251
|
Converti A, Lodi A, Solisio C, Soletto D, Del Borghi M, Carvalho JCM. Spirulina platensisBIOMASS AS ADSORBENT FOR COPPER REMOVAL BIOMASA DESpirulina platensisCOMO ADSORBENTE PARA LA ELIMINACIÓN DE COBRE. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/11358120609487675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
|
19 |
2 |
252
|
Lyra ES, Moreira KA, Porto TS, Carneiro da Cunha MN, Paz Júnior FB, Neto BB, Lima-Filho JL, Cavalcanti MAQ, Converti A, Porto ALP. Decolorization of synthetic dyes by basidiomycetes isolated from woods of the Atlantic Forest (PE), Brazil. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0034-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
|
16 |
2 |
253
|
Pequeno ACL, Arruda AA, Silva DF, Duarte Neto JMW, Silveira Filho VM, Converti A, Marques DAV, Porto ALF, Lima CA. Production and characterization of collagenase from a new Amazonian Bacillus cereus strain. Prep Biochem Biotechnol 2019; 49:501-509. [PMID: 30945982 DOI: 10.1080/10826068.2019.1587627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A new collagenase producing a strain of Bacillus cereus, isolated from the pollen of a bee of Amazon Region (Brazil), had its enzyme characterized and the production medium composition and culture conditions enhanced. A two-level design on three factors, namely initial medium pH, the substrate (gelatin) concentration and agitation intensity, allowed identifying the first two variables as the most significant ones, while a central composite design (CCD) was subsequently used to identify their optimal levels. Statistics highlighted maximized collagenolytic activity when substrate concentration and initial medium pH were selected at their highest levels (positive effects), whereas agitation intensity at the lowest (negative effect). Triplicate runs performed under predicted optimal conditions (pH 7.8 and 1.7% gelatin concentration) yielded a collagenolytic activity (305.39 ± 5.15 U) 4.6- to 15-fold those obtained with the preliminary design. The enzyme displayed optimum activity at 45 °C and pH 7.2, was stable over wide ranges of pH values and temperatures (7.2-11.0 and 25-50 °C, respectively) and was strongly inhibited by 10 mM phenylmethylsulphonyl fluoride. The zymogram showed two prominent bands at 50 and 76 kDa. These results are a first attempt to elucidate the features of this new collagenase, its production conditions, and possible scale-up.
Collapse
|
|
6 |
2 |
254
|
Silva AG, de Moraes D, Al Arni S, Solisio C, Converti A, Oliveira RPS, Vianna AS. Large‐Eddy Simulation of Oil‐Water Annular Flow in Eccentric Vertical Pipes. Chem Eng Technol 2020. [DOI: 10.1002/ceat.202000361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
5 |
1 |
255
|
de Oliveira RL, Bernardino MIDS, Silva TBS, Converti A, Porto CS, Porto TS. Extraction and purification of Aspergillus tamarii β-fructofuranosidase with transfructosylating activity using aqueous biphasic systems (PEG/phosphate) and magnetic field. Prep Biochem Biotechnol 2021; 52:478-486. [PMID: 34428129 DOI: 10.1080/10826068.2021.1964085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
β-fructofuranosidases (FFases) are enzymes involved in sucrose hydrolysis and fructo-oligosaccharides' production which are of great interest for the food industry. FFase from Aspergillus tamarii URM4634 was extracted using PEG/Phosphate Aqueous Biphasic Systems (ABS), and the impact of magnetic field on the extraction behavior was evaluated. A 24-full experimental design was employed to study the influence of molar mass of PEG, concentrations of PEG and phosphate and pH on the selected response variables, i.e., partition coefficient (K), purification factor (PF), activity yield (Y) and selectivity (S). The influence of magnetic field during partition and NaCl concentration on the same responses was also studied. The best results of FFase extraction without magnetic field (K = 0.50, PF = 4.05, Y = 72.66% and S = 0.06) were observed at pH 8.0 using 12.5% (w/w) PEG 400 and 25% (w/w) NaH2PO4/K2HPO4. Application of the magnetic field allowed improving the performance, with the best results being obtained at the longest distance between magnets (lowest magnetic field) and absence of NaCl (K = 0.93, PF = 4.22, Y = 83.79% and S = 0.09). The outcomes obtained demonstrate that ABS combination with low intensity magnetic field can be used as an efficient FFase pre-purification method.
