1
|
Zhou J, Qi Z, Yi L, Zhang Y, Yan Z, Zhang J, Ge F, Li Y, Liu J. Enzymatic synthesis of Vaccinium blue using vaccinoside as a bifunctional precursor. Food Chem 2024; 439:138049. [PMID: 38134568 DOI: 10.1016/j.foodchem.2023.138049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023]
Abstract
Since Tang dynasty in China, the fresh leaves of Vaccinium bracteatum (VBL) have been applied as natural pigment to produce black rice. However, detailed information on its biosynthetic mechanism still remained unclear. Following rice dyeing capacity assay, vaccinoside, one of iridoid glycosides, was identified as the key active compound. Increased methodical research demonstrated vaccinoside as a distinct bifunctional precursor, which could be catalyzed by polyphenol oxidase or β-glucosidase independently, followed by reaction with 15 amino acids to give blue pigments (VBPs; λmax 581-590 nm) of different hues. Two synthetic pathways of VBPs were proposed, using multiple techniques such as HPLC, HPSEC, UV-Vis spectrum and colorimeter as analysis tools. Black rice was interpreted to be prepared by cooking, using vaccinoside, intrinsic enzymes from fresh VBL and rice protein in combination. These findings promote the understanding of VBP formation mechanisms and provide an efficient method of producing novel Vaccinium blue pigments.
Collapse
|
2
|
Zhang B, Zhou N, Zhang Z, Wang R, Chen L, Zheng X, Feng W. Study on the Neuroprotective Effects of Eight Iridoid Components Using Cell Metabolomics. Molecules 2024; 29:1497. [PMID: 38611777 PMCID: PMC11013420 DOI: 10.3390/molecules29071497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/02/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Iridoid components have been reported to have significant neuroprotective effects. However, it is not yet clear whether the efficacy and mechanisms of iridoid components with similar structures are also similar. This study aimed to compare the neuroprotective effects and mechanisms of eight iridoid components (catalpol (CAT), genipin (GE), geniposide (GEN), geniposidic acid (GPA), aucubin (AU), ajugol (AJU), rehmannioside C (RC), and rehmannioside D (RD)) based on corticosterone (CORT)-induced injury in PC12 cells. PC12 cells were randomly divided into a normal control group (NC), model group (M), positive drug group (FLX), and eight iridoid administration groups. Firstly, PC12 cells were induced with CORT to simulate neuronal injury. Then, the MTT method and flow cytometry were applied to evaluate the protective effects of eight iridoid components on PC12 cell damage. Thirdly, a cell metabolomics study based on ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was performed to explore changes in relevant biomarkers and metabolic pathways following the intervention of administration. The MTT assay and flow cytometry analysis showed that the eight iridoid components can improve cell viability, inhibit cell apoptosis, reduce intracellular ROS levels, and elevate MMP levels. In the PCA score plots, the sample points of the treatment groups showed a trend towards approaching the NC group. Among them, AU, AJU, and RC had a weaker effect. There were 38 metabolites (19 metabolites each in positive and negative ion modes, respectively) identified as potential biomarkers during the experiment, among which 23 metabolites were common biomarkers of the eight iridoid groups. Pathway enrichment analysis revealed that the eight iridoid components regulated the metabolism mainly in relation to D-glutamine and D-glutamate metabolism, arginine biosynthesis, the TCA cycle, purine metabolism, and glutathione metabolism. In conclusion, the eight iridoid components could reverse an imbalanced metabolic state by regulating amino acid neurotransmitters, interfering with amino acid metabolism and energy metabolism, and harmonizing the level of oxidized substances to exhibit neuroprotective effects.
Collapse
|
3
|
Chen J, Tan X, Guo G, Wang P, Zhang H, Lv S, Xu H, Hou D. Cloning and Expression Analysis of Key Enzyme Gene CoGPPS Involved in Iridoid Glycoside Synthesis in Cornus officinalis. DNA Cell Biol 2024; 43:125-131. [PMID: 38350140 DOI: 10.1089/dna.2023.0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Cornus iridoid glycosides (CIGs), including loganin and morroniside, are the main active components of Cornus officinalis. As one of the key enzymes in the biosynthesis of CIGs, geranyl pyrophosphate synthase (GPPS) catalyzes the formation of geranyl pyrophosphate, which is the direct precursor of CIGs. In this study, the C. officinalis geranyl pyrophosphate synthase (CoGPPS) sequence was cloned from C. officinalis and analyzed. The cDNA sequence of the CoGPPS gene was 915 bp (GenBank No. OR725699). Phylogenetic analysis showed that CoGPPS was closely related to the GPPS sequence of Actinidia chinensis and Camellia sinensis, but relatively distantly related to Paeonia lactiflora and Tripterygium wilfordii. Results from the quantitative real-time PCR showed the spatiotemporal expression pattern of CoGPPS; that is, CoGPPS was specifically expressed in the fruits. Subcellular localization assay proved that CoGPPS was specifically found in chloroplasts. Loganin and morroniside contents in the tissues were detected by high-performance liquid chromatography, and both compounds were found to be at higher levels in the fruits than in leaves. Thus, this study laid the foundation for further studies on the synthetic pathway of CIGs.
