326
|
Huang Y, Wu S, Zhang Y, Wang L, Guo Y. Antitumor effect of triptolide in T-cell lymphoblastic lymphoma by inhibiting cell viability, invasion, and epithelial-mesenchymal transition via regulating the PI3K/AKT/mTOR pathway. Onco Targets Ther 2018; 11:769-779. [PMID: 29483777 PMCID: PMC5815473 DOI: 10.2147/ott.s149788] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION T-cell lymphoblastic lymphoma (T-LBL) is a widely disseminated disease worldwide. Triptolide (TPL) is purified from Chinese herb and displays anti-inflammatory, anti-fertility, anti-tumor and immunosuppressive effects. MATERIALS AND METHODS Here, in vitro and in vivo experiments were conducted to investigate the anti-tumor effect of TPL treatment in T-LBL and the potential mechanism in T-LBL progression. RESULTS TPL inhibited cell proliferation of T-LBL cells (Jurkat cells and Molt-3 cells) in a dose-dependent manner. Flow cytometry analysis showed that cell apoptosis rate was increased by TPL treatment. TPL also up-regulated the expression of Caspase-3, Bax and down-regulated the expression of Bcl-2, indicating that TPL promoted apoptosis in Jurkat cells. Moreover, TPL inhibited invasion ability of Jurkat cells and down-regulated the expression of MMP-3 and MMP-9 in a dose-dependent manner. The expression of Snail, Slug, Twist and Integrin αVβ6 was decreased and the expression of E-cadherin was increased by TPL treatment, indicating that TPL inhibited EMT of Jurkat cells. Apart from that, TPL treatment attenuated the phoslevels of PI3K, Akt and mTOR and suppressed AKT activation compared with control group, suggesting that TPL inhibited PI3K/Akt/mTOR signal pathway in T-LBL. In vivo experiments showed that TPL inhibited tumor growth of T-LBL and promoted apoptosis of tumor cells. The expression of PCNA, Bcl-2, Snail, p-PI3K, p-Akt and mTOR was suppressed by TPL in a dose-dependent manner, suggesting that TPL suppressed tumor growth and promoted apoptosis of tumor cells by inhibiting PI3K/Akt/mTOR signal pathway in T-LBL. CONCLUSION In conclusion, TPL exerted anti-tumor effect in T-LBL by inhibiting cell viability, invasion and EMT via regulating the PI3K/AKT/mTOR pathway.
Collapse
|
327
|
Bufalin suppresses hepatocellular carcinoma invasion and metastasis by targeting HIF-1α via the PI3K/AKT/mTOR pathway. Oncotarget 2018; 7:20193-208. [PMID: 26958938 PMCID: PMC4991447 DOI: 10.18632/oncotarget.7935] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/06/2016] [Indexed: 01/21/2023] Open
Abstract
It has been reported that there are multiple mechanisms by which bufalin could exert its antimetastatic effect. HIF-1α has been reported to be involved in tumor migration and invasion by regulating EMT. However, it is not known whether bufalin could exert the antimetastatic effect by modulating HIF-1α expression in hepatocellular carcinoma. In the present study, we aimed to evaluate the antimetastatic potential of bufalin in vivo and in vitro. Our results demonstrated that the liver/lung metastases were significantly reduced in bufalin-treated mice, as tested in the orthotopic transplanted and tail vein injection tumor models. Furthermore, the epithelial-to-mesenchymal transition (EMT) was inhibited in bufalin-treated tumors, as reflected the upregulation of E-cadherin, and downregulation of N-cadherin, vimentin, Snail. Similar results were observed in SMMC7721 cells treated with bufalin. Moreover, the transforming growth factor-β1 (TGF-β1)-induced EMT was also abrogated by bufalin. Mechanistically, our study demonstrated that hypoxia-inducible factor-1α (HIF-1α) played an important role in the antimetastatic effect of bufalin in hepatocellular carcinoma. Importantly, HIF-1α expression may be regulated through the inhibition of the PI3K/AKT/mTOR pathway. Taken together, our results suggest that bufalin suppresses hepatic tumor invasion and metastasis and that this process may be related to the PI3K/AKT/mTOR/ HIF-1α axis.
Collapse
|
328
|
Carpier JM, Lucas CL. Epstein-Barr Virus Susceptibility in Activated PI3Kδ Syndrome (APDS) Immunodeficiency. Front Immunol 2018; 8:2005. [PMID: 29387064 PMCID: PMC5776011 DOI: 10.3389/fimmu.2017.02005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/26/2017] [Indexed: 12/18/2022] Open
Abstract
Activated PI3Kδ Syndrome (APDS) is an inherited immune disorder caused by heterozygous, gain-of-function mutations in the genes encoding the phosphoinositide 3-kinase delta (PI3Kδ) subunits p110δ or p85δ. This recently described primary immunodeficiency disease (PID) is characterized by recurrent sinopulmonary infections, lymphoproliferation, and susceptibility to herpesviruses, with Epstein–Barr virus (EBV) infection being most notable. A broad range of PIDs having disparate, molecularly defined genetic etiology can cause susceptibility to EBV, lymphoproliferative disease, and lymphoma. Historically, PID patients with loss-of-function mutations causing defective cell-mediated cytotoxicity or antigen receptor signaling were found to be highly susceptible to pathological EBV infection. By contrast, the gain of function in PI3K signaling observed in APDS patients paradoxically renders these patients susceptible to EBV, though the underlying mechanisms are incompletely understood. At a cellular level, APDS patients exhibit deranged B lymphocyte development and defects in class switch recombination, which generally lead to defective immunoglobulin production. Moreover, APDS patients also demonstrate an abnormal skewing of T cells toward terminal effectors with short telomeres and senescence markers. Here, we review APDS with a particular focus on how the altered lymphocyte biology in these patients may confer EBV susceptibility.
