1
|
Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004; 104:293-346. [PMID: 14719978 DOI: 10.1021/cr030698+] [Citation(s) in RCA: 7491] [Impact Index Per Article: 356.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
Review |
21 |
7491 |
2
|
Gautier L, Cope L, Bolstad BM, Irizarry RA. affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 2004; 20:307-15. [PMID: 14960456 DOI: 10.1093/bioinformatics/btg405] [Citation(s) in RCA: 4027] [Impact Index Per Article: 191.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MOTIVATION The processing of the Affymetrix GeneChip data has been a recent focus for data analysts. Alternatives to the original procedure have been proposed and some of these new methods are widely used. RESULTS The affy package is an R package of functions and classes for the analysis of oligonucleotide arrays manufactured by Affymetrix. The package is currently in its second release, affy provides the user with extreme flexibility when carrying out an analysis and make it possible to access and manipulate probe intensity data. In this paper, we present the main classes and functions in the package and demonstrate how they can be used to process probe-level data. We also demonstrate the importance of probe-level analysis when using the Affymetrix GeneChip platform.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
4027 |
3
|
Yu Y, Lee C, Kim J, Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 2005; 89:670-9. [PMID: 15696537 DOI: 10.1002/bit.20347] [Citation(s) in RCA: 964] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Real-time polymerase chain reaction (PCR) is a highly sensitive method that can be used for the detection and quantification of microbial populations without cultivating them in anaerobic processes and environmental samples. This work was conducted to design primer and probe sets for the detection of methanogens using a real-time PCR with the TaqMan system. Six group-specific methanogenic primer and probe sets were designed. These sets separately detect four orders (Methanococcales, Methanobacteriales, Methanomicrobiales, and Methanosarcinales) along with two families (Methanosarcinaceae and Methanosaetaceae) of the order Methanosarcinales. We also designed the universal primer and probe sets that specifically detect the 16S rDNA of prokaryotes and of the domain Bacteria and Archaea, and which are fully compatible with the TaqMan real-time PCR system. Target-group specificity of each primer and probe set was empirically verified by testing DNA isolated from 28 archaeal cultures and by analyzing potential false results. In general, each primer and probe set was very specific to the target group. The primer and probe sets designed in this study can be used to detect and quantify the order-level (family-level in the case of Methanosarcinales) methanogenic groups in anaerobic biological processes and various environments.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
964 |
4
|
Abstract
DNA secondary structure plays an important role in biology, genotyping diagnostics, a variety of molecular biology techniques, in vitro-selected DNA catalysts, nanotechnology, and DNA-based computing. Accurate prediction of DNA secondary structure and hybridization using dynamic programming algorithms requires a database of thermodynamic parameters for several motifs including Watson-Crick base pairs, internal mismatches, terminal mismatches, terminal dangling ends, hairpins, bulges, internal loops, and multibranched loops. To make the database useful for predictions under a variety of salt conditions, empirical equations for monovalent and magnesium dependence of thermodynamics have been developed. Bimolecular hybridization is often inhibited by competing unimolecular folding of a target or probe DNA. Powerful numerical methods have been developed to solve multistate-coupled equilibria in bimolecular and higher-order complexes. This review presents the current parameter set available for making accurate DNA structure predictions and also points to future directions for improvement.
Collapse
|
|
21 |
896 |
5
|
Sato K, Hosokawa K, Maeda M. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J Am Chem Soc 2003; 125:8102-3. [PMID: 12837070 DOI: 10.1021/ja034876s] [Citation(s) in RCA: 557] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To date, aggregation of DNA-functionalized gold nanoparticles by hybridization of target DNA in a cross-linking configuration has been intensively studied. Here, we report that aggregation in a non-cross-linking configuration is also possible and is even better from the viewpoint of genetic analysis because of its speed and sensitivity. In this system, 15 nm diameter gold nanoparticles functionalized with (alkanethiol)-15mer DNA are hybridized to target 15mer DNA at room temperature. At high NaCl concentration (>/=0.5 M), hybridization with complementary target DNA induces nanoparticle aggregation based on the salting-out effect. The aggregation can be detected by a colorimetric change of the colloidal solution within 3 min. Furthermore, unusual sensitivity of this system for single-base mismatch at the terminus opposite to the anchored side has been discovered. In fact, target DNA with such a kind of mismatch does not induce the colorimetric change at all, while target DNA with single-base mismatch at the middle of it cannot be discriminated from the fully complementary target. This non-cross-linking aggregation system opens up a new possibility of rapid and reliable genetic analysis.
