antigen biosynthetic pathway. The present study was conducted to investigate glycan substrate recognition in the 1244 pilin glycosylation reaction. Comparative structural analysis of O subunits that had been previously shown to be compatible with the 1244 glycosylation machinery revealed similarities among sugars at the presumed reducing termini of these oligosaccharides. We therefore hypothesized that the glycosylation substrate was within the sugar at the reducing end of the glycan precursor. Since much is known of PA103 O-antigen genetics and because the sugars at the reducing termini of the O7 (strain 1244) and O11 (strain PA103) are identical (beta-N-acetyl fucosamine), we utilized PA103 and strains that express lipopolysaccharide (LPS) with a truncated O-antigen subunit to test our hypothesis. LPS from a strain mutated in the wbjE gene produced an incomplete O subunit, consisting only of the monosaccharide at the reducing end (beta-d-N-acetyl fucosamine), indicating that this moiety contained substrate recognition elements for WaaL. Expression of pilAO(1244) in PA103 wbjE::aacC1, followed by Western blotting of extracts of these cells, indicated that pilin produced has been modified by the addition of material consistent with a single N-acetyl fucosamine. This was confirmed by analyzing endopeptidase-treated pilin by mass spectrometry. These data suggest that the pilin glycosylation substrate recognition features lie within the reducing-end moiety of the O repeat and that structures of the remaining sugars are irrelevant.
Collapse
|
7
|
Yoshida Y, Negishi M, Nakano Y. Homocysteine biosynthesis pathways of Streptococcus anginosus. FEMS Microbiol Lett 2003; 221:277-84. [PMID: 12725939 DOI: 10.1016/s0378-1097(03)00215-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A gene (cgs) encoding cystathionine gamma-synthase was cloned from Streptococcus anginosus, and its protein was purified and characterized. The cgs gene and the immediately downstream lcd gene were shown to be cotranscribed as an operon. High-performance liquid chromatography analyses showed that the S. anginosus Cgs not only has cystathionine gamma-synthase activity, but also expresses O-acetylhomoserine sulfhydrylase activity. These results suggest that S. anginosus has the capacity to utilize both the transsulfuration and direct sulfhydrylation pathways for homocysteine biosynthesis.
Collapse
|
8
|
Abstract
Vertebrate retinas contain endogenous circadian clocks that control many aspects of retinal physiology. Our work has focused on studying the molecular mechanism of this clock and the way in which it controls the many cellular rhythms within the retina. These studies focus on the retina of Xenopus laevis, a well-established model system extensively used for the study of both retinal physiology and circadian function. We have cloned Xenopus homologues of the genes thought to be critical for vertebrate clock function, including Clock, Bmal1, cryptochromes and period, as well as other rhythmic genes such as nocturnin. We have used these genes to manipulate the clock within different subsets of retinal photoreceptors via cell-specific promoters, in order to study the location of the clock within the retina. These in vivo experiments have shown that photoreceptor cells contain clocks that are necessary for the rhythmic production of melatonin. We have also used biochemical approaches to further investigate the molecular events that drive specific rhythmic outputs, such as circadian regulation of nocturnin gene transcription and control of post-transcriptional events within these clock-containing cells.
Collapse
|
9
|
Liu PK, Cui J, Moore N, Huang D. The in situ detection of apurinic/apyrimidinic sites and DNA breaks bearing extension blocking termini. Methods Mol Biol 2002; 203:235-44. [PMID: 12073446 DOI: 10.1385/1-59259-179-5:235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
10
|
Joachimiak MP, Cohen FE. JEvTrace: refinement and variations of the evolutionary trace in JAVA. Genome Biol 2002; 3:RESEARCH0077. [PMID: 12537566 PMCID: PMC151179 DOI: 10.1186/gb-2002-3-12-research0077] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2002] [Revised: 07/11/2002] [Accepted: 10/21/2002] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Details of functional speciation within gene families can be difficult to identify using standard multiple sequence alignment (MSA) methods. The evolutionary trace (ET) was developed as a visualization tool to combine MSA, phylogenetic and structural data for identification of functional sites in proteins. The method has been successful in extracting evolutionary details of functional surfaces in a number of biological systems and modifications of the method are useful in creating hypotheses about the function of previously unannotated genes. We wish to facilitate the graphical interpretation of disparate data types through the creation of flexible software implementations. RESULTS We have implemented the ET method in a JAVA graphical interface, JEvTrace. Users can analyze and visualize ET input and output with respect to protein phylogeny, sequence and structure. Function discovery with JEvTrace is demonstrated on two proteins with recently determined crystal structures: YlxR from Streptococcus pneumoniae with a predicted RNA-binding function, and a Haemophilus influenzae protein of unknown function, YbaK. To facilitate analysis and storage of results we propose a MSA coloring data structure. The sequence coloring format readily captures evolutionary, biological, functional and structural features of MSAs. CONCLUSIONS Protein families and phylogeny represent complex data with statistical outliers and special cases. The JEvTrace implementation of the ET method allows detailed mining and graphical visualization of evolutionary sequence relationships.