Collapse
|
329
|
Shi Y, Zhang W, Ye Y, Cheng Y, Han L, Liu P, Zhao W, Tong Z, Yu J. Benefit of everolimus as a monotherapy for a refractory breast cancer patient bearing multiple genetic mutations in the PI3K/AKT/mTOR signaling pathway. Cancer Biol Med 2018; 15:314-321. [PMID: 30197799 PMCID: PMC6121052 DOI: 10.20892/j.issn.2095-3941.2017.0188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A postmenopausal patient with a diagnosis of estrogen receptor (ER) (+), progesterone receptor (PR) (+), and human epidermal growth factor receptor-2 (HER2) (-) breast cancer was reported. The patient refused surgery and was resistant to conventional chemotherapy regimens. Computed tomography and the circulating tumor cell test indicated that the patient’s tumor burden increased rapidly even after several chemotherapy sessions. Multiple genetic aberrances in the phosphatidylinositol3-kinases (PI3K) signaling pathway were detected via next-generation sequencing (NGS)-based liquid biopsy, including a p. G1007R missense mutation in exon 21 of PIK3CA (33.61%), a p.L70fs frameshift mutation in exon 3 of phosphatase and tension homolog deleted on chromosome ten (PTEN) (49.14%), and a p. D1542Y missense mutation in exon 32 of mammalian target of rapamycin (mTOR) (1.66%). Therefore, only the mTOR inhibitor everolimus was administered to the patient. Partial remission (PR) was observed after 2 months, and sustained stable disease (SD) was observed after a year and a half. Subsequent sequencing showed that the mutation ratio of PIK3CA decreased to 4.17%, and that the PTEN and mTOR mutations disappeared, which revealed the significant curative effect of everolimus. We report the first case of successful monotherapy treatment using everolimus in a patient with advanced breast cancer bearing mutations in genes involved in the PI3K/ARK/mTOR signaling pathway. The success of this case highlights the invaluable clinical contribution of NGS-based liquid biopsy, as it successfully provided an optimal therapeutic target for the patient with advanced breast cancer.
Collapse
|
330
|
Abstract
The PI3K/AKT/mTOR signaling pathway shows frequent molecular alterations and increased activity in cancer. Given its role in the regulation of cell growth, survival and metastasis, molecules within this pathway are promising targets for pharmacologic intervention. Metastatic bladder cancer (BLCA) continues to have few treatment options. Although various molecular alterations in PI3K/AKT/mTOR signaling have been described in BLCA, clinical trials with small molecule inhibitors have not met their endpoints. In this article, we summarize results from preclinical studies and clinical trials that examined PI3K pathway inhibitors in BLCA focusing on technical challenges that might result in contradictory findings in preclinical studies. Based on published data from our group, we also address challenges that need to be overcome to optimize PI3K inhibition in BLCA and enable its successful translation into the clinic.
Collapse
|
331
|
Very N, Vercoutter-Edouart AS, Lefebvre T, Hardivillé S, El Yazidi-Belkoura I. Cross-Dysregulation of O-GlcNAcylation and PI3K/AKT/mTOR Axis in Human Chronic Diseases. Front Endocrinol (Lausanne) 2018; 9:602. [PMID: 30356686 PMCID: PMC6189293 DOI: 10.3389/fendo.2018.00602] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/21/2018] [Indexed: 02/06/2023] Open
Abstract
The hexosamine biosynthetic pathway (HBP) and the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway are considered as nutrient sensors that regulate several essential biological processes. The hexosamine biosynthetic pathway produces uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), the substrate for O-GlcNAc transferase (OGT), the enzyme that O-GlcNAcylates proteins on serine (Ser) and threonine (Thr) residues. O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) and phosphorylation are highly dynamic post-translational modifications occurring at the same or adjacent sites that regulate folding, stability, subcellular localization, partner interaction, or activity of target proteins. Here we review recent evidence of a cross-regulation of PI3K/AKT/mTOR signaling pathway and protein O-GlcNAcylation. Furthermore, we discuss their co-dysregulation in pathological conditions, e.g., cancer, type-2 diabetes (T2D), and cardiovascular, and neurodegenerative diseases.
