401
|
Chaudhary R, Nawaz K, Khan AK, Hano C, Abbasi BH, Anjum S. An Overview of the Algae-Mediated Biosynthesis of Nanoparticles and Their Biomedical Applications. Biomolecules 2020; 10:E1498. [PMID: 33143289 PMCID: PMC7693774 DOI: 10.3390/biom10111498] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Algae have long been exploited commercially and industrially as food, feed, additives, cosmetics, pharmaceuticals, and fertilizer, but now the trend is shifting towards the algae-mediated green synthesis of nanoparticles (NPs). This trend is increasing day by day, as algae are a rich source of secondary metabolites, easy to cultivate, have fast growth, and are scalable. In recent era, green synthesis of NPs has gained widespread attention as a safe, simple, sustainable, cost-effective, and eco-friendly protocol. The secondary metabolites from algae reduce, cap, and stabilize the metal precursors to form metal, metal oxide, or bimetallic NPs. The NPs synthesis could either be intracellular or extracellular depending on the location of NPs synthesis and reducing agents. Among the diverse range of algae, the most widely investigated algae for the biosynthesis of NPs documented are brown, red, blue-green, micro and macro green algae. Due to the biocompatibility, safety and unique physico-chemical properties of NPs, the algal biosynthesized NPs have also been studied for their biomedical applications, which include anti-bacterial, anti-fungal, anti-cancerous, anti-fouling, bioremediation, and biosensing activities. In this review, the rationale behind the algal-mediated biosynthesis of metallic, metallic oxide, and bimetallic NPs from various algae have been reviewed. Furthermore, an insight into the mechanism of biosynthesis of NPs from algae and their biomedical applications has been reviewed critically.
Collapse
|
402
|
Luo M, Hu K, Zeng Q, Yang X, Wang Y, Dong L, Huang F, Zhang R, Su D. Comparative analysis of the morphological property and chemical composition of soluble and insoluble dietary fiber with bound phenolic compounds from different algae. J Food Sci 2020; 85:3843-3851. [PMID: 33078401 DOI: 10.1111/1750-3841.15502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 11/26/2022]
Abstract
The morphological, physicochemical, and biochemical properties of soluble and insoluble dietary fiber from seven types of algae were investigated. The soluble dietary fiber (SDF) contents (6.48 to 60.90% of the total fiber) in most of the investigated algae were significantly lower than the insoluble dietary fiber (IDF) contents (39.10 to 93.52% of the total fiber). It can be inferred from the infrared and UV-Vis spectra that the SDF and IDF of algae may contain cellulose, hemicellulose, various monosaccharides, phenolic compounds, and quinone pigments. The bound phenolic in the seven algae varied widely in contents (3.76 to 14.08 mg GAE/g in IDF and 1.94 to 8.61 mg GAE/g in SDF), whose antioxidant activities in the IDF were stronger than those in SDF because of different phenolic compositions. The HPLC-mass spectrometry (MS)/MS results showed that the IDF may contain methyl-8α-hydroxy-grindelate-7β-O-7'β-ether hydrate, hydroxydecanoic acid, and malyngic acid. PRACTICAL APPLICATION: Polysaccharides of high content in algae cannot be digested by humans, hence regarded as dietary fibers. A large amount of bound phenolic compounds in dietary fibers can add to the biological activities of dietary fibers. These topics are important to the development of seaweed-based functional foods.
Collapse
|
403
|
Li W, Zhong D, Hua S, Du Z, Zhou M. Biomineralized Biohybrid Algae for Tumor Hypoxia Modulation and Cascade Radio-Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44541-44553. [PMID: 32935973 DOI: 10.1021/acsami.0c14400] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biomineralization of biomaterials has shown extraordinary potential in cancer treatment, but the exploration of their in vivo applications is still insufficient. Here, we report a biohybrid microalgae system using a biomineralization approach to improve their biocompatibility, while keeping their living activities for radiation and photodynamic synergistic therapy in breast cancer. The biohybrid algae (Algae@SiO2) synthesized by a one-step biomimetic silicification method could significantly enhance their cytotoxicity and tolerance, improving the living activity in the tumor area. The innate chlorophyll and unique optical property make Algae@SiO2 possess dual imaging ability, namely, photoacoustic imaging and fluorescence imaging. Algae@SiO2 accumulated in tumor sites could generate oxygen in situ by external light-mediated photosynthesis, relieve tumor hypoxia, and then enhance the efficiency of radiation therapy. As a natural photosensitizer, the released chlorophyll from Algae@SiO2 could provide reactive oxygen species to kill the cancer cells for the cascaded photodynamic therapy. The significant suppression of tumor growth in the mice bearing 4T1 tumor successfully demonstrates the promising anti-tumor effect of the Algae@SiO2-mediated synergistic therapy. Our results show that biohybrid algae, integrated with PAI/FI dual imaging, radiosensitization, and cascaded photothermal therapy, is a promising multifunctional efficient biosystem for cancer treatment.