Collapse
|
|
22 |
557 |
6
|
Wang K, Tang Z, Yang CJ, Kim Y, Fang X, Li W, Wu Y, Medley CD, Cao Z, Li J, Colon P, Lin H, Tan W. Molecular engineering of DNA: molecular beacons. Angew Chem Int Ed Engl 2009; 48:856-70. [PMID: 19065690 PMCID: PMC2772660 DOI: 10.1002/anie.200800370] [Citation(s) in RCA: 513] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecular beacons (MBs) are specifically designed DNA hairpin structures that are widely used as fluorescent probes. Applications of MBs range from genetic screening, biosensor development, biochip construction, and the detection of single-nucleotide polymorphisms to mRNA monitoring in living cells. The inherent signal-transduction mechanism of MBs enables the analysis of target oligonucleotides without the separation of unbound probes. The MB stem-loop structure holds the fluorescence-donor and fluorescence-acceptor moieties in close proximity to one another, which results in resonant energy transfer. A spontaneous conformation change occurs upon hybridization to separate the two moieties and restore the fluorescence of the donor. Recent research has focused on the improvement of probe composition, intracellular gene quantitation, protein-DNA interaction studies, and protein recognition.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
513 |
7
|
Bonnet G, Tyagi S, Libchaber A, Kramer FR. Thermodynamic basis of the enhanced specificity of structured DNA probes. Proc Natl Acad Sci U S A 1999; 96:6171-6. [PMID: 10339560 PMCID: PMC26854 DOI: 10.1073/pnas.96.11.6171] [Citation(s) in RCA: 490] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/1998] [Accepted: 04/08/1999] [Indexed: 11/18/2022] Open
Abstract
Molecular beacons are DNA probes that form a stem-and-loop structure and possess an internally quenched fluorophore. When they bind to complementary nucleic acids, they undergo a conformational transition that switches on their fluorescence. These probes recognize their targets with higher specificity than probes that cannot form a hairpin stem, and they easily discriminate targets that differ from one another by only a single nucleotide. Our results show that molecular beacons can exist in three different states: bound to a target, free in the form of a hairpin structure, and free in the form of a random coil. Thermodynamic analysis of the transitions between these states reveals that enhanced specificity is a general feature of conformationally constrained probes.
Collapse
|
research-article |
26 |
490 |
8
|
Pei H, Lu N, Wen Y, Song S, Liu Y, Yan H, Fan C. A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:4754-8. [PMID: 20839255 PMCID: PMC3071359 DOI: 10.1002/adma.201002767] [Citation(s) in RCA: 433] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
|
Research Support, N.I.H., Extramural |
15 |
433 |
9
|
|
Review |
24 |
400 |
10
|
Abstract
This opinion covers the field of molecular beacons (MBs), in which nucleic acids are molecularly engineered to have unique functions for the investigation of biomolecules. Molecular beacons have been used in a variety of formats, and this review discusses four: first, in vitro RNA and DNA monitoring; second, biosensors and biochips based on MBs; third, real-time monitoring of genes and gene expression in living systems; and finally, the next generation of molecular beacons that will be highly useful for studies with proteins, molecular beacon aptamers. These unique applications have shown that MBs holds great potential in genomics and proteomics where real-time molecular recognition with high sensitivity and excellent specificity is critical.