Collapse
|
|
4 |
1 |
256
|
Oliveira RPDS, Casazza A, Aliakbarian B, Perego P, Oliveira MND, Converti A. Co-metabolism in skimmed milk of Streptococcus thermophilus in co-cultures with Lactobacillus bulgaricus or Lactobacillus acidophilus. J Biotechnol 2010. [DOI: 10.1016/j.jbiotec.2010.09.357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
|
15 |
1 |
257
|
Conceição Apolinário A, Silva Vieira AD, Marta Isay Saad S, Converti A, Pessoa A, da Silva JA. Aqueous extracts of Agave sisalana boles have prebiotic potential. Nat Prod Res 2018; 34:2367-2371. [PMID: 30499338 DOI: 10.1080/14786419.2018.1536129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This work aimed at evaluating the prebiotic potential of the aqueous extract and crude polysaccharides from Agave sisalana boles by an in vitro screening. Crude polysaccharides were obtained from the aqueous bole extract by precipitation with acetone and resuspension in water. The liquid extract and the polysaccharide solution were then spray dried and submitted to thermal analysis and quantification of metabolites. Prebiotic activity was checked on probiotic strains belonging to the Lactobacillus genus using inulin, fructo-oligosaccharides, fructose and glucose as positive controls. The powder of A. sisalana bole extract, which has recently been identified as a rich source of inulin, exhibited higher potential of fermentation compared with crude polysaccharides.
Collapse
|
|
7 |
1 |
258
|
Lopes AM, Dahms HU, Converti A, Mariottini GL. Role of model organisms and nanocompounds in human health risk assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:285. [PMID: 33876320 DOI: 10.1007/s10661-021-09066-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Safeguarding the environment is one of the most serious modern challenges, as increasing amounts of chemical compounds are produced and released into the environment, causing a serious threat to the future health of the Earth as well as organisms and humans on a global scale. Ecotoxicology is an integrative science involving different physical, chemical, biological, and social aspects concerned with the study of toxic effects caused by natural or synthetic pollutants on any constituents of ecosystems, including animals (including humans), plants, or microorganisms, in an integral context. In recent decades, this science has undergone considerable development by addressing environmental risk assessments through the biomonitoring of indicator species using biomarkers, model organisms, and nanocompounds in toxicological assays. Since a single taxon cannot be representative of complex ecotoxicological effects and mechanisms of action of a chemical, the use of test batteries is widely accepted in ecotoxicology. Test batteries include properly chosen organisms that are easy to breed, adapt easily to laboratory conditions, and are representative of the environmental compartment under consideration. One of the main issues of toxicological and ecotoxicological research is to gain a deeper understanding of how data should be obtained through laboratory and field approaches using experimental models and how they could be extrapolated to humans. There is a tendency to replace animal tests with in vitro systems and to perform them according to standardized analytical methods and the rules of the so-called good laboratory practice (GLP). This paper aims to review this topic to stimulate both efforts to understand the toxicological and ecotoxicological properties of natural and synthetic chemicals and the possible use of such data for application to humans.
