26
|
Wang SF, Du CY, Li M, Wen B, Shen QJ, Ma F, Zhang L, Deng H. Endometrial Cancer Detection by DNA Methylation Analysis in Cervical Papanicolaou Brush Samples. Technol Cancer Res Treat 2024; 23:15330338241242637. [PMID: 38584417 PMCID: PMC11005493 DOI: 10.1177/15330338241242637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 04/09/2024] Open
Abstract
Background: Endometrial cancer (EC) is the leading gynecological cancer worldwide, yet current EC screening approaches are not satisfying. The purpose of this retrospective study was to evaluate the feasibility and capability of DNA methylation analysis in cervical Papanicolaou (Pap) brush samples for EC detection. Methods: We used quantitative methylation-sensitive PCR (qMS-PCR) to determine the methylation status of candidate genes in EC tissue samples, as well as cervical Pap brushes. The ability of RASSF1A and HIST1H4F to serve as diagnostic markers for EC was then examined in cervical Pap brush samples from women with endometrial lesions of varying degrees of severity. Results: Methylated RASSF1A and HIST1H4F were found in EC tissues. Further, methylation of the two genes was also observed in cervical Pap smear samples from EC patients. Methylation levels of RASSF1A and HIST1H4F increased as endometrial lesions progressed, and cervical Pap brush samples from women affected by EC exhibited significantly higher levels of methylated RASSF1A and HIST1H4F compared to noncancerous controls (P < .001). Receiver operating characteristic (ROC) curves and area under the curve (AUC) analyses revealed RASSF1A and HIST1H4F methylation with a combined AUC of 0.938 and 0.951 for EC/pre-EC detection in cervical Pap brush samples, respectively. Conclusion: These findings demonstrate that DNA methylation analysis in cervical Pap brush samples may be helpful for EC detection, broadening the scope of the commonly used cytological screening. Our proof-of-concept study provides new insights into the field of clinical EC diagnosis.
Collapse
|
27
|
Liu H, Liang X, Liu Y, Fan C, Wen B, Zhang L. Crystal structure of Ti 4Ni 2C. IUCRDATA 2024; 9:x240043. [PMID: 38322035 PMCID: PMC10842284 DOI: 10.1107/s2414314624000439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Single crystals of the inter-metallic phase with composition Ti4Ni2C were serendipitously obtained by high-pressure sinter-ing of a mixture with initial chemical composition Ti2Ni. The Ti4Ni2C phase crystallizes in the Fd m space group and can be considered as a partially filled Ti2Ni structure with the C atom occupying an octa-hedral void. Ti4Ni2C is isotypic with Ti4Ni2O, Nb4Ni2C and Ta4Ni2C, all of which were studied previously by means of powder diffraction.
Collapse
|
28
|
Pang F, Zhang L, Li M, Yi X, Wang Y, Yang P, Wen B, Jiang J, Teng Y, Yang X, Chen L, Xu J, Wang L. Ribosomal S6 protein kinase 4 promotes resistance to EZH2 inhibitors in glioblastoma. Cancer Gene Ther 2023; 30:1636-1648. [PMID: 37726387 DOI: 10.1038/s41417-023-00666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
Glioblastoma (GBM) is a highly malignant type of brain tumor with limited treatment options. Recent research has focused on epigenetic regulatory factors, such as Enhancer of Zeste Homolog 2 (EZH2), which plays a role in gene expression through epigenetic modifications. EZH2 inhibitors have been developed as potential therapeutic agents for GBM, but resistance to these inhibitors remains a considerable challenge. This study aimed to investigate the role of ribosomal S6 protein kinase 4 (RSK4) in GBM and its association with resistance to EZH2 inhibitors. We first induced drug resistance in primary GBM cell lines by treatment with an EZH2 inhibitor and observed increases in the expression of stemness markers associated with glioblastoma stem cells (GSCs) in the drug-resistant cells. We also found high expression of RSK4 in GBM patient samples and identified the correlation of high RSK4 expression with poor prognosis and GSC marker expression. Further experiments showed that knocking down RSK4 in drug-resistant GBM cells restored their sensitivity to EZH2 inhibitors and decreased the expression of GSC markers, thus reducing their self-renewal capacity. From a mechanistic perspective, we discovered that RSK4 directly phosphorylates EZH2, activating the EZH2/STAT3 pathway and promoting resistance to EZH2 inhibitors in GBM. We also found that combining EZH2 inhibitors with an RSK4 inhibitor called BI-D1870 had better inhibitory effects on GBM occurrence and progression in both in vitro and in vivo experiments. In conclusion, this study demonstrates that RSK4 enhances cancer stemness and mediates resistance to EZH2 inhibitors in GBM. Combination treatment with EZH2 inhibitors and RSK4 inhibitors is a promising potential therapeutic strategy for GBM. Collectively, our results strongly demonstrate that RSK4 regulates the EZH2/STAT3 pathway to promote GSC maintenance and EZH2i resistance in a PRC2-independent manner, indicating that RSK4 is a promising therapeutic target for GBM.