Collapse
|
4
|
Wan S, Xie X, Yang G, Feng F. Discovery of the toxicity-related quality markers and mechanisms of Zhi-Zi-Hou-Po decoction based on Chinmedomics combined with differentially absorbed components and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117408. [PMID: 37972910 DOI: 10.1016/j.jep.2023.117408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhi-Zi-Hou-Po decoction (ZZHPD), as a representative traditional Chinese medicine (TCM) formula for the treatment of depression, has frequently triggered hepatorenal toxicity in recent years. However, its toxic effect, material basis, and underlying mechanisms have not been fully elucidated. AIM OF THE STUDY To explore the hepatorenal toxicity-material basis-quality markers (Q-markers) and multiple mechanisms of ZZHPD. MATERIALS AND METHODS ZZHPD-induced rat model of toxicity was evaluated by behavioral indicators, biochemical parameters, and histopathological sections. Then, UHPLC-Q-Exactive Orbitrap-MS combined with multivariate data analysis was utilized to identify the endogenous differential metabolites and the prototype components of ZZHPD in the plasma. A comprehensive strategy integrating in-house library, diagnostic ions, Compound Discover software, and network databases was constructed to identify the chemical constituents of ZZHPD. Additionally, the differentially absorbed components of ZZHPD were screened out based on the spectrum-effect relationship (toxic state and normal state), feature extraction of exogenous components, and variable influence on projection (VIP). Further, Chinmedomics and network pharmacology oriented by differentially absorbed components were performed to predict toxicity-related Q-markers and core targets, as well as relevant pathways. Finally, the binding ability between components and targets was predicted using molecular docking, and the mRNA expression of core target genes was determined by real-time qPCR experiment. RESULTS ZZHPD exerted significant hepatotoxicity and nephrotoxicity in rats accompanied by body weight loss, abnormal biochemical indicators, and pathologic characteristics with mild inflammation and cell damage. The results of plasma metabolomics indicated that 22 differential metabolites interfered by ZZHPD mainly involved in primary bile acid biosynthesis, arginine and proline metabolism, phenylalanine metabolism and biosynthesis, sphingolipid metabolism, pyrimidine and purine metabolism. Firstly, 106 chemical substances of ZZHPD were identified, 44 of them were absorbed into the blood, mainly including 7 iridoid glycosides, 15 flavonoids, 5 lignans, and others. Then, the correlation analysis results suggested that 12 of 19 differentially absorbed constituents were highly correlated with 22 differential metabolites and recognized as potential Q-markers. Finally, 9 toxicity-related Q-markers were predicted and confirmed with better binding ability to 5 core targets (PTGS2, CASP3, TNF, PPARG, HMOX1), including 3 flavonoids (naringin, hesperidin, and neohesperidin), 2 iridoid glycosides (geniposide and genipin-1-β-D-gentiobioside), 2 lignans (honokiol and magnolol), organic acid (chlorogenic acid), and crocin (crocetin). The real-time qPCR results showed that the mRNA levels of CASP3, TNF-α, and PPARG significantly increased in the damaged liver. Combining metabolomics and network pharmacology results, the multiple mechanisms of toxicity might involve in oxidative damage, inflammation, and apoptosis pathways. CONCLUSION Taken together, the toxicity-related Q-markers of ZZHPD screened for the first time in this work were reliable, and the holistic intervention for hepatorenal toxicity further revealed the multi-component, multi-target, and multi-pathway features in TCM. The integrated approach provides a novel perspective for the discovery of toxicity/efficacy-related substances and mechanistic studies in TCM.
Collapse
|
5
|
Jiang H, Wang W, Mao Y, Jiang L, Yu J, Zhu X, Fu H, Lin Z, Shen H, Pan X, Xue X. Morroniside-mediated mitigation of stem cell and endothelial cell dysfunction for the therapy of glucocorticoid-induced osteonecrosis of the femoral head. Int Immunopharmacol 2024; 127:111421. [PMID: 38157694 DOI: 10.1016/j.intimp.2023.111421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Prolonged use of glucocorticoids (GCs) potentially lead to a condition known as GCs-induced osteonecrosis of the femoral head (GIONFH). The primary mechanisms underlying this phenomenon lies in stem cells and endothelial cells dysfunctions. Morroniside, an iridoid glycoside sourced from Cornus officinalis, possesses numerous biological capabilities, including combating oxidative stress, preventing apoptosis, opposing ischemic effects, and promoting the regeneration of bone tissue. PURPOSE This study aimed to analyze the impact of Morroniside on Dexamethasone (DEX)-induced dysfunction in stem cells and endothelial cells, and its potential as a therapeutic agent for GIONFH in rat models. METHODS ROS assay, JC-1 assay, and TUNEL assay were used to detect oxidative stress and apoptosis levels in vitro. For the evaluation of the osteogenic capability of bone marrow-derived mesenchymal stem cells, we employed ALP and ARS staining. Additionally, the angiogenic ability of endothelial cells was assessed using tube formation assay and migration assay. Microcomputed tomography analysis, hematoxylin-eosin staining, and immunohistochemical staining were utilized to evaluate the in vivo therapeutic efficacy of Morroniside. RESULTS Morroniside mitigates DEX-induced excessive ROS expression and cell apoptosis, effectively reducing oxidative stress and alleviating cell death. In terms of osteogenesis, Morroniside reverses DEX-induced osteogenic impairment, as evidenced by enhanced ALP and ARS staining, as well as increased osteogenic protein expression. In angiogenesis, Morroniside counteracts DEX-induced vascular dysfunction, demonstrated by an increase in tube-like structures in tube formation assays, a rise in the number of migrating cells, and elevated levels of angiogenic proteins. In vivo, our results further indicate that Morroniside alleviates the progression of GIONFH. CONCLUSION The experimental findings suggest that Morroniside concurrently mitigates stem cell and endothelial cell dysfunction through the PI3K/AKT signaling pathway both in vitro and in vivo. These outcomes suggest that Morroniside serves as a potential therapeutic agent for GIONFH.