Collapse
|
Review |
4 |
1 |
259
|
Beruto DT, Botter R, Converti A. Effect of vacuum and of strong adsorbed water films on micropore formation in aluminum hydroxide xerogel powders. J Colloid Interface Sci 2009; 330:97-104. [DOI: 10.1016/j.jcis.2008.10.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/07/2008] [Accepted: 10/10/2008] [Indexed: 11/26/2022]
|
|
16 |
1 |
260
|
Converti A. Solids and COD Balances to Describe Fed-Batch Codigestion of Sludge and Completely Prehydrolyzed Lignocellulosics. Chem Eng Technol 1998. [DOI: 10.1002/(sici)1521-4125(199811)21:11<895::aid-ceat895>3.0.co;2-f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
|
27 |
1 |
261
|
de Souza MMB, Santos AMP, Converti A, Maciel MIS. Optimisation of umbu juice spray drying, and physicochemical, microbiological and sensory evaluation of atomised powder. J Microencapsul 2020; 37:230-241. [PMID: 31996059 DOI: 10.1080/02652048.2020.1720031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Aim: Optimum conditions of umbu juice spray drying were selected using inlet air temperature (T), feed flow rate (F) and 10-DE maltodextrin concentration (CMD) as independent variables, and water activity, moisture content, hygroscopicity and phenolic compounds retention as responses.Methods: Powders water activity was determined with a water activity metre, moisture content and hygroscopicity gravimetrically, total phenolics spectrophotometrically, apparent and absolute density, porosity and solubility by standard methods, particle size by laser diffraction, and morphology by Scanning Electron Microscopy. Nectars sensory analysis was based on acceptance, purchase intention and multiple comparison preference tests. Powder stability was checked at 25 °C varying water activity and storage time in the ranges 0.1-0.3 and 30-90 days, respectively.Results: Powders prepared at T = 110 °C, F = 0.84 L/h, CMD=10% and T = 140 °C, F = 0.60 L/h, CMD=10% gave the best microparticles and sensory results. The former showed properties suitable for industrial production.Conclusion: These findings may promote umbu powder industrial exploitation.
Collapse
|
Video-Audio Media |
5 |
1 |
262
|
Mendonça da Silva Amorim P, Busko Di Vitta P, Converti A, Pinheiro de Souza Oliveira R. Acetonitrile Recovery by Distillation Techniques Combined with Salting‐Out or Sugaring‐Out in Tandem. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
4 |
1 |
263
|
Oliveira VDS, Silva CC, de Freitas Oliveira JW, da Silva MDS, Ferreira PG, da Siva FDC, Ferreira VF, Barbosa EG, Barbosa CG, Moraes CB, Freitas-Junior LHGD, Converti A, Lima ÁAND. The evaluation of in vitro antichagasic and anti-SARS-CoV-2 potential of inclusion complexes of β- and methyl-β-cyclodextrin with naphthoquinone. J Drug Deliv Sci Technol 2023; 81:104229. [PMID: 36776572 PMCID: PMC9905044 DOI: 10.1016/j.jddst.2023.104229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
The compound 3a,10b-dihydro-1H-cyclopenta[b]naphtho[2,3-d]furan-5,10-dione (IVS320) is a naphthoquinone with antifungal and antichagasic potential, which however has low aqueous solubility. To increase bioavailability, inclusion complexes with β-cyclodextrin (βCD) and methyl-β-cyclodextrin (MβCD) were prepared by physical mixture (PM), kneading (KN) and rotary evaporation (RE), and their in vitro anti-SARS-CoV-2 and antichagasic potential was assessed. The formation of inclusion complexes led to a change in the physicochemical characteristics compared to IVS320 alone as well as a decrease in crystallinity degree that reached 74.44% for the IVS320-MβCD one prepared by RE. The IVS320 and IVS320-MβCD/RE system exhibited anti-SARS-CoV-2 activity, showing half maximal effective concentrations (EC50) of 0.47 and 1.22 μg/mL, respectively. Molecular docking simulation suggested IVS320 ability to interact with the SARS-CoV-2 viral protein. Finally, the highest antichagasic activity, expressed as percentage of Tripanosoma cruzi growth inhibition, was observed with IVS320-βCD/KN (70%) and IVS320-MβCD/PM (72%), while IVS320 alone exhibited only approximately 48% inhibition at the highest concentration (100 μg/mL).