Collapse
|
11
|
Johansson A, Helou K, Levan G. Cytogenetic localization of cancer-related genes in the rat and comparative mapping studies in human and mouse. CYTOGENETICS AND CELL GENETICS 2000; 81:217-21. [PMID: 9730607 DOI: 10.1159/000015034] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The rat is an important model organism in biomedical research, and several well-characterized rat cancer model systems exist. To facilitate detailed analysis of these models, it is useful to know the regional location of known cancer-related genes. In this report, 14 cancer-related genes have been sublocalized by fluorescence in situ hybridization. The mapped genes include three oncogenes (Fyn, Mas1, and Vav1), a tyrosine kinase gene (Syk), a tumor-associated antigen gene (Cd24), a growth factor receptor gene (Igf2r), the gene for an activator of c-fos/c-jun transcription factors (Apex), a transcription factor gene (Egr3), and several genes involved in steroid hormone metabolism and signaling (Esr2, Pgr, Cbg, Cyp17, and Cyp19). The remaining gene (Map1a) is involved in microtubule assembly.
Collapse
|
12
|
Zhang H, Huang K, Li Z, Banerjei L, Fisher KE, Grishin NV, Eisenstein E, Herzberg O. Crystal structure of YbaK protein from Haemophilus influenzae (HI1434) at 1.8 A resolution: functional implications. Proteins 2000; 40:86-97. [PMID: 10813833 DOI: 10.1002/(sici)1097-0134(20000701)40:1<86::aid-prot100>3.0.co;2-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Structural genomics of proteins of unknown function most straightforwardly assists with assignment of biochemical activity when the new structure resembles that of proteins whose functions are known. When a new fold is revealed, the universe of known folds is enriched, and once the function is determined by other means, novel structure-function relationships are established. The previously unannotated protein HI1434 from H. influenzae provides a hybrid example of these two paradigms. It is a member of a microbial protein family, labeled in SwissProt as YbaK and ebsC. The crystal structure at 1.8 A resolution reported here reveals a fold that is only remotely related to the C-lectin fold, in particular to endostatin, and thus is not sufficiently similar to imply that YbaK proteins are saccharide binding proteins. However, a crevice that may accommodate a small ligand is evident. The putative binding site contains only one invariant residue, Lys46, which carries a functional group that could play a role in catalysis, indicating that YbaK is probably not an enzyme. Detailed sequence analysis, including a number of newly sequenced microbial organisms, highlights sequence homology to an insertion domain in prolyl-tRNA synthetases (proRS) from prokaryote, a domain whose function is unknown. A HI1434-based model of the insertion domain shows that it should also contain the putative binding site. Being part of a tRNA synthetases, the insertion domain is likely to be involved in oligonucleotide binding, with possible roles in recognition/discrimination or editing of prolyl-tRNA. By analogy, YbaK may also play a role in nucleotide or oligonucleotide binding, the nature of which is yet to be determined.
Collapse
|
13
|
Sutherland BM, Bennett PV, Sidorkina O, Laval J. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation. Proc Natl Acad Sci U S A 2000; 97:103-8. [PMID: 10618378 PMCID: PMC26623 DOI: 10.1073/pnas.97.1.103] [Citation(s) in RCA: 376] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/1999] [Accepted: 11/11/1999] [Indexed: 11/18/2022] Open
Abstract
Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.