Collapse
|
6
|
Xu C, Tang Y, Yang H, Jiang S, Peng W, Xie R. Harpagide inhibits the TNF-α-induced inflammatory response in rat articular chondrocytes by the glycolytic pathways for alleviating osteoarthritis. Int Immunopharmacol 2024; 127:111406. [PMID: 38142643 DOI: 10.1016/j.intimp.2023.111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023]
Abstract
Osteoarthritis (OA) causes severe and functional dysfunction due to abnormal inflammation. The objective of this study was to evaluate the effect of Harpagide (HPG) on TNF-α-induced inflammation in vitro and in vivo. The effect of HPG on the proliferation of rat chondrocytes was studied. The anti-inflammatory effect of HPG and its molecular mechanisms were elucidated by qPCR, Western blotting, flow cytometry, metabolome analysis in vitro. In addition, the OA rat model was established, and the effect of HPG on OA was verified in vivo. We revealed 10 μM HPG demonstrated biocompatibility. The results demonstrated that HPG restored the upregulation of MMP-13, COX2, IL-1β and IL-6 induced by TNF-α. Moreover, HPG reversed TNF-α induced degradation of the extracellular matrix of chondrocytes. TNF-α treatment induced down-regulation of the mRNA/protein levels of proliferative markers Bcl2, CDK1 and Cyclin D1 were also recovered. HPG can inhibit TNF-α-induced inflammatory response through glycolytic metabolic pathways. HPG can restore TNF-α-induced upregulation of GRP78/IRE1α, and downregulation of AMPK proteins. In vivo experiments demonstrated that after HPG treatment, the appearance and physiological structure of articular cartilage were more integrated with highly organized chondrocytes and rich cartilage matrix compared with OA group. Finally, the molecular docking of HPG and selected key factors in glycolysis results showed that HPG had good binding potential with PFKM, PFKP, PFKFB3, PKM, HK2, and PFKL. In conclusion, the results shown HPG protects and activates chondrocytes, inhibits TNF-α-induced inflammatory response by glycolysis pathway in rat articular chondrocytes, and plays a role in the treatment of OA.
Collapse
|
7
|
Zhang W, Zhang P, Xu LH, Gao K, Zhang JL, Yao MN, Li RL, Guo C, Wang JW, Wu QX. Ethanol extract of Verbena officinalis alleviates MCAO-induced ischaemic stroke by inhibiting IL17A pathway-regulated neuroinflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155237. [PMID: 38056148 DOI: 10.1016/j.phymed.2023.155237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/28/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND The prevention and treatment of ischaemic stroke is a worldwide challenge, and effective clinical treatment strategies are lacking. Studies have demonstrated the efficacy of Verbena officinalis in managing cerebrovascular disorders. However, the neuroprotective bioactive components and mechanisms remain unclear. PURPOSE To investigate the pharmacological combinatorial components and mechanism underlying the anti-ischemic stroke effect of the ethanol extract of Verbena officinalis (VO Ex). STUDY DESIGN AND METHODS The components of VO Ex were identified by HPLC. A middle cerebral artery occlusion (MCAO) induced brain injury model was used to assess the therapeutic effect of VO Ex. The activity of the chemical components of VO Ex was evaluated using a primary astrocyte injury model induced by oxygen-glucose deprivation/reperfusion (OGD/R). RNA sequencing was used to reveal the potential targets of VO Ex against cerebral ischemia-reperfusion injury (CIRI), and the results were verified by qRT-PCR and western blotting. The key components and target binding ability were predicted by molecular docking. Finally, the mechanism of combinatorial components was verified by experiments. RESULTS The HPLC results indicated that the main ingredients of VO Ex were hastatoside, verbenalin, acteoside, luteolin, apigenin and hispidulin. In vivo experiments showed that VO Ex improved MCAO-induced acute cerebral ischemic injury. Transcriptomic data and biological experiments suggested that VO Ex exerted therapeutic effects through IL17A signalling pathways. The in vitro experiments indicated that verbenalin, acteoside, luteolin, apigenin and hispidulin exhibited neuroprotective activities. The novel formula of VALAH, derived from the aforementioned active ingredients, exhibited superior efficacy compared to each individual component. Molecular docking and mechanistic studies have confirmed that VALAH functions in the treatment of ischaemic stroke by suppressing the activation of the IL17A signalling pathway. CONCLUSION This work is the first to reveal that VO Ex effectively inhibits the IL17A signaling pathway and mitigates neuroinflammation following ischemic stroke. Moreover, we identified the novel formula VALAH as the bioactive combinatorial components for VO Ex. Further research suggests that the activity of VALAH is associated with IL17A-mediated regulation of neuroinflammation. This finding provides new insights into the efficacious components and mechanisms of traditional Chinese medicine.
Collapse
|
8
|
Zheleva-Dimitrova D, Voynikov Y, Gevrenova R, Balabanova V. A Comprehensive Phytochemical Analysis of Sideritis scardica Infusion Using Orbitrap UHPLC-HRMS. Molecules 2023; 29:204. [PMID: 38202787 PMCID: PMC10780595 DOI: 10.3390/molecules29010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Sideritis scardica Griseb, also known as "mountain tea" and "Olympus tea" (Lamiaceae family) is an endemic plant from the mountainous regions of the Balkan Peninsula. In this study, we focused on an in-depth phytochemical analysis of S. scardica infusion using ultra-high-performance liquid chromatography hyphenated with high-resolution mass spectrometry (UHPLC-HRMS). Quantitative determination of the main secondary metabolites was carried out by UHPLC-HRMS analyses using the external standard method. The results revealed more than 100 metabolites, including five sugar acids and saccharides, 21 carboxylic, hydroxybenzoic, hydroxycinnamic acids, and derivatives, 15 acylquinic acids, 10 phenylpropanoid glycosides, four iridoid glycosides, 28 flavonoids, seven fatty acids, and four organosulfur compounds. Furthermore, a dereplication and fragmentation patterns of five caffeic acids oligomers and four acylhexaric acids was performed for the first time in S. scardica. Regarding the quantitative analysis, the phenylethanoid verbascoside (53) (151.54 ± 10.86 mg/g lyophilized infusion, li), the glycosides of isoscutellarein (78) (151.70 ± 14.78 mg/g li), methylisoscutelarein (82) (107.4 ± 9.07 mg/g li), and hypolaetin (79) (78.33 ± 3.29 mg/g li), as well as caffeic acid (20) (87.25 ± 6.54 mg/g li), were found to be the major compounds in S. scardica infusion. The performed state-of-the-art phytochemical analysis of S. scardica provides additional knowledge for the chemical constituents and usage of this valuable medicinal plant.