Collapse
|
Review |
20 |
391 |
11
|
Lubin AA, Plaxco KW. Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures. Acc Chem Res 2010; 43:496-505. [PMID: 20201486 PMCID: PMC2948786 DOI: 10.1021/ar900165x] [Citation(s) in RCA: 388] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomolecular recognition is versatile, specific, and high affinity, qualities that have motivated decades of research aimed at adapting biomolecules into a general platform for molecular sensing. Despite significant effort, however, so-called "biosensors" have almost entirely failed to achieve their potential as reagentless, real-time analytical devices; the only quantitative, reagentless biosensor to achieve commercial success so far is the home glucose monitor, employed by millions of diabetics. The fundamental stumbling block that has precluded more widespread success of biosensors is the failure of most biomolecules to produce an easily measured signal upon target binding. Antibodies, for example, do not change their shape or dynamics when they bind their recognition partners, nor do they emit light or electrons upon binding. It has thus proven difficult to transduce biomolecular binding events into a measurable output signal, particularly one that is not readily spoofed by the binding of any of the many potentially interfering species in typical biological samples. Analytical approaches based on biomolecular recognition are therefore mostly cumbersome, multistep processes relying on analyte separation and isolation (such as Western blots, ELISA, and other immunochemical methods); these techniques have proven enormously useful, but are limited almost exclusively to laboratory settings. In this Account, we describe how we have refined a potentially general solution to the problem of signal detection in biosensors, one that is based on the binding-induced "folding" of electrode-bound DNA probes. That is, we have developed a broad new class of biosensors that employ electrochemistry to monitor binding-induced changes in the rigidity of a redox-tagged probe DNA that has been site-specifically attached to an interrogating electrode. These folding-based sensors, which have been generalized to a wide range of specific protein, nucleic acid, and small-molecule targets, are rapid (responding in seconds to minutes), sensitive (detecting sub-picomolar to micromolar concentrations), and reagentless. They are also greater than 99% reusable, are supported on micrometer-scale electrodes, and are readily fabricated into densely packed sensor arrays. Finally, and critically, their signaling is linked to a binding-specific change in the physics of the probe DNA, and not simply to adsorption of the target onto the sensor head. Accordingly, they are selective enough to be employed directly in blood, crude soil extracts, cell lysates, and other grossly contaminated clinical and environmental samples. Indeed, we have recently demonstrated the ability to quantitatively monitor a specific small molecule in real-time directly in microliters of flowing, unmodified blood serum. Because of their sensitivity, substantial background suppression, and operational convenience, these folding-based biosensors appear potentially well suited for electronic, on-chip applications in pathogen detection, proteomics, metabolomics, and drug discovery.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
388 |
12
|
Zhao X, Tapec-Dytioco R, Tan W. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J Am Chem Soc 2003; 125:11474-5. [PMID: 13129331 DOI: 10.1021/ja0358854] [Citation(s) in RCA: 354] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sensitive DNA detection is extremely important in clinical diagnostics, gene therapy, and a variety of biomedical studies. We have developed a novel DNA bioanalysis method with a 0.8 fM (0.8 x 10-15 M) detection limit using a bioconjugated fluorescent nanoparticle-based sandwich assay. An organic dye silica nanoparticle is synthesized using a modified reverse microemulsion. The nanoparticles are highly fluorescent, extremely photostable, and easy for bioconjugation for bioanalysis. They exhibit an excellent signaling ability in the presence of trace amounts of DNA targets. With an effective surface modification, nonspecific binding and nanoparticle aggregation are minimized. In addition, the nanoparticle-based DNA bioanalysis assay can effectively discriminate one-base mismatched DNA sequences. We expect this nanoparticle-based assay to be widely useful in a number of biomedical applications where reproducible, selective, and ultrasensitive gene analysis is critical.
Collapse
|
|
22 |
354 |
13
|
Storhoff JJ, Lucas AD, Garimella V, Bao YP, Müller UR. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat Biotechnol 2004; 22:883-7. [PMID: 15170215 PMCID: PMC1201475 DOI: 10.1038/nbt977] [Citation(s) in RCA: 345] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 03/04/2004] [Indexed: 11/09/2022]
Abstract
Nucleic acid diagnostics is dominated by fluorescence-based assays that use complex and expensive enzyme-based target or signal-amplification procedures. Many clinical diagnostic applications will require simpler, inexpensive assays that can be done in a screening mode. We have developed a 'spot-and-read' colorimetric detection method for identifying nucleic acid sequences based on the distance-dependent optical properties of gold nanoparticles. In this assay, nucleic acid targets are recognized by DNA-modified gold probes, which undergo a color change that is visually detectable when the solutions are spotted onto an illuminated glass waveguide. This scatter-based method enables detection of zeptomole quantities of nucleic acid targets without target or signal amplification when coupled to an improved hybridization method that facilitates probe-target binding in a homogeneous format. In comparison to a previously reported absorbance-based method, this method increases detection sensitivity by over four orders of magnitude. We have applied this method to the rapid detection of mecA in methicillin-resistant Staphylococcus aureus genomic DNA samples.