Collapse
|
404
|
Mearns AJ, Morrison AM, Arthur C, Rutherford N, Bissell M, Rempel-Hester MA. Effects of pollution on marine organisms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1510-1532. [PMID: 32671886 DOI: 10.1002/wer.1400] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
This review covers selected 2019 articles on the biological effects of pollutants, including human physical disturbances, on marine and estuarine plants, animals, ecosystems, and habitats. The review, based largely on journal articles, covers field, and laboratory measurement activities (bioaccumulation of contaminants, field assessment surveys, toxicity testing, and biomarkers) as well as pollution issues of current interest including endocrine disrupters, emerging contaminants, wastewater discharges, marine debris, dredging, and disposal. Special emphasis is placed on effects of oil spills and marine debris due largely to the 2010 Deepwater Horizon oil blowout in the Gulf of Mexico and proliferation of data on the assimilation and effects of marine debris microparticulates. Several topical areas reviewed in the past (e.g., mass mortalities ocean acidification) were dropped this year. The focus of this review is on effects, not on pollutant sources, chemistry, fate, or transport. There is considerable overlap across subject areas (e.g., some bioaccumulation data may be appeared in other topical categories such as effects of wastewater discharges, or biomarker studies appearing in oil toxicity literature). Therefore, we strongly urge readers to use keyword searching of the text and references to locate related but distributed information. Although nearly 400 papers are cited, these now represent a fraction of the literature on these subjects. Use this review mainly as a starting point. And please consult the original papers before citing them.
Collapse
|
405
|
Furey PC, Lee SS, Clemans DL. Substratum-associated microbiota. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1629-1648. [PMID: 33463854 DOI: 10.1002/wer.1410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 06/12/2023]
Abstract
Highlights of new, interesting, and emerging research findings on substratum-associated microbiota covered from a survey of 2019 literature from primarily freshwaters provide insight into research trends of interest to the Water Environment Federation and others interested in benthic, aquatic environments. Coverage of topics on bottom-associated or attached algae and cyanobacteria, though not comprehensive, includes new methods, taxa new-to-science, nutrient dynamics, auto- and heterotrophic interactions, grazers, bioassessment, herbicides and other pollutants, metal contaminants, and nuisance, and bloom-forming and harmful algae. Coverage of bacteria, also not comprehensive, focuses on the ecology of benthic biofilms and microbial communities, along with the ecology of microbes like Caulobacter crescentus, Rhodobacter, and other freshwater microbial species. Bacterial topics covered also include metagenomics and metatranscriptomics, toxins and pollutants, bacterial pathogens and bacteriophages, and bacterial physiology. Readers may use this literature review to learn about or renew their interest in the recent advances and discoveries regarding substratum-associated microbiota. PRACTITIONER POINTS: This review of literature from 2019 on substratum-associated microbiota presents highlights of findings on algae, cyanobacteria, and bacteria from primarily freshwaters. Coverage of algae and cyanobacteria includes findings on new methods, taxa new to science, nutrient dynamics, auto- and heterotrophic interactions, grazers, bioassessment, herbicides and other pollutants, metal contaminants, and nuisance, bloom-forming and harmful algae. Coverage of bacteria includes findings on ecology of benthic biofilms and microbial communities, the ecology of microbes, metagenomics and metatranscriptomics, toxins and pollutants, bacterial pathogens and bacteriophages, and bacterial physiology. Highlights of new, noteworthy and emerging topics build on those from 2018 and will be of relevance to the Water Environment Federation and others interested in benthic, aquatic environments.
Collapse
|
406
|
Sheehan NP, Ng A, Murray K, Martinez E, Quell K, Ouellette C, Flagg T, Boyle J. Bioenergy from biofuel residues and waste. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1433-1439. [PMID: 32574406 DOI: 10.1002/wer.1381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
This article is a review of the scientific literature published in 2019 on topics relating to bioenergy from biofuel residues and waste. This literature review is divided into the following sections: Feedstocks, Biodiesel, Bioethanol, Hydrogen, Biohydrogen, Biofuel Residues, Microalgae, and Lignocelluloses.
Collapse
|
407
|
Mateos R, Pérez-Correa JR, Domínguez H. Bioactive Properties of Marine Phenolics. Mar Drugs 2020; 18:E501. [PMID: 33007997 PMCID: PMC7601137 DOI: 10.3390/md18100501] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Phenolic compounds from marine organisms are far less studied than those from terrestrial sources since their structural diversity and variability require powerful analytical tools. However, both their biological relevance and potential properties make them an attractive group deserving increasing scientific interest. The use of efficient extraction and, in some cases, purification techniques can provide novel bioactives useful for food, nutraceutical, cosmeceutical and pharmaceutical applications. The bioactivity of marine phenolics is the consequence of their enzyme inhibitory effect and antimicrobial, antiviral, anticancer, antidiabetic, antioxidant, or anti-inflammatory activities. This review presents a survey of the major types of phenolic compounds found in marine sources, as well as their reputed effect in relation to the occurrence of dietary and lifestyle-related diseases, notably type 2 diabetes mellitus, obesity, metabolic syndrome, cancer and Alzheimer's disease. In addition, the influence of marine phenolics on gut microbiota and other pathologies is also addressed.