Collapse
|
9
|
Xu L, Guo X, Xue S, Di R, Chen S. Analysis of Differences in the Chemical Composition of Glycosides and Sugars between Four Forms of Fresh Rehmanniae Radix. Molecules 2023; 28:7995. [PMID: 38138489 PMCID: PMC10746076 DOI: 10.3390/molecules28247995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Fresh Rehmanniae Radix, as well as its processed products, are widely used in the clinical practice of traditional Chinese medicine. It is mainly available in four forms: fresh Rehmanniae Radix, raw Rehmanniae Radix, prepared Rehmanniae Radix, and nine-steamed, nine-dried Rehmanniae Radix. Pharmacological studies have shown that all Rehmanniae Radix forms contain iridoid glycosides and sugar compounds with various effects, including hypoglycemic, anti-inflammatory, neuroprotective, immunological enhancement, and bone marrow hematopoiesis-promoting activities. Differences in the efficacy among these Rehmanniae Radix forms and their processed products have been attributed to variations in their chemical compositions, particularly in iridoid glycosides and sugar compounds; however, the specific compositional differences in glycosides and sugars among the four forms of Rehmanniae Radix have not been clarified. Therefore, this study aims to qualitatively characterize the iridoid glycosides and sugar compounds in fresh Rehmanniae Radix, raw Rehmanniae Radix, prepared Rehmanniae Radix, and nine-steamed, nine-dried Rehmanniae Radix.
Collapse
|
10
|
Zengin G, El-Raey M, El-Kashak W, Batiha GES, Althumairy D, Alamer S, Mostafa NM, Eldahshan OA. Sweroside: An iridoid glycoside of potential neuroprotective, antidiabetic, and antioxidant activities supported by molecular docking. Amino Acids 2023; 55:1765-1774. [PMID: 36939919 DOI: 10.1007/s00726-023-03262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/09/2023] [Indexed: 03/21/2023]
Abstract
Oxidative stress can be a series burden on human health and may lead to many chronic diseases such as diabetes and neurological disorders. The use of natural products to scavenge the reactive oxygen species has attracted the attention of many researchers, to safely manage these conditions with fewer side effects, in available and cost-effective ways. The current study aimed at the isolation and structure elucidation of sweroside from Schenkia spicata (Gentianaceae) and the evaluation of its antioxidant, antidiabetic, neuroprotective, and enzyme inhibitory potential via in vitro and in silico studies. The antioxidant potential was evaluated by a variety of assays as ABTS, CUPRAC and FRAP, showing values of 0.34 ± 0.08, 21.14 ± 0.43, and 12.32 ± 0.20 mg TE/g, respectively, while demonstrating 0.75 ± 0.03 mmol TE/g for phosphomolybdenum (PBD) assay. Acetylcholinestrase (AChE), butyrylcholinesterase (BChE) and tyrosinase inhibitory activities were used to evaluate the neuroprotective effect, while the antidiabetic potential was evaluated by measuring α-amylase and glucosidase inhibitory activities. Results revealed that sweroside showed antioxidant and inhibitory effects on the enzymes tested with the exception of AChE. It demonstrated good tyrosinase inhibitory ability with 55.06 ± 1.85 mg Kojic acid equivalent /g. Regarding the antidiabetic ability, the compound displayed both amylase and glucosidase (0.10 ± 0.01 and 1.54 ± 0.01 mmol Acarbose equivalent/g, respectively) inhibitory activities. Molecular docking studies of sweroside on the active sites of the aforementioned enzymes in addition to NADPH oxidase were performed using Discovery Studio 4.1 software. Results revealed good binding affinities of sweroside to these enzymes mainly through hydrogen bonds and van der Waals interactions. Sweroside can be an important antioxidant and enzyme inhibitory supplement, yet further in vivo and clinical studies are required.
Collapse
|
11
|
Jia J, Chen J, Wang G, Li M, Zheng Q, Li D. Progress of research into the pharmacological effect and clinical application of the traditional Chinese medicine Rehmanniae Radix. Biomed Pharmacother 2023; 168:115809. [PMID: 37907043 DOI: 10.1016/j.biopha.2023.115809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023] Open
Abstract
The traditional Chinese medicine (TCM) Rehmanniae Radix (RR) refers to the fresh or dried root tuber of the plant Rehmannia glutinosa Libosch of the family Scrophulariaceae. As a traditional Chinese herbal medicine (CHM), it possesses multiple effects, including analgesia, sedation, anti-inflammation, antioxidation, anti-tumor, immunomodulation, cardiovascular and cerebrovascular regulation, and nerve damage repair, and it has been widely used in clinical practice. In recent years, scientists have extensively studied the active components and pharmacological effects of RR. Active ingredients mainly include iridoid glycosides (such as catalpol and aucuboside), phenylpropanoid glycosides (such as acteoside), other saccharides, and unsaturated fatty acids. In addition, the Chinese patent medicine (CPM) and Chinese decoction related to RR have also become major research subjects for TCM practitioners; one example is the Bolus of Six Drugs, which includes Rehmannia, Lily Bulb and Rehmannia Decoction, and Siwu Decoction. This article reviews recent literature on RR; summarizes the studies on its chemical constituents, pharmacological effects, and clinical applications; and analyzes the progress and limitations of current investigations to provide reference for further exploration and development of RR.
Collapse
|
12
|
Wu J, Ye ZJ, Yu LJ, Chen XQ. Two new iridoid glycosides from Hedyotis diffusa. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:27-35. [PMID: 35503565 DOI: 10.1080/10286020.2022.2047946] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Two new iridoid glycosides, named productasperulosidic acid butyl ester (1) and E-6-O-3-hydroxy-p-methoxycinnamoyl scandoside methyl ester (2), along with nine known ones (3-11), were isolated from Hedyotis diffusa Willd. The structures of them were elucidated by extensive 1D, 2D NMR and HR-ESI-MS spectral data. Compounds 1-11 showed no significant cytotoxic activity against HeLa cells.