Collapse
|
29
|
Wen B, Luo L, Zeng Z, Luo X. MYL9 promotes squamous cervical cancer migration and invasion by enhancing aerobic glycolysis. J Int Med Res 2023; 51:3000605231208582. [PMID: 37950670 PMCID: PMC10640809 DOI: 10.1177/03000605231208582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/02/2023] [Indexed: 11/13/2023] Open
Abstract
OBJECTIVE This study explored the mechanism of squamous cervical cancer (SCC) progression. METHODS Reverse transcription-quantitative polymerase chain reaction and western blotting were used to evaluate the expression of myosin light chain 9 (MYL9) in SCC tissues and cell lines. Furthermore, Transwell and Boyden assays were used to assess the function of MYL9 in SCC progression. In addition, the levels of lactate and aerobic glycolysis were used to explore the detailed mechanism of MYL9 in SCC. RESULTS The mRNA and protein levels of MYL9 were elevated in SCC tissues, and MYL9 knockdown inhibited the migration and invasion of SCC cell lines. A mechanistic study demonstrated that MYL9 promotes SCC migration and invasion by enhancing aerobic glycolysis and increasing the activity of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway. CONCLUSIONS MYL9 was upregulated in SCC, and it enhanced JAK2/STAT3 pathway activity and promoted metastasis and glycolysis in SCC.
Collapse
|
30
|
Elaimy AL, Al-Holou W, Scott A, Marini BL, Pai A, Wen B, Wang L, Sun D, Heth JA, Umemura Y, Wahl DR. A Phase 0 Study Assessing the Intracranial Activity of a Metabolic Radiosensitizer in Patients with Glioblastoma. Int J Radiat Oncol Biol Phys 2023; 117:e102. [PMID: 37784629 DOI: 10.1016/j.ijrobp.2023.06.872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
PURPOSE/OBJECTIVE(S) Efforts to overcome treatment resistance in glioblastoma (GBM) have been unsuccessful due to tumor heterogeneity and poor intracranial drug penetration. Targeting altered metabolism is a promising approach to improve GBM therapy despite this heterogeneity. Mycophenolate mofetil (MMF) is an inhibitor of purine synthesis that sensitizes GBM to radiation and temozolomide (TMZ) in vitro and in vivo, but its ability to cross the blood brain barrier and inhibit GBM metabolism in patients is unknown. NCT04477200 is a phase 0/1 dose escalation study of MMF combined with radiation and temozolomide in GBM. Here we report the phase 0 results of this study assessing the intracranial activity of MMF. MATERIALS/METHODS Purine (GTP and IMP) and mycophenolic acid (MPA, the active metabolite of MMF) concentrations were determined using mass spectrometry in flash-frozen tumor (enhancing and non-enhancing) and normal cortex obtained from 8 patients with recurrent GBM who received MMF (500, 1000, 1500 and 2000 mg BID, N = 2 patients each dose level) for 1 week prior to re-resection and 5 control patients who did not receive MMF prior to re-resection. Plasma MPA concentration was similarly quantified to calculate the enhancing tumor, non-enhancing tumor and normal cortex to plasma MPA ratios. RESULTS Patients who received MMF had a mean MPA concentration of 2.2 ± 0.7 µM in the enhancing tumor samples, 1.2 ± 0.5 µM in the non-enhancing tumor samples and 1.3 ± 0.5 µM in normal cortex. MPA concentration was negligible in control patients. This corresponded to tissue/plasma MPA ratios of 0.31, 0.17 and 0.10 for enhancing tumor, non-enhancing tumor and normal cortex, respectively. The GTP/IMP ratio was decreased by 75% in enhancing tumor in MMF-treated patients compared to untreated controls (p = 0.009), indicating effective target engagement and inhibition of purine synthesis. The GTP/IMP ratio was also decreased in cortex and non-enhancing tumor, though a paucity of control samples prevented statistical analysis. CONCLUSION Twice daily MMF treatment yields intracranial drug concentrations above 1 µM and lowers the GTP/IMP ratio in GBMs, consistent with target engagement. As we have previously observed radiosensitization in vitro with MPA concentrations of 1 µM, these data suggest that MMF may achieve adequate CNS penetration for therapeutic benefit. The Phase 1 component of this study to determine the dose limiting toxicity and maximally tolerated dose of MMF when combined with reirradiation in recurrent GBM and radiation and TMZ in newly diagnosed GBM is ongoing.