Collapse
|
408
|
Milito A, Orefice I, Smerilli A, Castellano I, Napolitano A, Brunet C, Palumbo A. Insights into the Light Response of Skeletonema marinoi: Involvement of Ovothiol. Mar Drugs 2020; 18:md18090477. [PMID: 32962291 PMCID: PMC7551349 DOI: 10.3390/md18090477] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Diatoms are one of the most widespread groups of microalgae on Earth. They possess extraordinary metabolic capabilities, including a great ability to adapt to different light conditions. Recently, we have discovered that the diatom Skeletonema marinoi produces the natural antioxidant ovothiol B, until then identified only in clams. In this study, we investigated the light-dependent modulation of ovothiol biosynthesis in S. marinoi. Diatoms were exposed to different light conditions, ranging from prolonged darkness to low or high light, also differing in the velocity of intensity increase (sinusoidal versus square-wave distribution). The expression of the gene encoding the key ovothiol biosynthetic enzyme, ovoA, was upregulated by high sinusoidal light mimicking natural conditions. Under this situation higher levels of reactive oxygen species and nitric oxide as well as ovothiol and glutathione increase were detected. No ovoA modulation was observed under prolonged darkness nor low sinusoidal light. Unnatural conditions such as continuous square-wave light induced a very high oxidative stress leading to a drop in cell growth, without enhancing ovoA gene expression. Only one of the inducible forms of nitric oxide synthase, nos2, was upregulated by light with consequent production of NO under sinusoidal light and darkness conditions. Our data suggest that ovothiol biosynthesis is triggered by a combined light stress caused by natural distribution and increased photon flux density, with no influence from the daily light dose. These results open new perspectives for the biotechnological production of ovothiols, which are receiving a great interest for their biological activities in human model systems.
Collapse
|
409
|
Jamet E, Dunand C, Popper ZA. Editorial: Co-Evolution of Plant Cell Wall Polymers. FRONTIERS IN PLANT SCIENCE 2020; 11:598299. [PMID: 33072157 PMCID: PMC7531020 DOI: 10.3389/fpls.2020.598299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 06/02/2023]
|
410
|
Yan MM, Chen SN, Huang TL, Jia JY, Liu KW, Miao YT, Zong RR. [Water Quality and Bacterial Population Driving Mechanism of Algae Vertical Succession in Stratified Reservoir]. HUAN JING KE XUE= HUANJING KEXUE 2020; 41:3285-3296. [PMID: 32608902 DOI: 10.13227/j.hjkx.202001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phytoplankton and bacteria are important components of the aquatic food web, and play a critical role in substance circulation and energy exchange in freshwater ecosystems. The succession of algae is closely related to the metabolism and structural succession of bacterial populations in the water column. Thus, in this study, the vertical succession characteristics of phytoplankton and bacteria community structure and their coupling with water quality were investigated during an algal bloom in the Lijiahe Reservoir using high-throughput DNA sequencing and Biolog technologies. The results showed that the Lijiahe Reservoir was in the thermal stratification stage in August, and the pH, dissolved oxygen, and NH4+-N of the water column gradually decreased with depth (P<0.001). Algal cell concentration and chlorophyll a exhibited a simultaneous trend (P<0.001), and the maximum values in the surface layer were 3363.33×104 cells·L-1 and 7.03 μg·L-1, respectively. The algal community structure was dominated by Microcystis at water depths of 0 m and 3 m, and at 6 m water depth, Cyclotella replaced Microcystis as the most dominant algae, with a relative abundance of 57.28%. Biolog analysis indicated that the outbreak of Microcystis had a significant impact on bacterial metabolic activity and its relative abundance, but the diversity of bacterial population metabolic activity varied less. A total of 1420 operational taxonomic units were found by high-throughput sequencing, belonging to 10 bacterial phyla. Of these, Actinobacteria and Proteobacteria dominated in all water layers, and their relative abundances were more than 50%. The relative abundance of Chlorobi and Planctomycetes varied significantly with water depth, reaching their maxima at a depth of 6 m with values of 10.29% and 6.78%, respectively, which were both negatively correlated with algal density (P<0.05). Firmicutes and Gemmatimonadetes were positively correlated with algal density (P<0.05). A heat map fingerprint showed that the vertical distribution of the bacterial community structure of the Lijiahe Reservoir varied significantly, and with the increase in water depth, the bacterial community was more uniformly distributed and tended to diversify. Redundancy analysis (RDA) showed that the vertical distribution of the bacterial and algal community structure was regulated by different water qualities, and the difference was significant. This study investigated the coupling mechanism of algal and bacterial communities during the algal bloom in the Lijiahe Reservoir, and the results provided a scientific basis for the investigation of the molecular microecological driving mechanism of water-source algal blooms.