Collapse
|
research-article |
2 |
1 |
264
|
Rodrigues MS, Ferreira-Camargo LS, Converti A, Sato S, Carvalho JCM. Ammonium Feeding and pH InfluencingArthrospira platensisGrowth, Composition, and C- and N-Uptake. Chem Eng Technol 2016. [DOI: 10.1002/ceat.201500518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
9 |
1 |
265
|
Diaz Arias CA, Molino JVD, de Araújo Viana Marques D, Queiroz Maranhão A, Abdalla Saes Parra D, Pessoa Junior A, Converti A. Influence of carbon source on cell size and production of anti LDL (-) single-chain variable fragment by a recombinant Pichia pastoris strain. Mol Biol Rep 2019; 46:3257-3264. [PMID: 31073913 DOI: 10.1007/s11033-019-04785-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/22/2019] [Indexed: 10/26/2022]
Abstract
The aim of this work was to study the effect of the carbon source (glycerol, sucrose, glucose or a sucrose/glucose mixture) on the production of the anti LDL (-) single-chain variable fragment (scFv) by the recombinant Pichia pastoris SMD 1168 strain as well as on the cell size. The use of glucose as a carbon source in the growth phase led to a remarkable increase in cell size compared with glycerol, while the smallest cells were obtained with sucrose likely due to the occurrence of an energetic stress. The scFv concentration seemed to be related to cell number rather than to cell concentration, which in its turn showed no significant dependence on the carbon source. Yeast cells grown on sucrose had a mean diameter (0.736 ± 0.097 μm) about 35% shorter than those grown on glucose and allowed for the highest final concentration of the scFv antibody fragment (93.7 ± 0.2 mg/L). These results demonstrate that sucrose is the best carbon source for the expression of such an antibody fragment by the recombinant P. pastoris strain, which may be very useful for the diagnostic analysis of the so-called "bad cholesterol".
Collapse
|
|
6 |
1 |
266
|
Buzzo CMVDC, Converti A, da Silva JA, Apolinário AC. Quality by design enabled the development of stable and effective oil-in-water emulsions at compounding pharmacy: the case of a sunscreen formulation. Pharm Dev Technol 2021; 26:1090-1101. [PMID: 34617471 DOI: 10.1080/10837450.2021.1990946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
It is widely accepted that the use of topical sunscreens has medical importance with potential to prevent skin damage by protecting from solar ultraviolet radiation (UVR) effects. Pharmaceutical emulsions require an optimal qualitative and quantitative combination of emollients, emulsifiers and others compounds such as softening agents and, for sunscreens, a combination of chemical and physical UV filters. Herein, we applied the quality by design (QbD) concept to achieve stable and effective compounded sunscreen emulsions. By using the statistical tool of design of experiments, it was possible to identify the influence of emulsifier type (with low and high Hydrophile-Lipophile Balance) and concentrations of emollient and softening agent on the achievement of formulations with suitable organoleptic and physicochemical features. Compounded emulsions with pleasant macroscopic aspects were obtained. Three formulations with physicochemical properties in targeted ranges were selected, namely pH ∼6.0, conductivity > 0.0 µS/cm2, spreadability factor ∼1-1.5 g/mm2, viscosity ∼12000 mPa.s and sunscreen protection factor ∼30. Freeze-thaw cycle and accelerated stability study under different storage conditions allowed selecting a stable emulsion that ensured photoprotection in biological assays. The QbD approach was essential to select the best, low-cost compounded sunscreen emulsion, with targeted physicochemical parameters.
Collapse
|
|
4 |
0 |
267
|
Paulo AJ, Wanderley MCDA, de Oliveira RJV, Vieira WADS, Alves LC, Viana Marques DDA, Converti A, Porto ALF. Production and partial purification by PEG/citrate ATPS of a β-galactosidase from the new promising isolate Cladosporium tenuissimum URM 7803. Prep Biochem Biotechnol 2020; 51:289-299. [PMID: 32907464 DOI: 10.1080/10826068.2020.1815054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
β-Galactosidase production, partial purification and characterization by a new fungal were investigated. Partial purification was performed by aqueous two-phase system (ATPS) using polyethylene glycol (PEG) molar mass, PEG concentration, citrate concentration and pH as the independent variables. Purification factor (PF), partition coefficient (K) and yield (Y) were the responses. After identification by rDNA sequencing and classification as Cladosporium tenuissimum URM 7803, this isolate achieved a maximum cell concentration and β-galactosidase activity of 0.48 g/L and 462.1 U/mL, respectively. β-Galactosidase partitioned preferentially for bottom salt-rich phase likely due to hydrophobicity and volume exclusion effect caused in the top phase by the high PEG concentration and molar mass. The highest value of PF (12.94) was obtained using 24% (w/w) PEG 8000 g/mol and 15% (w/w) citrate, while that of Y (79.76%) using 20% (w/w) PEG 400 g/mol and 25% (w/w) citrate, both at pH 6. The enzyme exhibited optimum temperature in crude and ATPS extracts in the ranges 35-50 °C and 40-55 °C, respectively, and optimum pH in the range 3.0-4.5, with a fall of enzyme activity under alkaline conditions. Some metal ions and detergents inhibited, while others stimulated enzyme activity. Finally, C. tenuissimum URM 7803 β-galactosidase showed a profile suitable for prebiotics production.