Collapse
|
research-article |
21 |
345 |
14
|
Zhang J, Song S, Zhang L, Wang L, Wu H, Pan D, Fan C. Sequence-Specific Detection of Femtomolar DNA via a Chronocoulometric DNA Sensor (CDS): Effects of Nanoparticle-Mediated Amplification and Nanoscale Control of DNA Assembly at Electrodes. J Am Chem Soc 2006; 128:8575-80. [PMID: 16802824 DOI: 10.1021/ja061521a] [Citation(s) in RCA: 342] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We herein report a novel nanoparticle-based electrochemical DNA detection approach. This DNA sensor is based on a "sandwich" detection strategy, which involves capture probe DNA immobilized on gold electrodes and reporter probe DNA labeled with gold nanoparticles that flank the target DNA sequence. Electrochemical signals are generated by chronocoulometric interrogation of [Ru(NH(3))(6)](3+) that quantitatively binds to surface-confined capture probe DNA via electrostatic interactions. We demonstrated that the incorporation of a gold nanoparticle in this sensor design significantly enhanced the sensitivity and the selectivity. Nanoscale control of the self-assembly process of DNA probes at gold electrodes further increased the sensor performance. As a result of these two combined effects, this DNA sensor could detect as low as femtomolar (zeptomoles) DNA targets and exhibited excellent selectivity against even a single-base mismatch. In addition, this novel DNA sensor showed fairly good reproducibility, stability, and reusability.
Collapse
|
|
19 |
342 |
15
|
Li Y, Cu YTH, Luo D. Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat Biotechnol 2005; 23:885-9. [PMID: 15951805 PMCID: PMC7097058 DOI: 10.1038/nbt1106] [Citation(s) in RCA: 330] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Accepted: 05/05/2005] [Indexed: 02/05/2023]
Abstract
Rapid, multiplexed, sensitive and specific molecular detection is of great demand in gene profiling, drug screening, clinical diagnostics and environmental analysis1,2,3. One of the major challenges in multiplexed analysis is to identify each specific reaction with a distinct label or 'code'4. Two encoding strategies are currently used: positional encoding, in which every potential reaction is preassigned a particular position on a solid-phase support such as a DNA microarray5,6,7,8, and reaction encoding, where every possible reaction is uniquely tagged with a code that is most often optical or particle based4,9,10,11,12,13. The micrometer size, polydispersity, complex fabrication process and nonbiocompatibility of current codes limit their usability1,4,12. Here we demonstrate the synthesis of dendrimer-like DNA-based, fluorescence-intensity-coded nanobarcodes, which contain a built-in code and a probe for molecular recognition. Their application to multiplexed detection of the DNA of several pathogens is first shown using fluorescence microscopy and dot blotting, and further demonstrated using flow cytometry that resulted in detection that was sensitive (attomole) and rapid.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
330 |
16
|
Hashimoto K, Ito K, Ishimori Y. Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye. Anal Chem 1994; 66:3830-3. [PMID: 7528479 DOI: 10.1021/ac00093a045] [Citation(s) in RCA: 327] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A synthesized 20-mer DNA probe complementary to a part of an oncogene v-myc region having a mercaptohexyl group at the 5'-phosphate end was immobilized on a gold electrode by chemisorption. The immobilized DNA was detected voltammetrically using Hoechst 33258 with a DNA minor groove binder and an electrochemically active dye. The modified electrode was immersed into a 100 mumol/L Hoechst 33258 solution and washed with a phosphate buffer (pH 7.0). The anodic peak current (ipa) of Hoechst 33258 on the modified electrode was higher than that on a bare gold electrode (128 and 75 nA, respectively). It was considered that Hoechst 33258 was concentrated on the electrode surface due to its association with DNA. When the modified electrode was hybridized in a solution of a model targeted gene (10(-7) g/mL), single-stranded pVM623 containing the PstI fragment of a 1.5-kilobase pair of oncogene v-myc, the ipa was 192 nA. On the other hand, the ipa was 128 nA when the modified electrode was reacted in a solution of single-stranded pUC119 without a region complementary to v-myc in pVM623. The ipa was related to the concentration of the targeted DNA in the hybridization reaction. The use of Hoechst 33258 resulted in a sequence-specific detection of the targeted DNA quantitatively ranging from 10(-7) to 10(-13) g/mL in a buffer solution.