Collapse
|
14
|
Wang P, Tumer NE. Pokeweed antiviral protein cleaves double-stranded supercoiled DNA using the same active site required to depurinate rRNA. Nucleic Acids Res 1999; 27:1900-5. [PMID: 10101199 PMCID: PMC148399 DOI: 10.1093/nar/27.8.1900] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are N-glycosylases that remove a specific adenine from the sarcin/ricin loop of the large rRNA in a manner analogous to N-glycosylases that are involved in DNA repair. Some RIPs have been reported to remove adenines from single-stranded DNA and cleave double-stranded supercoiled DNA. The molecular basis for the activity of RIPs on double-stranded DNA is not known. Pokeweed antiviral protein (PAP), a single-chain RIP from Phytolacca americana, cleaves supercoiled DNA into relaxed and linear forms. Double-stranded DNA treated with PAP contains apurinic/apyrimidinic (AP) sites due to the removal of adenine. Using an active-site mutant of PAP (PAPx) which does not depurinate rRNA, we present evidence that double-stranded DNA treated with PAPx does not contain AP sites and is not cleaved. These results demonstrate for the first time that PAP cleaves supercoiled double-stranded DNA using the same active site that is required for depurination of rRNA.
Collapse
|
15
|
Gutekunst CA, Li SH, Yi H, Ferrante RJ, Li XJ, Hersch SM. The cellular and subcellular localization of huntingtin-associated protein 1 (HAP1): comparison with huntingtin in rat and human. J Neurosci 1998; 18:7674-86. [PMID: 9742138 PMCID: PMC6793025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The cellular and subcellular distribution of HAP1 was examined in rat brain by light and electron microscopic immunocytochemistry and subcellular fractionation. HAP1 localization was also determined in human postmortem tissue from control and Huntington's disease (HD) cases by light microscopic immunocytochemistry. At the cellular level, the heterogeneity of HAP1 expression was similar to that of huntingtin; however, HAP1 immunoreactivity was more widespread. The subcellular distribution of HAP1 was examined using immunogold electron microscopy. Like huntingtin, HAP1 is a cytoplasmic protein that associates with microtubules and many types of membranous organelles, including mitochondria, endoplasmic reticulum, tubulovesicles, endosomal and lysosomal organelles, and synaptic vesicles. A quantitative comparison of the organelle associations of HAP1 and huntingtin showed them to be almost identical. Within HAP1-immunoreactive neurons in rat and human brain, populations of large and small immunoreactive puncta were visible by light microscopy. The large puncta, which were especially evident in the ventral forebrain, were intensely HAP1 immunoreactive. Electron microscopic analysis revealed them to be a type of nucleolus-like body, which has been named a stigmoid body, that may play a role in protein synthesis. The small puncta, less intensely labeled, were primarily mitochondria. These results indicate that the localization of HAP1 and huntingtin is more similar than previously appreciated and provide further evidence that HAP1 and huntingtin have localizations consistent with roles in intracellular transport. Our data also suggest, however, that HAP1 is not present in the abnormal intranuclear and neuritic aggregates containing the N-terminal fragment of mutant huntingtin that are found in HD brains.
Collapse
|
16
|
Abstract
PURPOSE To discuss the evolutionary conservation of different DNA repair processes. The proteins that carry out base excision repair show a varying degree of structural conservation, but a high level of functional complementation between species, as might be expected for a sequential pathway. In nucleotide excision repair there is a high degree of structural conservation, but few examples of functional complementation because the process involves multiprotein complexes. Repair by homologous recombination involves proteins that are highly conserved structurally. The process of repair of DNA breaks by non-homologous end-joining is conserved in eukaryotes, but the level of sequence identity of several of the proteins is fairly low and some components involved in man do not appear to have sequence homologues in yeast. CONCLUSIONS All DNA repair processes are highly conserved. The degree of structural and functional conservation varies between the different processes.