Collapse
|
Journal Article |
5 |
0 |
268
|
de Oliveira TF, Kuniyoshi TM, Frota EG, Bermúdez-Puga S, Sakaue LN, Cassiano LL, Tachibana L, Piccoli RAM, Converti A, Oliveira RPDS. Anti-Listerial Activity of Bacteriocin-like Inhibitory Substance Produced by Enterococcus lactis LBM BT2 Using Alternative Medium with Sugarcane Molasses. Antibiotics (Basel) 2024; 13:210. [PMID: 38534645 PMCID: PMC10967575 DOI: 10.3390/antibiotics13030210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that contaminates food-processing environments and persists within biofilms on equipment, thus reaching final products by cross-contamination. With the growing demand for clean-label products, the search for natural antimicrobials as biopreservants, such as bacteriocins, has shown promising potential. In this context, this study aimed to evaluate the anti-listerial action of bacteriocins produced by Enterococcus lactis LBM BT2 in an alternative medium containing sugarcane molasses (SCM). Molecular analyses were carried out to characterize the strain, including the presence of bacteriocin-related genes. In the kinetic study on SCM medium E. lactis, LBM BT2 showed biomass and bacteriocin productions similar to those observed on a sucrose-based medium (control), highlighting the potential of the sugarcane molasses as a low-cost substrate. Stability tests revealed that the molecule remained active in wide ranges of pH (4-10) and temperature (60-100 °C). Furthermore, the proteolytic treatment reduced the biomolecule's antimicrobial activity, highlighting its proteinaceous nature. After primary purification by salting out and tangential flow filtration, the bacteriocin-like inhibitory substance (BLIS) showed bacteriostatic activity on suspended L. monocytogenes cells and against biofilm formation at a concentration of 0.625 mg/mL. These results demonstrate the potential of the produced BLIS as a biopreservative in the food industry.
Collapse
|
research-article |
1 |
|
269
|
Remígio MSDN, Greco T, Silva Júnior JOC, Converti A, Ribeiro-Costa RM, Rossi A, Barbosa WLR. Spray-Drying Microencapsulation of Bauhinia ungulata L. var. obtusifolia Aqueous Extract Containing Phenolic Compounds: A Comparative Study Using Different Wall Materials. Pharmaceutics 2024; 16:488. [PMID: 38675149 PMCID: PMC11054010 DOI: 10.3390/pharmaceutics16040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/28/2024] Open
Abstract
Species belonging to the Bauhinia genus, usually known as "pata-de-vaca", are popularly used to treat diabetes. Bauhinia ungulata var. obtusifolia (Ducke) Vaz is among them, of which the leaves are used as a tea for medicinal purposes in the Amazon region. A microencapsulation study of lyophilized aqueous extract from Bauhinia ungulata leaves, which contain phenolic compounds, using five different wall materials (maltodextrin DE 4-7, maltodextrin DE 11-14; β-cyclodextrin; pectin and sodium carboxymethylcellulose) is described in this paper. The microstructure, particle size distribution, thermal behavior, yield, and encapsulation efficiency were investigated and compared using different techniques. Using high-performance liquid chromatography, phenolics, and flavonoids were detected and quantified in the microparticles. The microparticles obtained with a yield and phenolics encapsulation efficiency ranging within 60-83% and 35-57%, respectively, showed a particle size distribution between 1.15 and 5.54 µm, spherical morphology, and a wrinkled surface. Among them, those prepared with sodium carboxymethylcellulose or pectin proved to be the most thermally stable. They had the highest flavonoid content (23.07 and 21.73 mg RUTE/g Extract) and total antioxidant activity by both the DPPH (376.55 and 367.86 µM TEq/g Extract) and ABTS (1085.72 and 1062.32 µM TEq/g Extract) assays. The chromatographic analyses allowed for quantification of the following substances retained by the microparticles, chlorogenic acid (1.74-1.98 mg/g Extract), p-coumaric acid (0.06-0.08 mg/g Extract), rutin (11.2-12.9 mg/g Extract), and isoquercitrin (0.49-0.53 mg/g Extract), compounds which considered to responsible for the antidiabetic property attributed to the species.