Collapse
|
13
|
Cheng KI, Chang YC, Chu LW, Hsieh SL, An LM, Dai ZK, Wu BN. The Iridoid Glycoside Loganin Modulates Autophagic Flux Following Chronic Constriction Injury-Induced Neuropathic Pain. Int J Mol Sci 2022; 23:ijms232415873. [PMID: 36555516 PMCID: PMC9786894 DOI: 10.3390/ijms232415873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Autophagy facilitates the degradation of organelles and cytoplasmic proteins in a lysosome-dependent manner. It also plays a crucial role in cell damage. Whether loganin affects autophagy in chronic constriction injury (CCI)-induced neuropathic pain remains unclear. We investigated the neuroprotective effect of loganin on the autophagic-lysosomal pathway in the rat CCI model. Sprague-Dawley rats were divided into sham, CCI, sham + loganin, and CCI + loganin. Loganin (5 mg/kg/day) was intraperitoneally injected once daily, and rats were sacrificed on day 7 after CCI. This study focused on the mechanism by which loganin modulates autophagic flux after CCI. CCI enhanced the autophagic marker LC3B-II in the ipsilateral spinal cord. The ubiquitin-binding protein p62 binds to LC3B-II and integrates into autophagosomes, which are degraded by autophagy. CCI caused the accumulation of p62, indicating the interruption of autophagosome turnover. Loganin significantly attenuated the expression of Beclin-1, LC3B-II, and p62. Double immunofluorescence staining was used to confirm that LC3B-II and p62 were reduced by loganin in the spinal microglia and astrocytes. Loganin also lessened the CCI-increased colocalization of both proteins. Enhanced lysosome-associated membrane protein 2 (LAMP2) and pro-cathepsin D (pro-CTSD) in CCI rats were also attenuated by loganin, suggesting that loganin improves impaired lysosomal function and autophagic flux. Loganin also attenuated the CCI-increased apoptosis protein Bax and cleaved caspase-3. Loganin prevents CCI-induced neuropathic pain, which could be attributed to the regulation of neuroinflammation, neuronal autophagy, and associated cell death. These data suggest autophagy could be a potential target for preventing neuropathic pain.
Collapse
|
14
|
Yi L, Zhou Y, Song J, Tang W, Yu H, Huang X, Shi H, Chen M, Sun J, Wei Y, Dong J. A novel iridoid glycoside leonuride (ajugol) attenuates airway inflammation and remodeling through inhibiting type-2 high cytokine/chemokine activity in OVA-induced asthmatic mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154345. [PMID: 35905568 DOI: 10.1016/j.phymed.2022.154345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Asthma is a chronic airway disorder with a hallmark feature of airflow obstruction that associated with the remodeling and inflammation in the airway wall. Effective therapy for controlling both remodeling and inflammation is still urgently needed. Leonuride is the main pharmacological component identified from Bu-Shen-Yi-Qi-Tang (BSYQT) which has been traditionally used in treatment of lung diseases. However, no pharmacological effects of leonuride in asthma were reported. PURPOSE Here we aimed to investigated whether leonuride provided a therapeutic efficacy in reversing asthma airway remodeling and inflammation and uncover the underlying mechanisms. STUDY DESIGN AND METHODS Mouse models of chronic asthma were developed with ovalbumin (OVA) exposure for 8 weeks. Respiratory mechanics, lung histopathology and asthma-related cytokines were examined. Lung tissues were analyzed using RNA sequencing to reveal the transcriptional profiling changes. RESULTS After oral administration with leonuride (15 mg/kg or 30 mg/kg), mice exhibited a lower airway hyperresponsiveness in comparison to asthmatic mice. Leonuride suppressed airway inflammation evidenced by the significant reductions in accumulation of inflammatory cells around bronchi and vessels, leukocyte population counts and the abundance of type 2 inflammatory mediators (OVA specific IgE, IL-4, IL-5 and IL-13) in bronchoalveolar lavage fluid (BALF). On the other hand, leonuride slowed down the process of active remodeling as demonstrated by weaker goblet cell metaplasia and subepithelial fibrosis in lung histopathology and lower transforming growth factor (TGF)-β1 levels in serum and BALF in comparison to mice treated with OVA only. Furthermore, we uncovered transcriptional profiling alternations in lung tissue of mice after OVA exposure and leonuride treatment. Gene sets belonging to type-2 cytokine/chemokine activity stood out in leonuride target transcripts. Those upregulated (Bmp10, Ccl12, Ccl22, Ccl8, Ccl9, Cxcl15, Il13, Il33, Tnfrsf9, Il31ra, Il5ra, Il13ra2 and Ccl24) or downregulated (Acvr1c and Il18) genes in asthmatic mice, were all reversely regulated by leonuride treatment. CONCLUSIONS Our results revealed the therapeutic efficacy of leonuride in experimental chronic asthma for the first time, and implied that its anti-inflammatory and antifibrotic properties might be mediated by regulation of type-2 high cytokine/chemokines responses.