Collapse
|
332
|
Tu YX, Wang SB, Fu LQ, Li SS, Guo QP, Wu Y, Mou XZ, Tong XM. Ovatodiolide targets chronic myeloid leukemia stem cells by epigenetically upregulating hsa-miR-155, suppressing the BCR-ABL fusion gene and dysregulating the PI3K/AKT/mTOR pathway. Oncotarget 2017; 9:3267-3277. [PMID: 29423045 PMCID: PMC5790462 DOI: 10.18632/oncotarget.23231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/16/2017] [Indexed: 02/05/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative pathology, originating from the hematopoietic cancer stem cells (hCSCs) due to the Bcl-Abl Philadelphia chromosome transformation. However, targeting these hCSCs as an effective anti-CML strategy is relatively less explored. Ovatodiolide (Ova) is a natural diterpenoid isolate of Anisomeles indica with broad anticancer activity. In this study, we investigated the anti-hCSCs potential of Ova against CD34+/CD38-, CD34+/CD38+, and unsorted K562 cell lines using flow cytometry, western blot, RT-PCR, genomic mapping, and tumorsphere formation assays. We demonstrated that compared to unsorted K562 and CD34+/CD38+, CD34+/CD38- cells were significantly enriched with Oct4, Sox2, CD133, Bcr-Abl, p-CrkL and p-Stat5 protein and/or mRNA. Furthermore, we showed that Ova alone or by enhancing the therapeutic potential of Imatinib, reduced the viability of CML cell lines, dose-dependently, irrespective of the cancer stemness, as well as markedly inhibit the Bcr-Abl, p-CrkL, Stat5, and MDR protein expression levels in CD34+ cells. Mechanistic investigations revealed a significant up-regulation of hsa-miR-155, which resulted in the reduction of dysregulating the PIK3CA expression in Ova-treated K562 CD34+/CD38- cells. Additionally, Ova alone or in combination with Imatinib suppressed the hCSC traits of the CD34+/CD38- cells, resulting in loss of their ability to form tumorspheres, enhanced apoptosis, increase in the Bax/Bcl-2 ratio, and dysregulation of the PI3K/AKT/mTOR signaling pathway. Together, these results demonstrate the PI3K/AKT/mTOR signaling-mediated anti-hCSC effect of Ova in CML, as well as suggest a likely role for Ova as a small molecule PI3K/mTOR dual inhibitor, thus, extending its potential benefit to other mTOR-mediated pathologies.
Collapse
|
333
|
Gasparri ML, Bardhi E, Ruscito I, Papadia A, Farooqi AA, Marchetti C, Bogani G, Ceccacci I, Mueller MD, Benedetti Panici P. PI3K/AKT/mTOR Pathway in Ovarian Cancer Treatment: Are We on the Right Track? Geburtshilfe Frauenheilkd 2017. [PMID: 29093603 DOI: 10.1055/s-0043-118907]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022] Open
Abstract
The high recurrence rate and the low overall survival in ovarian cancer suggest that a more specific therapeutic approach in addition to conventional treatment is required. Translational and clinical research is investigating new molecular targets in order to find an alternative way to affect tumor growth and to minimize the overlap of toxicity of antiblastic agents. Given its implication in many cellular activities including regulation of cell growth, motility, survival, proliferation, protein synthesis, autophagy, transcription, as well as angiogenesis, PI3K/AKT/mTOR is one of the most investigated intracellular signaling pathways. A dis-regulation of this pathway has been shown in several tumors, including ovarian cancer. In this setting, mTor proteins represent a potential target for inhibitors, which could ultimately play a pivotal role in counteracting cellular proliferation. Recently, mTor inhibitors have been approved in the treatment of pancreatic neuroendocrine tumors, mantle cell lymphoma and renal cancer. Clinical trials have assessed the safety of these drugs in ovarian cancer patients. Ongoing phase I and II studies are evaluating the oncologic outcome of mTor inhibitor treatment and its effect in combination with conventional chemotherapy and target agents.
Collapse
|
334
|
Gasparri ML, Bardhi E, Ruscito I, Papadia A, Farooqi AA, Marchetti C, Bogani G, Ceccacci I, Mueller MD, Benedetti Panici P. PI3K/AKT/mTOR Pathway in Ovarian Cancer Treatment: Are We on the Right Track? Geburtshilfe Frauenheilkd 2017. [PMID: 29093603 DOI: 10.1055/s-0043-118907] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022] Open
Abstract
The high recurrence rate and the low overall survival in ovarian cancer suggest that a more specific therapeutic approach in addition to conventional treatment is required. Translational and clinical research is investigating new molecular targets in order to find an alternative way to affect tumor growth and to minimize the overlap of toxicity of antiblastic agents. Given its implication in many cellular activities including regulation of cell growth, motility, survival, proliferation, protein synthesis, autophagy, transcription, as well as angiogenesis, PI3K/AKT/mTOR is one of the most investigated intracellular signaling pathways. A dis-regulation of this pathway has been shown in several tumors, including ovarian cancer. In this setting, mTor proteins represent a potential target for inhibitors, which could ultimately play a pivotal role in counteracting cellular proliferation. Recently, mTor inhibitors have been approved in the treatment of pancreatic neuroendocrine tumors, mantle cell lymphoma and renal cancer. Clinical trials have assessed the safety of these drugs in ovarian cancer patients. Ongoing phase I and II studies are evaluating the oncologic outcome of mTor inhibitor treatment and its effect in combination with conventional chemotherapy and target agents.
Collapse
|
335
|
Rui J, Chunming Z, Binbin G, Na S, Shengxi W, Wei S. IL-22 promotes the progression of breast cancer through regulating HOXB-AS5. Oncotarget 2017; 8:103601-103612. [PMID: 29262587 PMCID: PMC5732753 DOI: 10.18632/oncotarget.22063] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/23/2017] [Indexed: 01/05/2023] Open
Abstract
Interleukin-22 (IL-22) is a well-known tumor related inflammatory factor that is associated with variety of cancers. HOXB-AS5, a long non-coding RNA located in HOX gene clusters, has been elevated in breast cancer (BC) tissues. Herein, IL-22 and HOXB-AS5 were upregulated in the serum and tissues of BC patients and were associated with clinical stages. Furthermore, we also investigated the effects of IL-22-HOXB-AS5 pathway on progression of BC, and the results suggested that IL-22 and HOXB-AS5 synergistically promoted MDA-MB-231 cell growth, migration and invasion and activated the PI3K-AKT-mTOR pathway. These findings demonstrated that the IL-22-HOXB-AS5-PI3K/AKT functional axes may serve as potential molecule biomarkers for diagnosis and therapy evaluation or targeted therapeutic strategy in BC.