Collapse
|
17
|
Li SH, Hosseini SH, Gutekunst CA, Hersch SM, Ferrante RJ, Li XJ. A human HAP1 homologue. Cloning, expression, and interaction with huntingtin. J Biol Chem 1998; 273:19220-7. [PMID: 9668110 DOI: 10.1074/jbc.273.30.19220] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Huntington's disease (HD) is caused by the expansion of a glutamine repeat in the protein huntingtin. The expanded glutamine repeat is thought to mediate a gain of function by causing huntingtin to abnormally interact with other proteins. We previously identified a rat huntingtin-associated protein (HAP1) that binds to huntingtin; HAP1 binds more tightly to huntingtin with an expanded glutamine repeat than to wild type huntingtin. Identification of the human homologue of HAP1 is necessary for investigation of the potential role of HAP1 in HD pathology. Here, we report the cloning of a human HAP1 homologue (hHAP) that shares 62% identity with rat HAP1 over its entire sequence and 82% amino acid identity in the putative huntingtin-binding region. The hHAP gene encodes a 4.1-kilobase transcript and a 75-kDa protein which are specifically expressed in human brain tissues. Its expression in Huntington's disease brains is reduced in parallel with a decreased expression of huntingtin. While two isoforms of rat HAP1 are expressed at similar levels in rat brain, only a single major form of hHAP is found in primate brains. In vitro binding, immunoprecipitation, and coexpression studies confirm the interaction of hHAP with huntingtin. The in vitro binding of hHAP to huntingtin is enhanced by lengthening the glutamine repeat. Despite similar binding properties of rat HAP1 and hHAP, differences in the sequences and expression of hHAP may contribute to a specific role for its interaction with huntingtin in humans.
Collapse
|
18
|
Zhang L, Hach A, Wang C. Molecular mechanism governing heme signaling in yeast: a higher-order complex mediates heme regulation of the transcriptional activator HAP1. Mol Cell Biol 1998; 18:3819-28. [PMID: 9632766 PMCID: PMC108966 DOI: 10.1128/mcb.18.7.3819] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Apart from serving as a prosthetic group in globins and enzymes, heme is a key regulator controlling a wide range of molecular and cellular processes involved in oxygen sensing and utilization. To gain insights into molecular mechanisms of heme signaling and oxygen sensing in eukaryotes, we investigated the yeast heme-responsive transcriptional activator HAP1. HAP1 activity is regulated precisely and tightly by heme. Here we show that in the absence of heme, HAP1 forms a biochemically distinctive higher-order complex. Our data suggest that this complex contains HAP1 and four other cellular proteins including Hsp82 and Ydj1. The formation of this complex is directly correlated with HAP1 repression in the absence of heme, and mutational or heme disruption of the complex correlates with HAP1 activation, suggesting that this complex is responsible for heme regulation of HAP1 activity. Further, we determined HAP1 domains required for heme regulation: three domains-the dimerization domain, the heme domain, and the HRM7 (heme-responsive motif 7) domain-cooperate to form the higher-order complex and mediate heme regulation. Strikingly, we uncovered a novel function for the HAP1 dimerization domain: it not only allows dimerization but also provides critical functions in heme regulation and transcriptional activation. Our studies provide significant insights into the molecular events leading to heme activation of HAP1 and may shed light on molecular mechanisms of various heme-controlled biological processes in diverse organisms.
Collapse
|
19
|
Naït-Kaoudjt R, Guiard B, Gervais M. Evidence of an overlap between the two half-sites of UAS1-B/CYC1--a new model for Cyp1p (Hap1p) DNA binding. EUROPEAN JOURNAL OF BIOCHEMISTRY 1998; 254:111-6. [PMID: 9652402 DOI: 10.1046/j.1432-1327.1998.2540111.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyp1p (Hap1p) is a yeast transcriptional regulator belonging to the zinc-cluster family. CGGNNNTANCGG was identified by PCR selection as the DNA sequence allowing its optimal binding. Nevertheless, this sequence is not a consensus sequence, the simultaneous presence of the two CGGs and the TA generally not being found in the known natural Cyp1p targets. In fact, our previous studies showed that the mechanism of Cyp1p DNA binding was target dependent. Data concerning the binding of Cyp1p to the UAS1-B/CYC1 are presented here. This target, containing the CGGGGTTTACGG sequence, was found to present the particular ability of stabilizing the binding of only one molecule of some monomeric Cyp1p fragments. This property was used to investigate the actual contribution of the TT and CGG sequences in the binding of Cyp1p. Our results indicate that each CGG belongs to a different half-site and, in contrast to a previous hypothesis, that the T nucleotide located four bases downstream from the left CGG is essential for the binding of one monomer to each half-site. The two half-sites of the UAS1-B/CYC1 thus overlap.