Collapse
|
|
31 |
327 |
17
|
Arya M, Shergill IS, Williamson M, Gommersall L, Arya N, Patel HRH. Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn 2005; 5:209-219. [PMID: 15833050 DOI: 10.1586/14737159.5.2.209] [Citation(s) in RCA: 325] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Real-time quantitative PCR allows the sensitive, specific and reproducible quantitation of nucleic acids. Since its introduction, real-time quantitative PCR has revolutionized the field of molecular diagnostics and the technique is being used in a rapidly expanding number of applications. This exciting technology has enabled the shift of molecular diagnostics toward a high-throughput, automated technology with lower turnaround times. This article reviews the basic principles of real-time PCR and describes the various chemistries available: the double-stranded DNA-intercalating agent SYBR Green 1, hydrolysis probes, dual hybridization probes, molecular beacons and scorpion probes. Quantitation methods are discussed in addition to the competing instruments available on the market. Examples of applications of this important and versatile technique are provided throughout the review.
Collapse
|
Review |
20 |
325 |
18
|
Gaylord BS, Heeger AJ, Bazan GC. DNA hybridization detection with water-soluble conjugated polymers and chromophore-labeled single-stranded DNA. J Am Chem Soc 2003; 125:896-900. [PMID: 12537486 DOI: 10.1021/ja027152+] [Citation(s) in RCA: 323] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A sensor is provided that detects single-stranded deoxyribonucleic acid (ssDNA) with a specific base sequence. The ssDNA sequence sensor comprises an aqueous solution containing a cationic water-soluble conjugated polymer [in this case, poly(9,9-bis(6'-N,N,N-trimethylammonium)-hexyl)-fluorene phenylene), 1] with a ssDNA labeled with a dye (in this case, fluorescein). The emission of light from the sensor solution with the wavelength characteristic of the probe oligonucleotide indicates the presence of ssDNA with a specific base sequence complementary to that of the probe ssDNA-fluorescein. Maximum energy transfer from 1 to the signaling chromophore occurs when the ratio of polymer chains to DNA strands is approximately 1:1. Energy transfer from 1 results in a fluorescein emission that is more intense than that observed by direct excitation of the chromophore. Furthermore, the decrease in energy transfer upon addition of electrolyte indicates that electrostatic forces dominate the interactions between 1 and DNA.
Collapse
|
|
22 |
323 |
19
|
Palczewski K, Subbaraya I, Gorczyca WA, Helekar BS, Ruiz CC, Ohguro H, Huang J, Zhao X, Crabb JW, Johnson RS. Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein. Neuron 1994; 13:395-404. [PMID: 7520254 DOI: 10.1016/0896-6273(94)90355-7] [Citation(s) in RCA: 291] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Guanylyl cyclase-activating protein (GCAP) is thought to mediate Ca(2+)-sensitive regulation of guanylyl cyclase (GC), a key event in recovery of the dark state of rod photoreceptors following light exposure. Here, we characterize GCAP from several vertebrate species by molecular cloning and provide evidence that GCAP contains a heterogeneously acylated N-terminal region that interacts with GC. Vertebrate GCAPs consist of 201-205 amino acids, and sequence analysis indicates the presence fo three EF hand Ca(2+)-binding motifs. These results establish that GCAP is a novel photoreceptor-specific member of a large family of Ca(2+)-binding proteins and suggest that it participates in the Ca(2+)-binding proteins and suggest that it participates in the Ca(2+)-sensitive activation of GC.