Collapse
|
336
|
Ackermann MA, King B, Lieberman NAP, Bobbili PJ, Rudloff M, Berndsen CE, Wright NT, Hecker PA, Kontrogianni-Konstantopoulos A. Novel obscurins mediate cardiomyocyte adhesion and size via the PI3K/AKT/mTOR signaling pathway. J Mol Cell Cardiol 2017; 111:27-39. [PMID: 28826662 PMCID: PMC5694667 DOI: 10.1016/j.yjmcc.2017.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/29/2022]
Abstract
The intercalated disc of cardiac muscle embodies a highly-ordered, multifunctional network, essential for the synchronous contraction of the heart. Over 200 known proteins localize to the intercalated disc. The challenge now lies in their characterization as it relates to the coupling of neighboring cells and whole heart function. Using molecular, biochemical and imaging techniques, we characterized for the first time two small obscurin isoforms, obscurin-40 and obscurin-80, which are enriched at distinct locations of the intercalated disc. Both proteins bind specifically and directly to select phospholipids via their pleckstrin homology (PH) domain. Overexpression of either isoform or the PH-domain in cardiomyocytes results in decreased cell adhesion and size via reduced activation of the PI3K/AKT/mTOR pathway that is intimately linked to cardiac hypertrophy. In addition, obscurin-80 and obscurin-40 are significantly reduced in acute (myocardial infarction) and chronic (pressure overload) murine cardiac-stress models underscoring their key role in maintaining cardiac homeostasis. Our novel findings implicate small obscurins in the maintenance of cardiomyocyte size and coupling, and the development of heart failure by antagonizing the PI3K/AKT/mTOR pathway.
Collapse
|
337
|
Gasparri ML, Bardhi E, Ruscito I, Papadia A, Farooqi AA, Marchetti C, Bogani G, Ceccacci I, Mueller MD, Benedetti Panici P. PI3K/AKT/mTOR Pathway in Ovarian Cancer Treatment: Are We on the Right Track? Geburtshilfe Frauenheilkd 2017; 77:1095-1103. [PMID: 29093603 PMCID: PMC5658232 DOI: 10.1055/s-0043-118907] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/02/2017] [Accepted: 08/25/2017] [Indexed: 01/15/2023] Open
Abstract
The high recurrence rate and the low overall survival in ovarian cancer suggest that a more specific therapeutic approach in addition to conventional treatment is required. Translational and clinical research is investigating new molecular targets in order to find an alternative way to affect tumor growth and to minimize the overlap of toxicity of antiblastic agents. Given its implication in many cellular activities including regulation of cell growth, motility, survival, proliferation, protein synthesis, autophagy, transcription, as well as angiogenesis, PI3K/AKT/mTOR is one of the most investigated intracellular signaling pathways. A dis-regulation of this pathway has been shown in several tumors, including ovarian cancer. In this setting, mTor proteins represent a potential target for inhibitors, which could ultimately play a pivotal role in counteracting cellular proliferation. Recently, mTor inhibitors have been approved in the treatment of pancreatic neuroendocrine tumors, mantle cell lymphoma and renal cancer. Clinical trials have assessed the safety of these drugs in ovarian cancer patients. Ongoing phase I and II studies are evaluating the oncologic outcome of mTor inhibitor treatment and its effect in combination with conventional chemotherapy and target agents.
Collapse
|
338
|
Xu M, Liu Z, Wang C, Yao B, Zheng X. EDG2 enhanced the progression of hepatocellular carcinoma by LPA/PI3K/AKT/ mTOR signaling. Oncotarget 2017; 8:66154-66168. [PMID: 29029500 PMCID: PMC5630400 DOI: 10.18632/oncotarget.19825] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
HCC is the leading type of the malignant liver tumors with the unsatisfied prognosis. Liver resection has been considered as the predominant curative therapy, however, the post-surgical prognostic evaluation remains an urgent problem and the mechanism of HCC metastases has not been understood completely. EDG2 has been found to accelerate tumor progression through mediating different cell pathways, however, it remains unclear about the role of EDG2 on hepatocarcinogenesis. Here, EDG2 expression was found increased notably in HCC tissues by immunohistochemistry compared with adjacent liver tissues and comparison of survival curves revealed that EDG2 upregulation in HCC tissues was associated with the worse prognosis after liver resection. The positive correlation between EDG2 up-regulation and EMT was observed in HCC samples. Furthermore, EDG2 over-expression in HCC cells brought the typical EMT characteristics including up-regulation of Vimentin, Fibronectin and N-cadherin, suppression of E-cadherin, and enhanced cell migration and invasion capacities. Knockdown of EDG2 reversed the EMT phenotype in HCC cells. The in vivo experiments also identified the oncogenic role of EDG2 on HCC growth. The mechanistic studies elucidated that EDG2 enhanced mTOR phosphorylation via PI3K/AKT signaling and consequently induced EMT of HCC cells. Moreover, EDG2 was found to promote cell viability and proliferation of HCC cell through PI3K/AKT/mTOR/Skp2/p27Kip1 signaling. Taken together, the data here demonstrated EDG2 was a potential predictor for HCC patients receiving liver resection and accelerated HCC progression via regulating EMT driven by PI3K/AKT/mTOR signaling.