Collapse
|
31
|
Liu Y, Liu H, Wen B, Fan C. Al 0.88Cu 0.94Fe 0.18. IUCRDATA 2023; 8:x230870. [PMID: 37936593 PMCID: PMC10626848 DOI: 10.1107/s2414314623008702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023] Open
Abstract
The inter-metallic phase with composition Al0.88Cu0.94Fe0.18 was synthesized by high-temperature sinter-ing of a mixture with initial chemical composition Al78Cu48Fe13. Al0.88Cu0.94Fe0.18 adopts the CsCl structure type in space-group Pm m. The structure analysis revealed that one site is co-occupied by Al and Cu with a ratio of 0.88 (5):0.12 (5) and the other is co-occupied by Fe and Cu with a ratio of 0.2 (4):0.8 (4). The Al/Cu⋯Fe/Cu separation is 2.5465 (13) Å.
Collapse
|
32
|
Chen T, Xie J, Wen B, Yin Q, Lin R, Zhu S, Gao P. Inhibition of defect-induced α-to-δ phase transition for efficient and stable formamidinium perovskite solar cells. Nat Commun 2023; 14:6125. [PMID: 37777546 PMCID: PMC10543379 DOI: 10.1038/s41467-023-41853-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023] Open
Abstract
Defects passivation is widely devoted to improving the performance of formamidinium lead triiodide perovskite solar cells; however, the effect of various defects on the α-phase stability is still unclear. Here, using density functional theory, we first reveal the degradation pathway of the formamidinium lead triiodide perovskite from α to δ phase and investigate the effect of various defects on the energy barrier of phase transition. The simulation results predict that iodine vacancies are most likely to trigger the degradation, since they obviously reduce the energy barrier of α-to-δ phase transition and have the lowest formation energies at the perovskite surface. A water-insoluble lead oxalate compact layer is introduced on the perovskite surface to largely suppress the α-phase collapse through hindering the iodine migration and volatilization. Furthermore, this strategy largely reduces the interfacial nonradiative recombination and boosts the efficiency of the solar cells to 25.39% (certified 24.92%). Unpackaged device can maintain 92% of its initial efficiency after operation at maximum power point under simulated air mass 1.5 G irradiation for 550 h.
Collapse
|
33
|
Sun J, Yang X, Sun H, Huang S, An H, Xu W, Chen W, Zhao W, He C, Zhong X, Li T, Liu Y, Wen B, Du Q, He S. Baicalin inhibits hepatocellular carcinoma cell growth and metastasis by suppressing ROCK1 signaling. Phytother Res 2023; 37:4117-4132. [PMID: 37246830 DOI: 10.1002/ptr.7873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/30/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy affecting many people worldwide. Baicalin is a flavonoid extracted from the dried root of Scutellaria baicalensis Georgi. It can effectively inhibit the occurrence and development of HCC. Nonetheless, the mechanism through which Baicalin inhibits HCC growth and metastasis remain unknown. This work discovered that Baicalin inhibited HCC cell proliferation, invasion, metastasis while inducing cell cycle arrest at the G0/G1 phase and apoptosis. In vivo HCC xenograft results indicated that Baicalin inhibited HCC growth. Western blotting analysis indicated that Baicalin suppressed the expressions of ROCK1, p-GSK-3β, and β-catenin, whereas it up-regulated the expressions of GSK-3β and p-β-catenin. Baicalin also reduced the expressions of Bcl-2, C-myc, Cyclin D1, MMP-9, and VEGFA, while increasing the expression of Bax. Molecular docking revealed that Baicalin docked in the binding site of the ROCK1 agonist, with a binding energy of -9 kcal/mol between the two. In addition, lentivirus-mediated suppression of ROCK1 expression improved the inhibitory effect of Baicalin on the proliferation, invasion, and metastasis of HCC and the expression of proteins associated with ROCK1/GSK-3β/β-catenin signaling pathway. Moreover, restoring ROCK1 expression decreased the anti-HCC efficacy of Baicalin. These findings suggest that Baicalin may decrease HCC proliferation and metastasis by suppressing ROCK1/GSK-3β/β-catenin signaling.