Collapse
|
411
|
Falarz LJ, Xu Y, Caldo KMP, Garroway CJ, Singer SD, Chen G. Characterization of the diversification of phospholipid:diacylglycerol acyltransferases in the green lineage. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2025-2038. [PMID: 32538516 DOI: 10.1111/tpj.14880] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 05/03/2023]
Abstract
Triacylglycerols have important physiological roles in photosynthetic organisms, and are widely used as food, feed and industrial materials in our daily life. Phospholipid:diacylglycerol acyltransferase (PDAT) is the pivotal enzyme catalyzing the acyl-CoA-independent biosynthesis of triacylglycerols, which is unique in plants, algae and fungi, but not in animals, and has essential functions in plant and algal growth, development and stress responses. Currently, this enzyme has yet to be examined in an evolutionary context at the level of the green lineage. Some fundamental questions remain unanswered, such as how PDATs evolved in photosynthetic organisms and whether the evolution of terrestrial plant PDATs from a lineage of charophyte green algae diverges in enzyme function. As such, we used molecular evolutionary analysis and biochemical assays to address these questions. Our results indicated that PDAT underwent divergent evolution in the green lineage: PDATs exist in a wide range of plants and algae, but not in cyanobacteria. Although PDATs exhibit the conservation of several features, phylogenetic and selection-pressure analyses revealed that overall they evolved to be highly divergent, driven by different selection constraints. Positive selection, as one major driving force, may have resulted in enzymes with a higher functional importance in land plants than green algae. Further structural and mutagenesis analyses demonstrated that some amino acid sites under positive selection are critically important to PDAT structure and function, and may be central in lecithin:cholesterol acyltransferase family enzymes in general.
Collapse
|
412
|
Young JN, Schmidt K. It's what's inside that matters: physiological adaptations of high-latitude marine micro algae to environmental change. THE NEW PHYTOLOGIST 2020; 227:1307-1318. [PMID: 32391569 DOI: 10.1111/nph.16648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/23/2020] [Indexed: 05/13/2023]
Abstract
Marine microalgae within seawater and sea ice fuel high-latitude ecosystems and drive biogeochemical cycles through the fixation and export of carbon, uptake of nutrients, and production and release of oxygen and organic compounds. High-latitude marine environments are characterized by cold temperatures, dark winters and a strong seasonal cycle. Within this environment a number of diverse and dynamic habitats exist, particularly in association with the formation and melt of sea ice, with distinct microalgal communities that transition with the season. Algal physiology is a crucial component, both responding to the dynamic environment and in turn influencing its immediate physicochemical environment. As high-latitude oceans shift into new climate regimes the analysis of seasonal responses may provide insights into how microalgae will respond to long-term environmental change. This review discusses recent developments in our understanding of how the physiology of high-latitude marine microalgae is regulated over a polar seasonal cycle, with a focus on ice-associated (sympagic) algae. In particular, physiologies that impact larger scale processes will be explored, with an aim to improve our understanding of current and future ecosystems and biogeochemical cycles.
Collapse
|
413
|
Enhancing Sustainability by Improving Plant Salt Tolerance through Macro- and Micro-Algal Biostimulants. BIOLOGY 2020; 9:biology9090253. [PMID: 32872247 PMCID: PMC7564450 DOI: 10.3390/biology9090253] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022]
Abstract
Algal biomass, extracts, or derivatives have long been considered a valuable material to bring benefits to humans and cultivated plants. In the last decades, it became evident that algal formulations can induce multiple effects on crops (including an increase in biomass, yield, and quality), and that algal extracts contain a series of bioactive compounds and signaling molecules, in addition to mineral and organic nutrients. The need to reduce the non-renewable chemical input in agriculture has recently prompted an increase in the use of algal extracts as a plant biostimulant, also because of their ability to promote plant growth in suboptimal conditions such as saline environments is beneficial. In this article, we discuss some research areas that are critical for the implementation in agriculture of macro- and microalgae extracts as plant biostimulants. Specifically, we provide an overview of current knowledge and achievements about extraction methods, compositions, and action mechanisms of algal extracts, focusing on salt-stress tolerance. We also outline current limitations and possible research avenues. We conclude that the comparison and the integration of knowledge on the molecular and physiological response of plants to salt and to algal extracts should also guide the extraction procedures and application methods. The effects of algal biostimulants have been mainly investigated from an applied perspective, and the exploitation of different scientific disciplines is still much needed for the development of new sustainable strategies to increase crop tolerance to salt stress.