Collapse
|
339
|
Chen LM, Song TJ, Xiao JH, Huang ZH, Li Y, Lin TY. Tripchlorolide induces autophagy in lung cancer cells by inhibiting the PI3K/AKT/mTOR pathway and improves cisplatin sensitivity in A549/DDP cells. Oncotarget 2017; 8:63911-63922. [PMID: 28969040 PMCID: PMC5609972 DOI: 10.18632/oncotarget.19201] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 06/20/2017] [Indexed: 12/13/2022] Open
Abstract
Tripchlorolide (T4) has been shown to induce A549 lung cancer cell death predominantly by activating an autophagy pathway. However, the underlying mechanism remains unclear. Herein, we demonstrated that compared with T4 treatment alone, pretreatment with wortmannin (an inhibitor of phosphatidylinositol 3-kinase), perifosine (an inhibitor of AKT) or rapamycin (an inhibitor of mTOR) combined with a subsequent T4 treatment significantly impaired the cell viability of A549 and A549/DDP lung cancer cells. We found that either treatment scheme markedly reduced the activity of P13K and AKT. Expression of LC3II increased in parallel to the increase of the T4 concentration in both A549 and A549/DDP cells and was repressed by overexpression of AKT. The expression levels of PI3-K, PI3-P, AKT, TSC2, mTOR, p70S6K and 4E-BP1 were minimally affected by the wortmannin, perifosine, or rapamycin plus T4 treatments, but their phosphorylated products were greatly affected in A549 lung cancer cells and slightly affected in A549/DDP lung cancer cells. These results indicate that T4 induces autophagy in lung cancer cells by inhibiting the PI3K/AKT/mTOR signaling pathway. We further found that T4 decreased expression of MDR1 and improved cisplatin sensitivity of A549/DDP cells. Altogether, these results have meaningful implications for tumor therapy in the future.
Collapse
|
340
|
Combination treatment of RAD001 and BEZ235 exhibits synergistic antitumor activity via down-regulation of p-4E-BP1/Mcl-1 in small cell lung cancer. Oncotarget 2017; 8:106486-106498. [PMID: 29290965 PMCID: PMC5739750 DOI: 10.18632/oncotarget.18984] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/18/2017] [Indexed: 11/25/2022] Open
Abstract
Small cell lung cancer (SCLC) is a highly malignant cancer with few targeted therapies. In the study, by mining the Cancer Cell Line Encyclopedia (CCLE) database, we found that PI3K/AKT/mTOR pathway was aberrant in 92% of SCLC cell lines. Moreover, we found that the phosphorylation level of 4E-BP1 was significantly correlated with SCLC sensitivity to RAD001 (mTOR inhibitor) and BEZ235 (PI3K/mTOR dual inhibitor). Combination of RAD001 and BEZ235 synergistically inhibited the growth of SCLC cells, which was accompanied by enhanced induction of cell cycle arrest and apoptosis. Such a combination dramatically inhibited the activation of AKT, and strongly reduced the phosphorylation of 4E-BP1 and its downstream target Mcl-1. Knock-down of Mcl-1 enhanced the growth inhibition of SCLC cells induced by RAD001 and BEZ235 co-treatment, whereas over-expression of Mcl-1 reduced the growth inhibitory effect. Furthermore, in vivo study demonstrated that the combination treatment suppressed tumor growth more effectively than RAD001 or BEZ235 treatment alone. In summary, our study suggests that combination of BEZ235 and RAD001 may be an effective regimen for SCLC treatment, and p-4E-BP1 may serve as a predictive biomarker for SCLC response to mTOR inhibitor.
Collapse
|
341
|
Li Z, Ma J, Liu L, Liu X, Wang P, Liu Y, Li Z, Zheng J, Chen J, Tao W, Xue Y. Endothelial-Monocyte Activating Polypeptide II Suppresses the In Vitro Glioblastoma-Induced Angiogenesis by Inducing Autophagy. Front Mol Neurosci 2017; 10:208. [PMID: 28701921 PMCID: PMC5488748 DOI: 10.3389/fnmol.2017.00208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 06/14/2017] [Indexed: 12/18/2022] Open
Abstract
The obstacle in delivering therapeutics to glioblastoma (GBM) is tumor-induced angiogenesis which leads to the formation of abnormal vessels and a dysfunctional blood-tumor barrier. Here, we elucidated the effect of endothelial-monocyte activating polypeptide II (EMAP II) on the GBM-induced angiogenesis as well as its potential mechanisms. Our results proved that EMAP II inhibited the viability, mitochondrial membrane potential, migration and tube formation of GBM-induced endothelial cells (GECs) by inducing cell autophagy, demonstrated by cell viability assay, JC-1 staining assay, transwell assay and tube formation assay, respectively. Cell autophagy was induced by EMAP II through the observation of autophagic vacuoles formation and the up-regulation of microtubule-associated protein-1 light chain-3 (LC3)-II and p62/SQSTM1 expression, demonstrated by transmission electron microscopy analysis, immunofluorescence assay and Western blot assay. The activity of PI3K/AKT/mTOR signal pathway could be inhibited by the EMAP II treatment. Furthermore, unfolded protein response (UPR)-related proteins (GRP78, eIF2α, and CHOP) were up-regulated by EMAP II, which suggest that GECs exposed to EMAP II experienced endoplasmic reticulum stress. Further, mechanistic investigations found that EMAP II reduced the miR-96 expression which could directly target the 3′-UTR of these UPR-related proteins, and over-expression of miR-96 inhibited LC3 and p62/SQSTM1 expression by down-regulating these UPR-related proteins in GECs. Moreover, the combination of EMAP II with miR-96 inhibitor showed the inhibitory effect on the viability, migration, and in vitro tube formation of GECs, which are critical for angiogenesis. Taken together, we have demonstrated the fact that EMAP II resulted in the decreased GBM-induced angiogenesis by inducing autophagy, which might contribute to establishing potential strategies for human GBM treatment.