Collapse
|
15
|
Gxaba N, Manganyi MC. The Fight against Infection and Pain: Devil’s Claw (Harpagophytum procumbens) a Rich Source of Anti-Inflammatory Activity: 2011–2022. Molecules 2022; 27:molecules27113637. [PMID: 35684573 PMCID: PMC9182060 DOI: 10.3390/molecules27113637] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022] Open
Abstract
Harpagophytum procumbens subsp. procumbens (Burch.) DC. ex Meisn. (Sesame seed Family—Pedaliaceae) is a popular medicinal plant known as Devil’s claw. It is predominantly distributed widely over southern Africa. Its impressive reputation is embedded in its traditional uses as an indigenous herbal plant for the treatment of menstrual problems, bitter tonic, inflammation febrifuge, syphilis or even loss of appetite. A number of bioactive compounds such as terpenoids, iridoid glycosides, glycosides, and acetylated phenolic compounds have been isolated. Harpagoside and harpagide, iridoid glycosides bioactive compounds have been reported in countless phytochemical studies as potential anti-inflammatory agents as well as pain relievers. In-depth studies have associated chronic inflammation with various diseases, such as Alzheimer’s disease, obesity, rheumatoid arthritis, type 2 diabetes, cancer, and cardiovascular and pulmonary diseases. In addition, 60% of chronic disorder fatalities are due to chronic inflammatory diseases worldwide. Inflammation and pain-related disorders have attracted significant attention as leading causes of global health challenges. Articles published from 2011 to the present were obtained and reviewed in-depth to determine valuable data findings as well as knowledge gaps. Various globally recognized scientific search engines/databases including Scopus, PubMed, Google Scholar, Web of Science, and ScienceDirect were utilized to collect information and deliver evidence. Based on the literature results, there was a dramatic decrease in the number of studies conducted on the anti-inflammatory and analgesic activity of Devil’s claw, thereby presenting a potential research gap. It is also evident that currently in vivo clinical studies are needed to validate the prior massive in vitro studies, therefore delivering an ideal anti-inflammatory and analgesic agent in the form of H. procumbens products.
Collapse
|
16
|
Xu C, Ye P, Wu Q, Liang S, Wei W, Yang J, Chen W, Zhan R, Ma D. Identification and functional characterization of three iridoid synthases in Gardenia jasminoides. PLANTA 2022; 255:58. [PMID: 35118554 DOI: 10.1007/s00425-022-03824-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The discovery of three iridoid synthases (GjISY, GjISY2 and GjISY4) from Gardenia jasminoides and their functional characterization increase the understanding of iridoid scaffold/iridoid glycoside biosynthesis in iridoid-producing plants. Iridoids are a class of noncanonical monoterpenes that are found naturally in the plant kingdom mostly as glycosides. Over 40 iridoid glycosides (e.g., geniposide, gardenoside and shanzhiside) have been isolated from Gardenia jasminoides. They have multiple pharmacological properties and health-promoting effects. However, their biosynthetic pathway is poorly understood, and the iridoid synthase (ISY) responsible for the cyclization of the core scaffold remains unclear. In this study, three homologs of ISYs from G. jasminoides (GjISY, GjISY2 and GjISY4) were identified on the basis of transcriptomic data and functionally characterized. The genomic structure and intron-exon arrangement revealed that all three ISYs contained an intron. Biochemical assays indicated that all three recombinant enzymes reduced 8-oxogeranial to nepetalactol and its open forms (iridodials) as the products of the classical CrISY (Catharanthus roseus). In addition, all three enzymes reduced progesterone to 5-β-prognane-3,20-dione. However, only GjISY2 and GjISY4 reduced 2-cyclohexen-1-one to cyclohexanone. Overall, the GjISY2 expression levels in the flowers and fruits were similar to the GjISY and GjISY4 expression levels. By contrast, the GjISY2 expression levels in the upper and lower leaves were substantially higher than the GjISY and GjISY4 expression levels. Among the three, GjISY2 exhibited the highest catalytic efficiency for 8-oxogeranial. GjISY2 might be the major contributor to iridoid biosynthesis in G. jasminoides. Collectively, our results advance the understanding of iridoid scaffold/iridoid glycoside biosynthesis in G. jasminoides and provide a potential target for metabolic engineering and breeding.
Collapse
|
17
|
Wang WX, Luo SY, Wang Y, Xiang L, Liu XH, Tang C, Zhang Y. Pterocephanoside A, a new iridoid from a traditional Tibetan medicine, Pterocephalus hookeri. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:1189-1196. [PMID: 33327766 DOI: 10.1080/10286020.2020.1860951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
This work obtained and identified pterocephanoside A (1), one new iridoid glucoside derivative with rare structure of three iridoid glycosides linked to cyclopenta[c]pyran-3(1H)-one, and 10 known iridoids (2-11) from Pterocephalus hookeri through silica gel column chromatography and semi-preparative HPLC. The structure of the new compound was confirmed by 1D and 2D NMR and HRMS data analysis. Compounds 1 and 2 were isolated from this plant for the first time. The iridoids mostly possessed seco-iridoid subtype and iridoid subtype skeletons from P. hookeri. Compounds 1, 3, 4, and 6-11 showed weak anti-inflammatory activity.
Collapse
|
18
|
Lu Y, Hao R, Hu Y, Wei Y, Xie Y, Shen Y, Rui Q, Yu G. Harpagide alleviate neuronal apoptosis and blood-brain barrier leakage by inhibiting TLR4/MyD88/NF-κB signaling pathway in Angiotensin II-induced microglial activation in vitro. Chem Biol Interact 2021; 348:109653. [PMID: 34516974 DOI: 10.1016/j.cbi.2021.109653] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Angiotensin II, the effector peptide of the renin-angiotensin system, is not only a pivotal peptide implicated in the regulation of blood pressure but also a key mediator of the inflammatory processes that play an important role in the pathology of hypertension-related cSVD. Harpagide is the major bioactive constituent of Scrophulariae Radix widely used in traditional Chinese medicine for numerous diseases including hypertension. The present study aimed to investigate the effect of harpagide on Ang II-induced neuroinflammation and the potential mechanism. Pretreated with harpagide or resatorvid (the TLR4 pathway inhibitor), BV2 cells were treated with Ang II or LPS (the TLR4 activator). NO, pro-inflammatory cytokines, the proteins on TLR4/MyD88/NF-κB signaling pathway and the expression of CD86, CD206, TREM2 in BV2 cells were detected respectively. Subsequently, the effects of harpagide on neurotoxicity and BBB destruction triggered by Ang II-induced neuroinflammation were investigated in the co-cultures of BV2 microglia/HT22 hippocampal neurons, BV2 microglia/bEnd.3 endotheliocyte and BV2 microglia/BBB monolayer model. We found that Ang II converted microglia into M1 state and resulted in neuroinflammation through activating TLR4/MyD88/NF-κB signaling pathway. It also triggered the imbalance of TLR4/TREM2 in microglia. Ang II-mediated inflammation microglia further led to neuronal apoptosis and BBB damage. Harpagide showed the effect of alleviating Ang II-mediated neuroinflammation as well as the resulting neurotoxicity and BBB destruction through inhibiting the TLR4/MyD88/NF-κB pathway. The anti-inflammatory and neuroprotective effect of harpagide suggested that it might be a potential therapeutic strategy in hypertensive cSVD.