Collapse
|
414
|
Pollard M, Hunsicker E, Platt M. A Tunable Three-Dimensional Printed Microfluidic Resistive Pulse Sensor for the Characterization of Algae and Microplastics. ACS Sens 2020; 5:2578-2586. [PMID: 32638589 DOI: 10.1021/acssensors.0c00987] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Technologies that can detect and characterize particulates in liquids have applications in health, food, and environmental monitoring. Simply counting the numbers of cells or particles is not sufficient for most applications; other physical properties must also be measured. Typically, it is necessary to compromise between the speed of a sensor and its chemical and biological specificity. Here, we present a low-cost and high-throughput multiuse counter that classifies a particle's size, concentration, and shape. We also report how the porosity/conductivity or the particle can influence the signal. Using an additive manufacturing process, we have assembled a reusable flow resistive pulse sensor capable of being tuned in real time to measure particles from 2 to 30 μm across a range of salt concentrations, i.e., 2.5 × 10-4 to 0.1 M. The device remains stable for several days with repeat measurements. We demonstrate its use for characterizing algae with spherical and rod structures as well as microplastics shed from tea bags. We present a methodology that results in a specific signal for microplastics, namely, a conductive pulse, in contrast to particles with smooth surfaces such as calibration particles or algae, allowing the presence of microplastics to be easily confirmed and quantified. In addition, the shapes of the signal and of the particle are correlated, giving an extra physical property to characterize suspended particulates. The technology can rapidly screen volumes of liquid, 1 mL/min, for the presence of microplastics and algae.
Collapse
|
415
|
Baker D, Basondwah S, Jambi E, Rahimuddin SA, Abuzaid M, Aly M. Molecular Identification, Characterization and Antioxidant Activities of Some Bacteria Associated with Algae in the Red Sea of Jeddah. Pak J Biol Sci 2020; 22:467-476. [PMID: 31930836 DOI: 10.3923/pjbs.2019.467.476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Algae-associated bacteria produce secondary metabolites that have a great biological impact. The aim of this study was isolation, identification and evaluation the antioxidant activities of the associated bacteria of seven algae, Padina pavonica, Dictyota dichotoma, Cystoseira myrica, Halimeda opuntia, Ulva lactuca, Digenea simplex and Jania sp. The bacteria were isolated, characterized and identified. Identification was carried out using 16S rRNA gene sequencing. MATERIALS AND METHODS The identified bacteria were belonging to 6 families, Alteromonadaceae, Bacillaceae, Lactobacillaceae, Pseudomonadaceae, Rhodobacteraceae and Vibrionaceae and 9 genera. The identified bacteria were belonging to genera, Alteromonas, Bacillus, Lysinibacillus Vibrio, Lactobacillus, Paracoccus, Leisingera, Pseudomonas and Pseudovibrio. The antioxidant activities of the bacterial ethyl acetate extracts was examined by scavenging DPPH (2,2-diphenyl-1-picrylhydrazyl) and FRAP (Ferric Reducing Antioxidant Power) methods. RESULTS Out of the 17 isolated bacteria, Lactobacillus plantarum showed 95.7% free radical scavenging with EC50 = 17.7 μg mL-1, which is nearly similar to the positive control (Butylated Hydroxytoluene, BHT). The FRAP value of Lactobacillus extract was 2.00 mM ferric equivalent/mg of the extract. Phytochemical analysis of the bacterial extract revealed the presence of some secondary metabolites such as steroids, saponins, tannins, flavonoids, anthocyanin and betacyanin in all tested extracts. CONCLUSION The Red Sea algal associated bacteria have a great antioxidant potential that can be used in pharmaceutical industries.
Collapse
|
416
|
Multi-Extraction and Quality of Protein and Carrageenan from Commercial Spinosum ( Eucheuma denticulatum). Foods 2020; 9:foods9081072. [PMID: 32781749 PMCID: PMC7464751 DOI: 10.3390/foods9081072] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 11/29/2022] Open
Abstract
Seaweeds contain many valuable compounds that can be used in the food industry. Carrageenan is a polysaccharide which has been extracted from seaweed for centuries and is used as a texturizer in food and non-food products. However, seaweeds contain compounds other than carrageenan, such as proteins, which could also be extracted. This extraction should be done without compromising the industrial scale carrageenan extraction yield and quality. This study aimed at up-stream protein extraction from red seaweed Eucheuma denticulatum by using of an optimized enzyme-assisted extraction, including of an aqueous/enzymatic treatment followed by alkaline extraction, and then the commercial carrageenan extraction. The protein extraction efficiency of four enzymes was evaluated including Celluclast® 1.5L, Shearzyme® 500 L, Alcalase® 2.4 L FG and Viscozyme® L at a concentration of 0.0, 0.1, 0.2 and 0.4% (w/w). To avoid detrimental effects on carrageenan, all the experiments were performed at pH 7 at room temperature. The results showed that 0.2% w/w Alcalase® or Viscozyme® added individually achieved the highest protein extraction efficiencies (59 and 48%, respectively) at pH 7 and room temperature (p < 0.05). Determination of the most common carrageenan quality parameters indicated that using any of these enzymes had no negative effect on the carrageenan yield and quality.