Collapse
|
Comparative Study |
31 |
291 |
20
|
Abstract
Nucleic acid hybridization with a labeled probe is the only practical way to detect a complementary target sequence in a complex nucleic acid mixture. The first section of this article covers quantitative aspects of nucleic acid hybridization thermodynamics and kinetics. The probes considered are oligonucleotides or polynucleotides, DNA or RNA, single- or double-stranded, and natural or modified, either in the nucleotide bases or in the backbone. The hybridization products are duplexes or triplexes formed with targets in solution or on solid supports. Additional topics include hybridization acceleration and reactions involving branch migration. The second section deals with synthesis or biosynthesis and detection of labeled probes, with a discussion of their sensitivity and specificity limits. Direct labeling is illustrated with radioactive probes. The discussion of indirect labels begins with biotinylated probes as prototypes. Reporter groups considered include radioactive, fluorescent, and chemiluminescent nucleotides, as well as enzymes with colorimetric, fluorescent, and luminescent substrates.
Collapse
|
Review |
34 |
274 |
21
|
Bommarito S, Peyret N, SantaLucia J. Thermodynamic parameters for DNA sequences with dangling ends. Nucleic Acids Res 2000; 28:1929-34. [PMID: 10756193 PMCID: PMC103285 DOI: 10.1093/nar/28.9.1929] [Citation(s) in RCA: 267] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The thermodynamic contributions to duplex formation of all 32 possible single-nucleotide dangling ends on a Watson-Crick pair are reported. In most instances, dangling ends are stabilizing with free energy contributions ranging from +0.48 (GT(A)) to-0.96 kcal/mol (). In comparison, Watson-Crick nearest-neighbor increments range from -0. 58 (TA/AT) to -2.24 (GC/CG) kcal/mol. Hence, in some cases, a dangling end contributes as much to duplex stability as a Watson-Crick A-T base pair. The implications of these results for DNA probe design are discussed. Analysis of the sequence dependence of dangling-end stabilities show that the nature of the closing base pair largely determines the stabilization. For a given closing base pair, however, adenine dangling ends are always more or equally as stable as the other dangling nucleotides. Moreover, 5' dangling ends are more or equally as stabilizing as their 3' counterparts. Comparison of DNA with RNA dangling-end motifs shows that DNA motifs with 5' dangling ends contribute to stability equally or more than their RNA counterparts. Conversely, RNA 3' dangling ends contribute to stability equally or more than their DNA counterparts. This data set has been incorporated into a DNA secondary structure prediction algorithm (DNA MFOLD) (http://mfold2.wustl.edu/mfold/dna/for m1.cgi) as well as a DNA hybridization prediction algorithm (HYTHERtrade mark) (http://jsl1.chem.wayne.edu/Hyther/hythermenu .html).
Collapse
|
research-article |
25 |
267 |
22
|
Endo T, Kerman K, Nagatani N, Takamura Y, Tamiya E. Label-Free Detection of Peptide Nucleic Acid−DNA Hybridization Using Localized Surface Plasmon Resonance Based Optical Biosensor. Anal Chem 2005; 77:6976-84. [PMID: 16255598 DOI: 10.1021/ac0513459] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of label-free optical biosensors for DNA and other biomolecules has the potential to impact life sciences as well as screening in medical and environmental applications. In this report, we developed a localized surface plasmon resonance (LSPR) based label-free optical biosensor based on a gold-capped nanoparticle layer substrate immobilized with peptide nucleic acids (PNAs). PNA probe was designed to recognize the target DNA related to tumor necrosis factor. The nanoparticle layer was formed on a gold-deposited glass substrate by the surface modified silica nanoparticles using silane-coupling reagent. The optical properties of gold-capped nanoparticle layer substrate were characterized through monitoring the changes in the absorbance strength, as the thickness of the biomolecular layer increased with hybridization. The detection of PNA-DNA hybridization with target oligonucleotides and PCR-amplified real samples were performed with a limit of detection value of 0.677 pM target DNA. Selective discrimination against a single-base mismatch was also achieved. Our LSPR-based biosensor with the gold-capped nanoparticle layer substrate is applicable to the design of biosensors for monitoring of the interaction of other biomolecules, such as proteins, whole cells, or receptors with a massively parallel detection capability in a highly miniaturized package.