Collapse
|
19
|
Hou JC, Xu XN. Kutkoside-an iridoid glycoside, exerts anti-proliferative effects in drug-resistant human oral carcinoma cells by targeting PI3K/AKT signalling pathway, inducing apoptosis and suppressing cell migration and invasion. JOURNAL OF B.U.ON. : OFFICIAL JOURNAL OF THE BALKAN UNION OF ONCOLOGY 2021; 26:1179. [PMID: 34268996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Editors of JBUON issue an Expression of Concern to ' Kutkoside-an iridoid glycoside, exerts anti-proliferative effects in drug-resistant human oral carcinoma cells by targeting PI3K/AKT signalling pathway, inducing apoptosis and suppressing cell migration and invasion', by Jun-Chi Hou, Xiao-Nan Xu, JBUON 2020;25(1):338-343; PMID: 32277652. Following the publication of the above article, readers drew to our attention that part of the data was possibly unreliable. We sent emails to the authors with a request to provide the raw data to prove the originality, but received no reply. Therefore, as we continue to work through the issues raised, we advise readers to interpret the information presented in the article with due caution. We thank the readers for bringing this matter to our attention. We apologize for any inconvenience it may cause.
Collapse
|
20
|
Park JH, Whang WK. Bioassay-Guided Isolation of Anti-Alzheimer Active Components from the Aerial Parts of Hedyotis diffusa and Simultaneous Analysis for Marker Compounds. Molecules 2020; 25:E5867. [PMID: 33322478 PMCID: PMC7764330 DOI: 10.3390/molecules25245867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 11/26/2022] Open
Abstract
Previous studies have reported that Hedyotis diffusa Willdenow extract shows various biological activities on cerebropathia, such as neuroprotection and short-term memory enhancement. However, there has been a lack of studies on the inhibitory activity on neurodegenerative diseases such as Alzheimer's disease (AD) through enzyme assays of H. diffusa. Therefore, H. diffusa extract and fractions were evaluated for their inhibitory effects through assays of enzymes related to AD, including acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and β-site amyloid precursor protein cleaving enzyme 1 (BACE1), and on the formation of advanced glycation end-product (AGE). In this study, ten bioactive compounds, including nine iridoid glycosides 1-9 and one flavonol glycoside 10, were isolated from the ethyl acetate and n-butanol fractions of H. diffusa using a bioassay-guided approach. Compound 10 was the strongest inhibitor of cholinesterase, BACE1, and the formation of AGEs of all isolated compounds, while compound 5 had the lowest inhibitory activity. Compounds 3, 6, and 9 exhibited better inhibitory activity than other compounds on AChE, and two pairs of diastereomeric iridoid glycoside structures (compounds 4, 8, and 6, 7) showed higher inhibitory activity than others on BChE. In the BACE1 inhibitory assay, compounds 1-3 were good inhibitors, and compound 10 showed higher inhibitory activity than quercetin, the positive control. Moreover, compounds 1 and 3 were stronger inhibitors of the formation of AGE than aminoguanidine (AMG), the positive control. In conclusion, this study is significant since it demonstrated that the potential inhibitory activity of H. diffusa on enzymes related to AD and showed the potential use for further study as a natural medicine for AD treatment on the basis of the bioactive components isolated from H. diffusa.
Collapse
|
21
|
Wang X, Wu C, Xu M, Cheng C, Liu Y, Di X. Optimisation for simultaneous determination of iridoid glycosides and oligosaccharides in Radix Rehmannia by microwave assisted extraction and HILIC-UHPLC-TQ-MS/MS. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:340-348. [PMID: 31899590 DOI: 10.1002/pca.2900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/02/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
UNLABELLED Hydrophilic iridoid glycosides and oligosaccharides are the major active ingredients of Radix Rehmanniae. Analysis of oligosaccharides is a challenging task because they are highly hydrophilic, with similar chemical structures and absence of chromophore and fluorophore groups. The difficulty for simultaneous analysis of iridoid glycosides and oligosaccharides in Radix Rehmanniae is increased due to the polarity difference between the two types of ingredients. OBJECTIVE To develop a method for simultaneous determination of iridoid glycosides (ajugol, catalpol) and oligosaccharides (sucrose, melibiose, raffinose, mannotriose and stachyose) in Radix Rehmanniae. METHODOLOGY Microwave-assisted extraction (MAE) was established to extract target analytes from Radix Rehmanniae samples using methanol-water (60:40, v/v) as the extraction solvent. Fast separation of seven analytes was achieved by hydrophilic interaction liquid chromatography (HILIC) using an Accucore-150-Amide-HILIC column. Sensitive and selective detection of the analytes was performed by triple quadrupole tandem mass spectrometry (TQ-MS/MS) using multiple reaction monitoring in positive electrospray ionisation mode. RESULTS Good linearities were achieved for all the analytes with the correlation coefficients above 0.9991. The precisions resulted in deviations of less than 5.0% and the recoveries ranged from 93.8% to 105.5%. The established method was successfully applied to the analysis of iridoid glycosides and oligosaccharides in 12 samples of crude and processed Radix Rehmanniae. CONCLUSION A simple, rapid and sensitive method based on MAE combined with HILIC-UHPLC-TQ-MS/MS was developed for simultaneous determination of iridoid glycosides and oligosaccharides in Radix Rehmanniae for the first time. The method exhibited excellent performance with simple sample preparation, short analysis time, high selectivity and sensitivity.