Collapse
|
342
|
Kyriakopoulos CE, Braden AM, Kolesar JM, Eickhoff JC, Bailey HH, Heideman J, Liu G, Wisinski KB. A phase I study of tivantinib in combination with temsirolimus in patients with advanced solid tumors. Invest New Drugs 2017; 35:290-297. [PMID: 28004284 PMCID: PMC5809175 DOI: 10.1007/s10637-016-0418-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023]
Abstract
Background A wide variety of human cancers exhibit dysregulated c-Met activity that has implications in oncogenesis. Phosphorylation of c-Met results in activation of the PI3K/AKT/mTOR pathway. Combined blockade of c-Met and mTOR pathways has shown efficacy in preclinical studies. Tivantinib is a c-Met inhibitor and temsirolimus is a selective mTOR inhibitor. We aimed to determine the maximum tolerated dose (MTD) and the recommended phase II dose (RP2D), dose-limiting toxicities (DLT), adverse events (AEs), clinical activity and pharmacokinetic (PK) parameters of the combination. Methods This open-label phase I study used a 3 + 3 dose escalation design. Patients (pts) were treated with escalating doses of tivantinib (120-360 mg tablets orally twice daily) and temsirolimus (20 mg IV weekly) followed by dose expansion at the MTD. Separate cohorts were planned for extensive (normal) and poor tivantinib metabolizers based on CYP2C19 genotypes. Cycles were 28 days besides cycle 1 that was 35 days to allow for PK analysis. Results Twenty-nine pts. [median age 58 (range 28-77)] were enrolled (21 in dose escalation and 8 in dose expansion). All were extensive CYP2C19 metabolizers. The most common types of cancer were colorectal, ovarian and non-small cell lung. Sixteen out of 21 and 6 out of 8 pts. were evaluable for DLT evaluation per protocol in the dose escalation and dose expansion phases, respectively. Pts remained on study for a median of 71 days (range 18-296). The MTD and RP2D was tivantinib 240 mg twice daily and temsirolimus 20 mg weekly. DLTs included grade (gr) 4 neutropenia (2 pts.; 1 with gr 3 febrile neutropenia), gr 3 abdominal pain (1 pt) and gr 2 mucositis resulting in inadequate drug delivery. The most common treatment related AEs grade ≥ 2 included: anemia (gr 2 in 9 pts., gr 3 in 3 pts), fatigue (gr 2 in 10 pts), anorexia (gr 2 in 9 pts), hypoalbuminemia (gr 2 in 6 pts., gr 3 in 2 pts), hypophosphatemia (gr 2 in 2 pts., gr 3 in 5 pts) and nausea (gr 2 in 6 pts., gr 3 in 1 pt). One pt. with ovarian cancer had a confirmed partial response and remained on study for 10 months, a second patient with ovarian cancer had stable disease and remained on study for 6 months and a third pt. with squamous cell carcinoma of the tongue had stable disease and remained on study for 7 months. Pharmacokinetic analysis showed that there is no interaction in the plasma concentrations between tivantinib and temsirolimus. Conclusions The combination of tivantinib with temsirolimus appears to be well tolerated with evidence of clinical activity.
Collapse
|
343
|
Tian B, Zhao Y, Liang T, Ye X, Li Z, Yan D, Fu Q, Li Y. Curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway. J Drug Target 2017; 25:626-636. [PMID: 28286973 DOI: 10.1080/1061186x.2017.1306535] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have previously reported that curcumin inhibits urothelial tumor development in a rat bladder carcinogenesis model. In this study, we report that curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway. Curcumin inhibits IGF2 expression at the transcriptional level and decreases the phosphorylation levels of IGF1R and IRS-1 in bladder cancer cells and N-methyl-N-nitrosourea (MNU)-induced urothelial tumor tissue. Ectopic expression of IGF2 and IGF1R, but not IGF1, in bladder cancer cells restored this process, suggesting that IGF2 is a target of curcumin. Moreover, introduction of constitutively active AKT1 abolished the inhibitory effect of curcumin on cell proliferation, migration, and restored the phosphorylation levels of 4E-BP1 and S6K1, suggesting that curcumin functions via suppressing IGF2-mediated AKT/mTOR signaling pathway. In summary, our results reveal that suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway is one of the mechanisms of action of curcumin. Our findings suggest a new therapeutic strategy against human bladder cancer caused by aberrant activation of IGF2, which are useful for translational application of curcumin.