Collapse
|
417
|
Vis ML, Lee J, Eloranta P, Chapuis IS, Lam DW, Necchi O. Paludicola gen. nov. and Revision of the Species Formerly in Batrachospermum Section Turfosa (Batrachospermales, Rhodophyta). JOURNAL OF PHYCOLOGY 2020; 56:844-861. [PMID: 32282080 DOI: 10.1111/jpy.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Since the first phylogenetic study of the order Batrachospermales, Batrachospermum was shown to be paraphyletic. Subsequently, sections of the genus have been methodically investigated using DNA sequences and morphology in order to propose new genera and delineate species. Batrachospermum section Turfosa is the last section with multiple species yet to be examined. New sequence data of specimens from Europe and the United States were combined with the sparse sequence data already available. Phylogenetic analyses using rbcL and COI-5P sequences showed this section to be a well-supported clade, distinct from Batrachospermum section Batrachospermum and its segregate genera. Section Turfosa is raised to the generic rank as Paludicola gen. nov. Substantial genetic variation within the genus was discovered and 12 species are recognized based on DNA sequence data as well as morphological characters and geographic distribution. The following morphological characters were applied to distinguish species: branching pattern (pseudodichotomous or irregular), whorl size (reduced or well developed), primary fascicles (curved or straight), spermatangia origin (primary or secondary fascicles), and carposporophyte arrangement (loose or dense). Previously published species were transferred to the new genus: P. turfosa, P. keratophyta, P. orthosticha, P. phangiae, and P. periploca. Seven new species are proposed as follows: P. groenbladii from Europe; P. communis, P. johnhallii, and P. leafensis from North America; and P. aquanigra, P. diamantinensis, and P. turfosiformis from Brazil. In addition, three unsequenced species in the section, P. bakarensis, P. gombakensis, and P. tapirensis, were transferred to the new genus.
Collapse
|
418
|
Xu Y, Wang X, Fu Y, Hu F, Qian G, Liu Q, Sun Y. Interaction energy and detachment of magnetic nanoparticles- algae. ENVIRONMENTAL TECHNOLOGY 2020; 41:2618-2624. [PMID: 30694112 DOI: 10.1080/09593330.2019.1575918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Magnetic separation, a promising bioseparation technology, is confronted with the challenges in recovery and recycle of magnetic matters during algae harvesting for biofuel extraction. The thermodynamic method was used to characterize the surface interactions between MNPs and algae cells. Three methods were adopted to detach magnetic nanoparticles-algae (Microcystis aeruginosa, Synechocystis sp., Nannochloropsis maritima and Stigeoclonium sp.) and recover magnetic nanoparticles (MNPs) in this study. The thermodynamic method indicated that the greatest adhesion strength was expected for Stigeoclonium sp. on MNPs. High detachment efficiency of MNP-algae was achieved by ultrasonic-extracting, which got above 90% after 5 recycles. Moreover, the harvesting efficiencies of these four algae cells could remain more than 90% after 5 recycles using a mixture of the regenerated and the raw MNPs.
Collapse
|
419
|
Krueger-Hadfield SA, Ryan WH. Influence of nutrients on ploidy-specific performance in an invasive, haplodiplontic red macroalga. JOURNAL OF PHYCOLOGY 2020; 56:1114-1120. [PMID: 32348550 DOI: 10.1111/jpy.13011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Worldwide, macroalgae have invaded near-shore marine ecosystems. However, their haplodiplontic life cycles have complicated efforts to predict patterns of growth and spread, particularly since most theoretical predictions are derived from diplontic taxa (i.e., animals). To complete one revolution of the life cycle, two separate ploidy stages, often including separate haploid sexes, must pass through development and reproduction. In the case of the invasive, red macroalga Agarophyton vermiculophyllum, during the invasion of soft-sediment estuaries throughout the Northern Hemisphere, diploid tetrasporophytes came to dominate all free-floating populations and haploid gametophytes were consistently lost. The ecological hypothesis of nutrient limitation might contribute to an explanation of this pattern of tetrasporophytic dominance in free-floating populations. Under this hypothesis, gametophytes should outperform tetrasporophytes under nutrient limited conditions, but tetrasporophytes should be better able to exploit optimal or even abundant nutrient conditions, such as in eutrophic estuaries. We sampled tetrasporophytes, male gametophytes, and female gametophytes from two sites each located on either side of the Delmarva Peninsula that separates the Chesapeake Bay from the Atlantic Ocean. We subjected apices excised from multiple thalli from each life cycle stage to a nutrient-enriched and a nutrient-poor seawater treatment and assessed growth and survival. While nutrient addition increased growth rates, there was no significant difference among ploidies or sexes. Gametophytes did, however, suffer higher mortality than tetrasporophytes. We discuss how nutrient-dependent differences in growth and survival may contribute to observed patterns of tetrasporophytic dominance in soft-sediment A. vermiculophyllum populations.