Collapse
|
20
|
Page KJ, Potter L, Aronni S, Everitt BJ, Dunnett SB. The expression of Huntingtin-associated protein (HAP1) mRNA in developing, adult and ageing rat CNS: implications for Huntington's disease neuropathology. Eur J Neurosci 1998; 10:1835-45. [PMID: 9751154 DOI: 10.1046/j.1460-9568.1998.00185.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using radioactive in situ hybridization, we have mapped the expression of Huntingtin-associated protein (HAP1) mRNA in rat brain at developmental stages (E12-E19, PO-P21), in adult rats (3 months) and in 'aged' (19-21 months) rats. Using two pairs of 45mer oligonucleotide probes specific for HAP1A and a probe which recognizes regions of both the HAP1A and HAP1B mRNA sequences (panHAP1), we find that the expression of HAP1 mRNA is specific to the CNS and restricted predominantly to anatomically connected limbic structures, particularly the amygdala (medial and corticomedial nuclei), the hypothalamus (arcuate, preoptic, paraventricular and lateral hypothalamic area), bed nucleus of the stria terminalis (BNST) and the lateral septal nuclei. HAP1 mRNA was detected in embryos at E12 and displayed a prevalent distribution in the developing limbic structures by E15. In aged, 19-21-months-old, rats there is a downregulation of HAP1 mRNA expression across all CNS loci where HAP1 was previously abundant. The lowest levels of HAP1 mRNA expression corresponded with the areas of greatest pathological cell loss in Huntington's disease (HD); the caudate putamen, globus pallidus and neocortex. These observations support the suggestion that HAP1 plays an important role in the neuropathology of HD.
Collapse
|
21
|
Kakolyris S, Kaklamanis L, Engels K, Fox SB, Taylor M, Hickson ID, Gatter KC, Harris AL. Human AP endonuclease 1 (HAP1) protein expression in breast cancer correlates with lymph node status and angiogenesis. Br J Cancer 1998; 77:1169-73. [PMID: 9569057 PMCID: PMC2150123 DOI: 10.1038/bjc.1998.194] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human AP endonuclease (HAP1) plays a major role in the repair of apurinic/apyrimidinic (AP) sites in cellular DNA. We used immunohistochemistry to examine the expression of HAP1 in normal breast and in 102 primary breast carcinomas. In normal breast epithelium, HAP1 had a uniformly nuclear localization. However, in lactating glandular epithelium, the expression of HAP1 was predominantly cytoplasmic. In carcinomas, both nuclear and cytoplasmic (44%), cytoplasmic (28%) or nuclear staining (24%) were observed. In four cases (4%), no HAP1 expression was detected. All patterns of expression for HAP1 were demonstrated for ductal carcinomas in situ (DCIS), although comedo-type DCIS were usually accompanied by mostly cytoplasmic staining. Similarly, the HAP1 expression in regions of invasive tumour necrosis was cytoplasmic. Pure nuclear HAP1 expression was significantly correlated with low angiogenesis (P = 0.007) and negative lymph node status (P = 0.001). In contrast, cases with cytoplasmic as well as nuclear staining were associated with poor prognostic factors, such as high angiogenesis (P = 0.03) and node positivity (P = 0.03). The pure nuclear staining may be related to better differentiation, as in normal breast, and hence better prognostic features, and cytoplasmic staining to a more metabolically active phenotype with high protein synthesis, as in lactating breast.
Collapse
|
22
|
Chantrel Y, Gaisne M, Lions C, Verdière J. The transcriptional regulator Hap1p (Cyp1p) is essential for anaerobic or heme-deficient growth of Saccharomyces cerevisiae: Genetic and molecular characterization of an extragenic suppressor that encodes a WD repeat protein. Genetics 1998; 148:559-69. [PMID: 9504906 PMCID: PMC1459824 DOI: 10.1093/genetics/148.2.559] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We report here that Hap1p (originally named Cyp1p) has an essential function in anaerobic or heme-deficient growth. Analysis of intragenic revertants shows that this function depends on the amino acid preceding the first cysteine residue of the DNA-binding domain of Hap1p. Selection of recessive extragenic suppressors of a hap1-hem1- strain allowed the identification, cloning, and molecular analysis of ASC1 (Cyp1 Absence of growth Supressor). The sequence of ASC1 reveals that its ORF is interrupted by an intron that shelters the U24 snoRNA. Deletion of the intron, inactivation of the ORF, and molecular localization of the mutations show unambiguously that it is the protein and not the snoRNA that is involved in the suppressor phenotype. ASC1, which is constitutively transcribed, encodes an abundant, cytoplasmically localized 35-kD protein that belongs to the WD repeat family, which is found in a large variety of eucaryotic organisms. Polysome profile analysis supports the involvement of this protein in translation. We propose that the absence of functional Asc1p allows the growth of hap1-hem1- cells by reducing the efficiency of translation. Based on sequence comparisons, we discuss the possibility that the protein intervenes in a kinase-dependent signal transduction pathway involved in this last function.