Collapse
|
344
|
Lin Q, Wang Y, Chen D, Sheng X, Liu J, Xiong H. Cisplatin regulates cell autophagy in endometrial cancer cells via the PI3K/AKT/mTOR signalling pathway. Oncol Lett 2017; 13:3567-3571. [PMID: 28521459 PMCID: PMC5431239 DOI: 10.3892/ol.2017.5894] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/17/2017] [Indexed: 12/19/2022] Open
Abstract
Endometrial cancer is the most common gynaecological malignancy encountered in developed countries and the second most common in the developing world. The five-year survival rate of patients with endometrial cancer diagnosed at a late stage is <30%. Therefore, it is critical to develop a suitable chemotherapeutic regimen for late-stage endometrial cancer. Cisplatin (CDDP) is a first-line chemotherapeutic drug for endometrial cancer chemotherapy. The present study investigated the molecular mechanism underlying the effect of CDDP on endometrial cancer from the perspective of cell autophagy. Ishikawa cells were treated with 10, 20, 40 or 80 µg/ml CDDP for 12, 24, 48 and 72 h. The cells were then harvested and subjected to cell proliferation assays. Based on the results, 20 µg/ml CDDP was selected as the treatment used for 12 and 24 h for the assays. To detect the effect of CDDP on Ishikawa cell autophagy, autophagosome formation was observed using a transmission electron microscope, and the expression level of autophagy-related gene microtubule-associated protein 1 light chain 3α, was examined using immunofluorescence microscopy. The results demonstrated that CDDP treatment promoted cell autophagy in Ishikawa cells. In addition, the total and phosphorylated protein levels of phosphoinositide 3-kinase (PI3K) p85, protein kinase B (AKT) and mammalian target of rapamycin (mTOR), the key proteins of the PI3K/AKT/mTOR signalling pathway, were detected by western blot analysis. The results indicated that CDDP treatment inactivated the PI3K/AKT/mTOR signalling pathway. To further examine whether CDDP affects cell autophagy in Ishikawa cells via the PI3K/AKT/mTOR signalling pathway, the cells were co-treated with a PI3K activator, insulin-like growth factor-1 (IGF-1). The results demonstrated that IGF-1 co-treatment reversed the effect of CDDP on cell autophagy in Ishikawa cells. In brief, the present study hypothesized that CDDP may regulate cell autophagy in the Ishikawa endometrial cancer cell line via the PI3K/AKT/mTOR signalling pathway.
Collapse
|
345
|
Abstract
For the past several decades, cancer patients in the U.S. have chosen the use of natural products as an alternative or complimentary medicine approach to treat or improve their quality of life via reduction or prevention of the side effects during or after cancer treatment. The genus Ganoderma includes about 80 species of mushrooms, of which several have been used for centuries in traditional Asian medicine for their medicinal properties, including anticancer and immunoregulatory effects. Numerous bioactive compounds seem to be responsible for their healing effects. Among the approximately 400 compounds produced by Ganoderma spp., triterpenes, peptidoglycans and polysaccharides are the major physiologically-active constituents. Ganoderma anticancer effects are attributed to its efficacy in reducing cancer cell survival and growth, as well as by its chemosensitizing role. In vitro and in vivo studies have been conducted in various cancer cells and animal models; however, in this review, we focus on Ganoderma’s efficacy on breast cancers. Evidence shows that some species of Ganoderma have great potential as a natural therapeutic for breast cancer. Nevertheless, further studies are needed to investigate their potential in the clinical setting and to translate our basic scientific findings into therapeutic interventions for cancer patients.
Collapse
|
346
|
Choi AR, Kim JH, Woo YH, Cheon JH, Kim HS, Yoon S. Co-treatment of LY294002 or MK-2206 with AZD5363 Attenuates AZD5363-induced Increase in the Level of Phosphorylated AKT. Anticancer Res 2017; 36:5849-5858. [PMID: 27793908 DOI: 10.21873/anticanres.11170] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/11/2016] [Indexed: 11/10/2022]
Abstract
Clinical trials are in progress on AZD5363, an inhibitor of protein kinase B (AKT), to assess its effects on the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway. Cells treated with AKT inhibitors have been reported to activate alternative pathways in order to escape growth inhibition. AZD5363-sensitized Hs578T breast cancer cells displayed reduced levels of phosphorylated glycogen synthase kinase 3 beta (pGSK3β). Interestingly, in AZD5363-treated cells, the level of phosphorylated (activated) AKT (pAKT) increased. Since pAKT positively correlates with cancer growth and survival, we aimed to identify conditions that could reduce AZD5363-induction of pAKT. We examined whether AZD5363 induction of pAKT could be reduced by co-treatment with inhibitors of the PI3K/AKT/mTOR pathway (LY294002, MK-2206, wortmannin, perifosine, rapamycin, everolimus, and temsirolimus). We observed that co-treatment of LY294002 or MK-2206 with AZD5363 reduced the level of pAKT. Since MK-2206 is clinically used, we propose that co-treatment using MK-2206 with AZD5363 would prove beneficial in blocking the AZD5363-induced pAKT signaling pathway. Our findings contribute to the development of AZD5363-based sensitization therapies for patients with cancer.
Collapse
|
347
|
Liu M, Zhao G, Cao S, Zhang Y, Li X, Lin X. Development of Certain Protein Kinase Inhibitors with the Components from Traditional Chinese Medicine. Front Pharmacol 2017; 7:523. [PMID: 28119606 PMCID: PMC5220067 DOI: 10.3389/fphar.2016.00523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/15/2016] [Indexed: 12/27/2022] Open
Abstract
Traditional Chinese medicines (TCMs) have been used in China for more than two thousand years, and some of them have been confirmed to be effective in cancer treatment. Protein kinases play critical roles in control of cell growth, proliferation, migration, survival, and angiogenesis and mediate their biological effects through their catalytic activity. In recent years, numerous protein kinase inhibitors have been developed and are being used clinically. Anticancer TCMs represent a large class of bioactive substances, and some of them display anticancer activity via inhibiting protein kinases to affect the phosphoinositide 3-kinase, serine/threonine-specific protein kinases, pechanistic target of rapamycin (PI3K/AKT/mTOR), P38, mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK) pathways. In the present article, we comprehensively reviewed several components isolated from anticancer TCMs that exhibited significantly inhibitory activity toward a range of protein kinases. These components, which belong to diverse structural classes, are reviewed herein, based upon the kinases that they inhibit. The prospects and problems in development of the anticancer TCMs are also discussed.