Collapse
|
22
|
Fu HZ, Ma YY, Ma SC, Zhou ZQ, Luo YH. Two new iridoid glycosides from Callicarpa nudiflora. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:264-270. [PMID: 30590951 DOI: 10.1080/10286020.2018.1557636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
Two new iridoid glycosides, callicoside E (1) and callicoside F (2), were isolated from the leaves of Callicarpa nudiflora. Their structures were established by one- and two-dimensional NMR spectroscopy and mass spectrometry. In an in vitro bioassay, compounds 1 and 2 showed an pronounced hepatoprotective activity against d-galactosamine-induced toxicity in WB-F344 rat hepatic epithelial stem-like cells.[Formula: see text].
Collapse
|
23
|
Schmeda-Hirschmann G, Burgos-Edwards A, Jiménez-Aspee F, Mieres-Castro D, Theoduloz C, Pormetter L, Fogel R, Céspedes C, Soria N, Valdez S. Iridoids and Amino Acid Derivatives from the Paraguayan Crude Drug Adenocalymma marginatum (ysypó hû). Molecules 2020; 25:E180. [PMID: 31906356 PMCID: PMC6983124 DOI: 10.3390/molecules25010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 11/16/2022] Open
Abstract
The crude drug ysypó hû (Adenocalymma marginatum DC., Bignoniaceae) is used traditionally by the Guarani of Eastern Paraguayan as a male sexual enhancer. The aim of the present study was to identify the main constituents of the crude drug and to evaluate the in vitro inhibitory activity towards the enzyme phosphodiesterase-5 (PDE-5). The main compounds were isolated by counter-current chromatography (CCC). The metabolites were identified by spectroscopic and spectrometric means. The chemical profiling of the extracts was assessed by high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS/MS). The crude extract and main isolated compounds were tested for their PDE-5 inhibitory activity using commercial kits. The iridoid theviridoside and 4-hydroxy-1-methylproline were isolated as the main constituent of the crude drug. Four chlortheviridoside hexoside derivatives were detected for the first time as natural products. Chemical profiling by HPLC-MS/MS led to the tentative identification of nine iridoids, six phenolics, and five amino acids. The crude extracts and main compounds were inactive towards PDE-5 at concentrations up to 500 µg/mL. Iridoids and amino acid derivatives were the main compounds occurring in the Paraguayan crude drug. The potential of ysypó hû as a male sexual enhancer cannot be discarded, since other mechanisms may be involved.
Collapse
|
24
|
Ji X, Liu XQ, Xiao SP, Yang LX, Feng WH, Li C, Wang ZM. [Qualitative and quantitative analysis on non-triterpenoids in Ligustri Lucidi Fructus]. ZHONGGUO ZHONG YAO ZA ZHI = ZHONGGUO ZHONGYAO ZAZHI = CHINA JOURNAL OF CHINESE MATERIA MEDICA 2019; 44:1615-1622. [PMID: 31090326 DOI: 10.19540/j.cnki.cjcmm.20190118.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In order to improve the quality control level of Ligustri Lucidi Fructus(LLF) and to explore the changes of chemical components after processing,the HPLC method for fingerprint and simultaneous determination of the major polar components in LLF were established. The octadecylsilane bonded silica gel was used as the stationary phase,with acetonitrile as the mobile phase A and0. 2% formic acid as the mobile phase B in a gradient elution procedure at a flow rate of 1. 0 m L·min-1. The detection wavelength was set at 280 nm and the column temperature was 25 ℃. There were 22 common peaks,20 of which were selected from the fingerprint of LLF and its wine-steamed product,respectively,and 14 chromatographic peaks were identified with reference substances. With the same chromatographic conditions,seven components were quantitatively analyzed and the results of system adaptability and methodology investigation all met the requirements of content determination. Compared with the crude LLF,the content of 5-hydroxymethyl furfural and salidroside significantly increased in wine-steamed LLF,while the contents of iridoid glycosides generally decreased. The method provided a basis for quality control of LLF and its processed products as well as the related preparations.
Collapse
|
25
|
Zhu F, Heinen R, van der Sluijs M, Raaijmakers C, Biere A, Bezemer TM. Species-specific plant-soil feedbacks alter herbivore-induced gene expression and defense chemistry in Plantago lanceolata. Oecologia 2018; 188:801-811. [PMID: 30109421 PMCID: PMC6208702 DOI: 10.1007/s00442-018-4245-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/18/2018] [Indexed: 12/24/2022]
Abstract
Plants actively interact with antagonists and beneficial organisms occurring in the above- and belowground domains of terrestrial ecosystems. In the past decade, studies have focused on the role of plant-soil feedbacks (PSF) in a broad range of ecological processes. However, PSF and its legacy effects on plant defense traits, such as induction of defense-related genes and production of defensive secondary metabolites, have not received much attention. Here, we study soil legacy effects created by twelve common grassland plant species on the induction of four defense-related genes, involved in jasmonic acid signaling, related to chewing herbivore defense (LOX2, PPO7), and in salicylic acid signaling, related to pathogen defense (PR1 and PR2) in Plantago lanceolata in response to aboveground herbivory by Mamestra brassicae. We also assessed soil legacy and herbivory effects on the production of terpenoid defense compounds (the iridoid glycosides aucubin and catalpol) in P. lanceolata. Our results show that both soil legacy and herbivory influence phenotypes of P. lanceolata in terms of induction of Pl PPO7 and Pl LOX2, whereas the expression of Pl PR1 and Pl PR2-1 is not affected by soil legacies, nor by herbivory. We also find species-specific soil legacy effects on the production of aucubin. Moreover, P. lanceolata accumulates more catalpol when they are grown in soils conditioned by grass species. Our study highlights that PSF can influence aboveground plant-insect interactions through the impacts on plant defense traits and suggests that aboveground plant defense responses can be determined, at least partly, by plant-specific legacy effects induced by belowground organisms.
Collapse
|