Collapse
|
23
|
Suzuki S, Nagaya T, Suganuma N, Tomoda Y, Seo H. Inductions of immediate early genes (IEGS) and ref-1 by human chorionic gonadotropin in murine Leydig cell line (MA-10). BIOCHEMISTRY AND MOLECULAR BIOLOGY INTERNATIONAL 1998; 44:217-24. [PMID: 9530505 DOI: 10.1080/15216549800201242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effect of human chorionic gonadotropin (hCG) on the expression of immediate early genes (IEGs) including all members of fos and jun family, and c-myc was studied using mouse Leydig cell line (MA-10 cells) by Northern blot analyses. In addition, the induction of ref-1 which enhances DNA binding of fos/jun proteins was also analyzed. HCG induced a rapid and transient expression of c-fos, fosB, c-jun, junB, junD and c-myc with a peak at 30 min to 1 h. In contrast, induction of fra-1 mRNA was delayed with a peak at 3 hr. However, fra-2 mRNA was immediately increased by hCG with a peak at 1 h. The ref-1 mRNA was expressed before the stimulation and its level was not altered by hCG at least for 8 hr. The differential induction of IEGs and continuous expression of ref-1 mRNA suggest an important role of their gene products on the regulation of Leydig cell function by hCG.
Collapse
|
24
|
Rothwell DG, Barzilay G, Gorman M, Morera S, Freemont P, Hickson ID. The structure and functions of the HAP1/Ref-1 protein. Oncol Res 1997; 9:275-80. [PMID: 9406232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The HAP1/Ref-1 (hereafter referred to as HAP1) protein is a nuclear enzyme that apparently performs two distinct roles in the cellular defense against oxidative stress. One well-established role is in the repair of a variety of lesions induced in DNA either by spontaneous hydrolysis or by reactive oxygen species (ROS). This function has been characterized in great detail and the roles played by individual active site amino acid residues have been defined. The second role, which was identified only relatively recently and is still not characterized in detail, is to regulate the DNA binding activity of a group of nuclear factors. This second role proceeds via the modification of the oxidation/reduction (redox) state of a cysteine residue in the target protein, although the mechanism by which this is achieved remains to be elucidated. In this article, we shall review the latest knowledge on the relationship between structure and the dual functions of HAP1, and we will seek to explain in detail the roles played by several individual amino acid residues in the catalytic function of the HAP1 protein.
Collapse
|
25
|
Gillardon F, Böttiger B, Hossmann KA. Expression of nuclear redox factor ref-1 in the rat hippocampus following global ischemia induced by cardiac arrest. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 52:194-200. [PMID: 9495540 DOI: 10.1016/s0169-328x(97)00237-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Ref-1 protein is a bifunctional nuclear enzyme involved in repair of DNA lesions and in redox regulation of DNA-binding activity of AP-1 family members, such as Fos and Jun transcription factors. In the present study, we demonstrate by in situ hybridization that transient global ischemia induced by cardiac arrest activates ref-1 mRNA expression in the granular cells of the rat dentate gyrus after 6 h and in CA1 pyramidal neurons of the hippocampus proper after 24 h, respectively. Immunohistochemical analysis revealed nuclear accumulation of Ref-1 protein in granular cells of the ischemia-resistant dentate gyrus, whereas Ref-1 protein expression progressively decreased in vulnerable CA1 neurons of the post-ischemic hippocampus from 24 h onwards. At the same time point, intense nuclear c-Jun immunoreactivity was observed in both neuronal cell populations. Our data suggest that oxidative stress induced by ischemia-reperfusion may increase neuronal ref-1 expression. However, inability of ref-1 mRNA translation and nuclear translocation of encoded protein in CA1 pyramidal neurons may inhibit repair of oxidative DNA damage or cellular adaptive responses leading to delayed neuronal cell death.
Collapse
|