Collapse
|
348
|
Cernaj IE. Simultaneous dual targeting of Par-4 and G6PD: a promising new approach in cancer therapy? Quintessence of a literature review on survival requirements of tumor cells. Cancer Cell Int 2016; 16:87. [PMID: 27872579 PMCID: PMC5111342 DOI: 10.1186/s12935-016-0363-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/07/2016] [Indexed: 11/10/2022] Open
Abstract
The aim of this hypothesis is to propose a new approach in targeted therapy of cancer: The simultaneous, dual targeting of two single molecules, Par-4 and G6PD, rather than inhibition of full-length signaling pathways. RATIONALE Targeted inhibition of especially two survival signaling pathways (PI3K/AKT/mTOR and MAPK/ERK) is frequently tried, however, a major breakthrough has not yet been reported. Inhibition of complete pathways naturally goes along with a variety of dose-limiting side effects thus contributing to poor efficacy of the administered drugs. This essay offers a synopsis of relevant studies to support the above mentioned idea-targeting of two single molecules which either are crucial for tumor growth and cancer-cell-survival: on one side, Par-4-activation selectively triggers apoptosis of tumor cells thus reversing their characteristic feature-immortality. On the other side inhibition of G6PD breaks the energy supply of tumor cells, weakens their defence against oxidative stress and thereby enhances the sensitivity of tumor cells to oxidative agents (e.g. chemotherapy). Advantage of the proposed dual Par-4/G6PD-therapy is good tolerability and-especially when administered along with conventional therapy-less frequent emergence of resistance.
Collapse
|
349
|
Jiang S, Wang Q, Feng M, Li J, Guan Z, An D, Dong M, Peng Y, Kuerban K, Ye L. C2-ceramide enhances sorafenib-induced caspase-dependent apoptosis via PI3K/AKT/mTOR and Erk signaling pathways in HCC cells. Appl Microbiol Biotechnol 2016; 101:1535-1546. [PMID: 27807662 DOI: 10.1007/s00253-016-7930-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 02/06/2023]
Abstract
Sorafenib as an effective multikinase inhibitor has been approved for the clinical treatment against advanced hepatocellular carcinoma (HCC). HCC treatment requires usually combined therapy because of its complex pathogenesis. Ceramide has been confirmed to induce remarkable apoptosis in human tumor cells and has attracted increasing attention in investigations on combination therapy. In this paper, the anti-HCC effect of sorafenib combined with C2-ceramide was investigated on cell vitality, apoptosis, and migration, and the underlying mechanism was examined using flow cytometry and western blot. Bel7402 cells coincubated with sorafenib and C2-ceramide exhibited lower cell vitality and more irregular cellular morphology and cell cycle arrest. Sorafenib plus C2-ceramide stimulated significantly the production of reactive oxygen species (ROS) and mitochondrial depolarization, which promoted caspases-dependent cell apoptosis as illustrated by related protein expression including caspase 3, caspase 9, Bax, Bcl-2, and cytochrome c. Combination treatment of sorafenib and C2-ceramide inhibited obviously cell growth and proliferation via PI3K/AKT/mTOR and Erk signaling pathways. Furthermore, the combination treatment was proved to inhibit cell migration and epithelial-mesenchymal transition (EMT). These findings indicated that the combination of C2-ceramide and sorafenib provided synergistic inhibitory effects on HCC cells.
Collapse
|
350
|
Qi W, Morales C, Cooke LS, Johnson B, Somer B, Mahadevan D. Reciprocal feedback inhibition of the androgen receptor and PI3K as a novel therapy for castrate-sensitive and -resistant prostate cancer. Oncotarget 2016; 6:41976-87. [PMID: 26506516 PMCID: PMC4747202 DOI: 10.18632/oncotarget.5659] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/30/2015] [Indexed: 01/04/2023] Open
Abstract
Gain-of-function of the androgen receptor (AR) and activation of PI3K/AKT/mTOR pathway have been demonstrated to correlate with progression to castration-resistant prostate cancer (CRPC). However, inhibition of AR or PI3K/mTOR alone results in a reciprocal feedback activation. Therefore, we hypothesized that dual inhibition of the AR and PI3K/mTOR pathway might lead to a synergistic inhibition of cell growth and overcome drug resistance in CRPC. Here, we reported that androgen-depletion increased AR protein level and Akt phosphorylation at Ser473 and Thr308 in LNCaP cells. Moreover, we developed resistance cell lines of LNCaP to Enzalutamide (or MDV3100), an AR inhibitor (named as LNCaP ‘MDV-R’) and PF-04691502, a PI3K/mTOR inhibitor (named as LNCaP ‘PF-R’). MTS analysis showed that LNCaP ‘PF-R’ was strongly resistant to Enzalutamide treatment, and on the other hand, LNCaP ‘MDV-R’ was 6-fold resistant to PF-04691502 treatment. Mechanistically, LNCaP ‘MDV-R’ cells had significantly reduced AR, loss of PSA and increase Akt activity in contrast with LNCaP ‘PF-R’ cells. Combined inhibition of PI3K/mTOR and AR pathways with a variety of small molecular inhibitors led to a synergistic suppression of cell proliferation and a profound increase of apoptosis and cell cycle arrest in both androgen-dependent LNCaP and independent CRPC 22Rv1 cell lines. In conclusion, this study provides preclinical proof-of-concept that the combination of a PI3K/mTOR inhibitor with an AR inhibitor results in a synergistic anti-tumor response in non-CRPC and CRPC models.
Collapse
|