Collapse
|
420
|
González-Trujillo JD, Pedraza-Garzón E, Donato-Rondon JC, Sabater S. Ecoregional Characteristics Drive the Distribution Patterns of Neotropical Stream Diatoms. JOURNAL OF PHYCOLOGY 2020; 56:1053-1065. [PMID: 32320068 DOI: 10.1111/jpy.13005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
We assessed the relative influence of ecoregional features in explaining diatom distribution in the Orinoco river basin. Ecoregions in the Colombian Orinoco can be seen as imprints of the evolutionary history of the basin, for their current biodiversity and physiographic features are the result of the geological and climatic shifts that have occurred since the Tertiary. Thus, they represent an ideal testing ground for studying the interplay between ecological and evolutionary processes shaping diversity patterns of microorganisms, such as diatoms, in the present day. To study this interplay, we compared diatom community composition variance within and among seven ecoregions and assessed the explanatory power of environmental, spatial and historical drivers. This was done by a combination of correlation analyses, multivariate methods and constrained ordinations. We also deconstructed the whole community data set into ecological guilds (low- and high-profile, and motile) to explore their individual response to the contemporary and historical drivers. Taken together, these analyses indicated that contemporary constraints to species occurrence and dispersal, as well as the legacies of historical events, can provide an explanation for the contemporary distribution of diatoms in the Colombian Orinoco. Specifically, we provided evidence showing that both historical legacies and contemporary environmental conditions (temperature, pH, and phosphorus concentration) are interacting to determine diatoms' distribution. Our results suggest the need to consider ecoregional gradients for unraveling the mechanisms shaping tropical diversity as well as for designing conservation plans.
Collapse
|
421
|
Yakimovich KM, Engstrom CB, Quarmby LM. Alpine Snow Algae Microbiome Diversity in the Coast Range of British Columbia. Front Microbiol 2020; 11:1721. [PMID: 33013720 PMCID: PMC7485462 DOI: 10.3389/fmicb.2020.01721] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/30/2020] [Indexed: 01/31/2023] Open
Abstract
Snow algae blooms contain bacteria, fungi, and other microscopic organisms. We surveyed 55 alpine snow algae blooms, collecting a total of 68 samples, from 12 mountains in the Coast Range of British Columbia, Canada. We used microscopy and rDNA metabarcoding to document biodiversity and query species and taxonomic associations. Across all samples, we found 173 algal, 2,739 bacterial, 380 fungal, and 540 protist/animalia operational taxonomic units (OTUs). In a previous study, we reported that most algal species were distributed along an elevational gradient. In the current study, we were surprised to find no corresponding distribution in any other taxa. We also tested the hypothesis that certain bacterial and fungal taxa co-occur with specific algal taxa. However, despite previous evidence that particular genera co-occur, we found no significant correlations between taxa across our 68 samples. Notably, seven bacterial, one fungal, and two cercozoan OTUs were widely distributed across our study regions. Taken together, these data suggest that any mutualisms with algae may not be taxon specific. We also report evidence of snow algae predation by rotifers, tardigrades, springtails, chytrid fungi, and ciliates, establishing the framework for a complex food web.
Collapse
|
422
|
Influence of the Microalga Chlorella vulgaris on the Growth and Metabolic Activity of Lactobacillus spp. Bacteria. Foods 2020; 9:foods9070959. [PMID: 32698537 PMCID: PMC7404661 DOI: 10.3390/foods9070959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/12/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to evaluate the effect of the algae Chlorella vulgaris on the growth, acidifying activity, proportion of lactic acid isomers, and enzymatic profile of Lactobacillus brevis (ŁOCK 0944, ŁOCK 0980, ŁOCK 0992, and MG451814) isolated from vegetable silages. The results indicated that adding algae at concentrations of 0.1% (w/v) and 1.5% (w/v) to the Lactobacillus spp. growth medium accelerated the growth of bacteria and thus shortened their phase of logarithmic growth. The acidifying activity of the tested Lactobacillus brevis increased with an increased concentration of algae. Lactobacillus spp. cultured in the presence of Chlorella vulgaris showed higher production of l-lactic acid and lower d-lactic acid production. Moreover, the addition of algae changed the enzymatic activity of lactic acid bacteria; for instance, Lactobacillus brevis ŁOCK 0980 demonstrated more enzymatic activity of valine arylamidase, α-galactosidase, and α-glucosidase. Combining Lactobacillus brevis with the algae Chlorella vulgaris allows for the creation of innovative, functional products which confer favorable properties to the final product and open new horizons for the food industry.