Collapse
|
research-article |
1 |
|
270
|
Fernandes LMG, Carvalho-Silva J, da Silva WEL, da Cunha MNC, Converti A, Porto TS. Scaling up the optimized production of Aspergillus heteromorphus URM0269 collagenase in soybean agroindustrial residue. Int J Biol Macromol 2024; 283:137734. [PMID: 39557276 DOI: 10.1016/j.ijbiomac.2024.137734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
Collagenase and protease productions from Aspergillus heteromorphus URM0269 were optimized by submerged fermentation using soybean flour as substrate. Fermentations were performed according to composite design using the concentrations of substrate and yeast extract as the independent variables. The best condition was scaled up in a stirred tank bioreactor to assess the fermentation kinetics. The highest production of both enzymes occurred at concentrations of 2.0 % substrate and 0.1 % yeast extract. Contrariwise, after scale-up, collagenase activity increased from 33.5 to 148.5 U/mL, while the protease decreased from 16.3 to 11.7 U/mL. A. heteromorphus URM0269 showed a maximum growth rate of 0.09 h-1 and yields of protease and collagenase on biomass, after 65 h of 2.70 and 34.22 U/mgx, respectively. Collagenase acted optimally at 40 °C and pH 6.0 on collagen as a substrate and displayed an allosteric trend, achieving a maximum reaction rate of 132.47 U/mL. Thermodynamic parameters of collagen degradation such as Gibbs free energy (74.16 kJ/mol), enthalpy (11.64 kJ/mol), entropy (-199.63 J/K.mol), and activation energy (14.25 kJ/mol) were determined for optimal temperature. These results demonstrated that soybean flour is a potential agroindustrial residue for collagenase production. Furthermore, the collagenase displayed promising biochemical and thermodynamic features for other biotechnological applications.
Collapse
|
|
1 |
|
271
|
Al Arni S, Elwaheidi M, Converti A, Benaissa M, Salih AAM, Ghareba S, Abbas N. Application of Date Palm Surface Fiber as an Efficient Biosorbent for Wastewater Treatment. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202200008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
|
3 |
|
272
|
Lenzuni M, Converti A, Casazza AA. From laboratory- to industrial-scale plants: Future of anaerobic digestion of olive mill solid wastes. BIORESOURCE TECHNOLOGY 2024; 394:130317. [PMID: 38218408 DOI: 10.1016/j.biortech.2024.130317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
In this review, the main properties of olive mill solid waste, the primary by-product of olive oil production, and its feasibility as a feedstock for anaerobic digesters operating at laboratory-, pilot- and industrial-scales are discussed in detail. Nutrient addition and thermal pretreatments were found to have the potential to address the challenges arising from the high carbon-to-nitrogen ratio, the low pH, and the high concentration of phenolic compounds. Furthermore, anaerobic co-digestion with different organic feedstocks has been identified as one of the most promising options to solve the aforementioned problems and the seasonality nature of olive waste, while improving the efficiency of anaerobic treatment plants that operate throughout the whole year. The insights generated from this study show co-digestion with wastes from animal farming to be the most environmentally and economically sustainable method for improving anaerobic digestion processes with olive mill solid waste.