Collapse
|
|
20 |
265 |
23
|
Thelwell N, Millington S, Solinas A, Booth J, Brown T. Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Res 2000; 28:3752-61. [PMID: 11000267 PMCID: PMC110766 DOI: 10.1093/nar/28.19.3752] [Citation(s) in RCA: 252] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Scorpion primers can be used to detect PCR products in homogeneous solution. Their structure promotes a unimolecular probing mechanism. We compare their performance with that of the same probe sequence forced to act in a bimolecular manner. The data suggest that Scorpions indeed probe by a unimolecular mechanism which is faster and more efficient than the bimolecular mechanism. This mechanism is not dependent on enzymatic cleavage of the probe. A direct comparison between Scorpions, TaqMan and Molecular Beacons on a Roche LightCycler indicates that Scorpions perform better, particularly under fast cycling conditions. Development of a cystic fibrosis mutation detection assay shows that Scorpion primers are selective enough to detect single base mutations and give good sensitivity in all cases. Simultaneous detection of both normal and mutant alleles in a single reaction is possible by combining two Scorpions in a multiplex reaction. Such favourable properties of Scorpion primers should make the technology ideal in numerous applications.
Collapse
|
research-article |
25 |
252 |
24
|
Conlon P, Yang CJ, Wu Y, Chen Y, Martinez K, Kim Y, Stevens N, Marti AA, Jockusch S, Turro NJ, Tan W. Pyrene excimer signaling molecular beacons for probing nucleic acids. J Am Chem Soc 2008; 130:336-42. [PMID: 18078339 PMCID: PMC2531189 DOI: 10.1021/ja076411y] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular beacon DNA probes, containing 1-4 pyrene monomers on the 5' end and the quencher DABCYL on the 3' end, were engineered and employed for real-time probing of DNA sequences. In the absence of a target sequence, the multiple-pyrene labeled molecular beacons (MBs) assumed a stem-closed conformation resulting in quenching of the pyrene excimer fluorescence. In the presence of target, the beacons switched to a stem-open conformation, which separated the pyrene label from the quencher molecule and generated an excimer emission signal proportional to the target concentration. Steady-state fluorescence assays resulted in a subnanomolar limit of detection in buffer, whereas time-resolved signaling enabled low-nanomolar target detection in cell-growth media. It was found that the excimer emission intensity could be scaled by increasing the number of pyrene monomers conjugated to the 5' terminal. Each additional pyrene monomer resulted in substantial increases in the excimer emission intensities, quantum yields, and excited-state lifetimes of the hybridized MBs. The long fluorescence lifetime ( approximately 40 ns), large Stokes shift (130 nm), and tunable intensity of the excimer make this multiple-pyrene moiety a useful alternative to traditional fluorophore labeling in nucleic acid probes.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
252 |
25
|
Gao Y, Wolf LK, Georgiadis RM. Secondary structure effects on DNA hybridization kinetics: a solution versus surface comparison. Nucleic Acids Res 2006; 34:3370-7. [PMID: 16822858 PMCID: PMC1488884 DOI: 10.1093/nar/gkl422] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The hybridization kinetics for a series of designed 25mer probe–target pairs having varying degrees of secondary structure have been measured by UV absorbance and surface plasmon resonance (SPR) spectroscopy in solution and on the surface, respectively. Kinetic rate constants derived from the resultant data decrease with increasing probe and target secondary structure similarly in both solution and surface environments. Specifically, addition of three intramolecular base pairs in the probe and target structure slow hybridization by a factor of two. For individual strands containing four or more intramolecular base pairs, hybridization cannot be described by a traditional two-state model in solution-phase nor on the surface. Surface hybridization rates are also 20- to 40-fold slower than solution-phase rates for identical sequences and conditions. These quantitative findings may have implications for the design of better biosensors, particularly those using probes with deliberate secondary structure.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
251 |