Collapse
|
423
|
Chlamydomonas reinhardtii, an Algal Model in the Nitrogen Cycle. PLANTS 2020; 9:plants9070903. [PMID: 32708782 PMCID: PMC7412212 DOI: 10.3390/plants9070903] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
Nitrogen (N) is an essential constituent of all living organisms and the main limiting macronutrient. Even when dinitrogen gas is the most abundant form of N, it can only be used by fixing bacteria but is inaccessible to most organisms, algae among them. Algae preferentially use ammonium (NH4+) and nitrate (NO3−) for growth, and the reactions for their conversion into amino acids (N assimilation) constitute an important part of the nitrogen cycle by primary producers. Recently, it was claimed that algae are also involved in denitrification, because of the production of nitric oxide (NO), a signal molecule, which is also a substrate of NO reductases to produce nitrous oxide (N2O), a potent greenhouse gas. This review is focused on the microalga Chlamydomonas reinhardtii as an algal model and its participation in different reactions of the N cycle. Emphasis will be paid to new actors, such as putative genes involved in NO and N2O production and their occurrence in other algae genomes. Furthermore, algae/bacteria mutualism will be considered in terms of expanding the N cycle to ammonification and N fixation, which are based on the exchange of carbon and nitrogen between the two organisms.
Collapse
|
424
|
Lorenz Simões F, Contador-Mejías T, Rendoll-Cárcamo J, Pérez-Troncoso C, Hayward SAL, Turner E, Convey P. Distribution and Habitat Preferences of the Newly Rediscovered Telmatogeton magellanicus (Jacobs, 1900) (Diptera: Chironomidae) on Navarino Island, Chile. INSECTS 2020; 11:E442. [PMID: 32674412 PMCID: PMC7412013 DOI: 10.3390/insects11070442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 11/17/2022]
Abstract
The habitat of the intertidal flightless midge Telmatogeton magellanicus (Jacobs, 1900) is described for the first time from the northern coast of Navarino Island, Tierra del Fuego, Chile. Additionally, we report the first observations of adult behaviour in the wild. We delineate the species' distribution across three tidal zones (high, mid and low), and identify substrate characteristics that favour the presence of the midge. The mid-tide zone was the key habitat utilized by T. magellanicus, with lower densities in the low-tide zone and no presence in the high-tide zone. There was a strong association between the presence of larvae and filamentous algae, especially Bostrychia spp. and, to a lesser extent, Ulva spp., as well as between larvae and the presence of larger, more stable boulders. As a result, the species' overall distribution was widespread but patchy. We suggest that the main limiting factor is the relative humidity experienced in different habitats. One of the most striking features of the behavioural observations during data collection was the extremely active adults, which suggests high energy expenditure over a very short period of time. This may be due to the limited time available to find mates in a single low-tide period, when adults have about three hours after emerging from the pupa to complete mating and oviposition before inundation by the tide. The data presented here provide a baseline for future studies on this species' ecology, phenology, physiology and general biology.
Collapse
|
425
|
Natural Compounds from the Marine Brown Alga Caulocystis cephalornithos with Potent In Vitro-Activity against the Parasitic Nematode Haemonchus contortus. Pathogens 2020; 9:pathogens9070550. [PMID: 32659883 PMCID: PMC7400099 DOI: 10.3390/pathogens9070550] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Eight secondary metabolites (1 to 8) were isolated from a marine sponge, a marine alga and three terrestrial plants collected in Australia and subsequently chemically characterised. Here, these natural product-derived compounds were screened for in vitro-anthelmintic activity against the larvae and adult stages of Haemonchus contortus (barber's pole worm)-a highly pathogenic parasitic nematode of ruminants. Using an optimised, whole-organism screening system, compounds were tested on exsheathed third-stage larvae (xL3s) and fourth-stage larvae (L4s). Anthelmintic activity was initially evaluated on these stages based on the inhibition of motility, development and/or changes in morphology (phenotype). We identified two compounds, 6-undecylsalicylic acid (3) and 6-tridecylsalicylic acid (4) isolated from the marine brown alga, Caulocystis cephalornithos, with inhibitory effects on xL3 and L4 motility and larval development, and the induction of a "skinny-straight" phenotype. Subsequent testing showed that these two compounds had an acute nematocidal effect (within 1-12 h) on adult males and females of H. contortus. Ultrastructural analysis of adult worms treated with compound 4 revealed significant damage to subcuticular musculature and associated tissues and cellular organelles including mitochondria. In conclusion, the present study has discovered two algal compounds possessing acute anthelmintic effects and with potential for hit-to-lead progression. Future work should focus on undertaking a structure-activity relationship study and on elucidating the mode(s) of action of optimised compounds.
Collapse
|