Collapse
|
Review |
1 |
|
273
|
Lara VM, Mendonça CM, Silva FV, Marguet ER, Vallejo M, Converti A, Varani AM, Gliemmo MF, Campos CA, Oliveira RP. Characterization of Lactiplantibacillus plantarum Tw226 strain and its use for the production of a new membrane-bound biosurfactant. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
|
3 |
|
274
|
Silva DFD, de Souza EP, Porto ALF, Silva ABD, Simas Teixeira MF, Duarte Neto JMW, Converti A, Marques DDAV, Lima Duarte CDA. First report of collagenase production by Trichosporon sp. strain isolated from pollen of Amazonian bee ( Melipona seminigra seminigra). Prep Biochem Biotechnol 2022; 52:1069-1077. [PMID: 35130473 DOI: 10.1080/10826068.2022.2028637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Trichosporon yeasts are widely employed to produce lipids, lipases, and aspartic peptidases, but there are no previous studies on collagenase production. This work aimed to select the best collagenase producing Amazonian Trichosporon strains. Moreover, a 23-full factorial design (FFD) and a 22-central composite design combined with Response Surface Methodology were applied to optimize production and find the best conditions for hydrolysis of type I bovine collagen. Most of the studied strains had some collagenolytic activity, but the selected one achieved the highest value (44.02 U) and a biomass concentration of 2.31 g/L. The best collagenase production conditions were 160 rpm of agitation, pH 5.5 and a substrate concentration of 4.0 g/L. The former experimental design showed that substrate concentration was the only statistically significant factor on both biomass concentration and collagenase activity, while the latter showed simultaneous effects of substrate concentration and pH on collagenolytic activity, which peaked at pH 5.5-6.4 and substrate concentration of 3.0-3.4 g/L. An additional 2³-FFD was finally used to optimize the conditions collagen hydrolysis, and pH 6, 25 °C and a substrate concentration of 7.5 (g/L) ensured the highest hydrolysis degree. This study is the first that describes optimized conditions of collagenase production by Trichosporon strains.
Collapse
|
|
3 |
|
275
|
Marques da Silva M, Wanderley Duarte Neto JM, Barros Regueira BV, Torres do Couto MT, Vitória da Silva Sobral R, Sales Conniff AE, Pedrosa Brandão Costa RM, Cajubá de Britto Lira Nogueira M, Pereira da Silva Santos N, Pastrana L, Lima Leite AC, Converti A, Nascimento TP, Figueiredo Porto AL. Immobilization of fibrinolytic protease from Mucor subtilissimus UCP 1262 in magnetic nanoparticles. Protein Expr Purif 2022; 192:106044. [PMID: 34998976 DOI: 10.1016/j.pep.2022.106044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 11/28/2022]
Abstract
This work reports the immobilization of a fibrinolytic protease (FP) from Mucor subtilissimus UCP 1262 on Fe3O4 magnetic nanoparticles (MNPs) produced by precipitation of FeCl3·6H2O and FeCl2·4H2O, coated with polyaniline and activated with glutaraldehyde. The FP was obtained by solid state fermentation, precipitated with 40-60% ammonium sulfate, and purified by DEAE-Sephadex A50 ion exchange chromatography. The FP immobilization procedure allowed for an enzyme retention of 52.13%. The fibrinolytic protease immobilized on magnetic nanoparticles (MNPs/FP) maintained more than 60% of activity at a temperature of 40 to 60 °C and at pH 7 to 10, when compared to the non-immobilized enzyme. MNPs and MNPs/FP did not show any cytotoxicity against HEK-293 and J774A.1 cells. MNPs/FP was not hemolytic and reduced the hemolysis induced by MNPs from 2.07% to 1.37%. Thrombus degradation by MNPs/FP demonstrated that the immobilization process guaranteed the thrombolytic activity of the enzyme. MNPs/FP showed a total degradation of the γ chain of human fibrinogen within 90 min. These results suggest that MNPs/FP may be used as an alternative strategy to treat cardiovascular diseases with a targeted release through an external magnetic field.
Collapse
|
|
3 |
|