Collapse
|
34
|
Zhang K, Wang G, Wang L, Wen B, Fu X, Liu N, Yu Z, Jian W, Guo X, Liu H, Chen SY. A genome-wide association study of coat color in Chinese Rex rabbits. Front Vet Sci 2023; 10:1184764. [PMID: 37655262 PMCID: PMC10467280 DOI: 10.3389/fvets.2023.1184764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Coat color is an important phenotypic characteristic of the domestic rabbit (Oryctolagus cuniculus) and has specific economic importance in the Rex rabbit industry. Coat color varies considerably among different populations of rabbits, and several causal genes for this variation have been thoroughly studied. Nevertheless, the candidate genes affecting coat color variation in Chinese Rex rabbits remained to be investigated. In this study, we collected blood samples from 250 Chinese Rex rabbits with six different coat colors. We performed genome sequencing using a restriction site-associated DNA sequencing approach. A total of 91,546 single nucleotide polymorphisms (SNPs), evenly distributed among 21 autosomes, were identified. Genome-wide association studies (GWAS) were performed using a mixed linear model, in which the individual polygenic effect was fitted as a random effect. We detected a total of 24 significant SNPs that were located within a genomic region on chromosome 4 (OCU4). After re-fitting the most significant SNP (OCU4:13,434,448, p = 1.31e-12) as a covariate, another near-significant SNP (OCU4:11,344,946, p = 7.03e-07) was still present. Hence, we conclude that the 2.1-Mb genomic region located between these two significant SNPs is significantly associated with coat color in Chinese Rex rabbits. The well-studied coat-color-associated agouti signaling protein (ASIP) gene is located within this region. Furthermore, low genetic differentiation was also observed among the six coat color varieties. In conclusion, our results confirmed that ASIP is a putative causal gene affecting coat color variation in Chinese Rex rabbits.
Collapse
|
35
|
Kong P, Dong J, Li W, Li Z, Gao R, Liu X, Wang J, Su Q, Wen B, Ouyang W, Wang S, Zhang F, Feng S, Zhuang D, Xie Y, Zhao G, Yi H, Feng Z, Wang W, Pan X. Extracellular Matrix/Glycopeptide Hybrid Hydrogel as an Immunomodulatory Niche for Endogenous Cardiac Repair after Myocardial Infarction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301244. [PMID: 37318159 PMCID: PMC10427380 DOI: 10.1002/advs.202301244] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/06/2023] [Indexed: 06/16/2023]
Abstract
The treatment of myocardial infarction (MI) remains a substantial challenge due to excessive inflammation, massive cell death, and restricted regenerative potential, leading to maladaptive healing process and eventually heart failure. Current strategies of regulating inflammation or improving cardiac tissue regeneration have limited success. Herein, a hybrid hydrogel coassembled by acellular cardiac extracellular matrix (ECM) and immunomodulatory glycopeptide is developed for endogenous tissue regeneration after MI. The hydrogel constructs a niche recapitulating the architecture of native ECM for attracting host cell homing, controlling macrophage differentiation via glycopeptide unit, and promoting endotheliocyte proliferation by enhancing the macrophage-endotheliocyte crosstalk, which coordinate the innate healing mechanism for cardiac tissue regeneration. In a rodent MI model, the hybrid hydrogel successfully orchestrates a proreparative response indicated by enhanced M2 macrophage polarization, increased angiogenesis, and improved cardiomyocyte survival, which alleviates infarct size, improves wall thicknesses, and enhances cardiac contractility. Furthermore, the safety and effectiveness of the hydrogel are demonstrated in a porcine MI model, wherein proteomics verifies the regulation of immune response, proangiogenesis, and accelerated healing process. Collectively, the injectable composite hydrogel serving as an immunomodulatory niche for promoting cell homing and proliferation, inflammation modulation, tissue remodeling, and function restoration provides an effective strategy for endogenous cardiac repair.
Collapse
|
36
|
Wang R, Shen B, Lang X, Wen B, Mitchell RN, Ma H, Yin Z, Peng Y, Liu Y, Zhou C. A Great late Ediacaran ice age. Natl Sci Rev 2023; 10:nwad117. [PMID: 37389143 PMCID: PMC10306365 DOI: 10.1093/nsr/nwad117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 07/01/2023] Open
Abstract
The emergence of the Ediacara biota soon after the Gaskiers glaciation ca. 580 million years ago (Ma) implies a possible glacial fuse for the evolution of animals. However, the timing of Ediacaran glaciation remains controversial because of poor age constraints on the ∼30 Ediacaran glacial deposits known worldwide. In addition, paleomagnetic constraints and a lack of convincing Snowball-like cap carbonates indicate that Ediacaran glaciations likely did not occur at low latitudes. Thus, reconciling the global occurrences without global glaciation remains a paradox. Here, we report that the large amplitude, globally synchronous ca. 571-562 Ma Shuram carbon isotope excursion occurs below the Ediacaran Hankalchough glacial deposit in Tarim, confirming a post-Shuram glaciation. Leveraging paleomagnetic evidence for a ∼90° reorientation of all continents due to true polar wander, and a non-Snowball condition that rules out low-latitude glaciations, we use paleogeographic reconstructions to further constrain glacial ages. Our results depict a 'Great Ediacaran Glaciation' occurring diachronously but continuously from ca. 580-560 Ma as different continents migrated through polar-temperate latitudes. The succession of radiation, turnover and extinction of the Ediacara biota strongly reflects glacial-deglacial dynamics.
Collapse
|
37
|
Huang JN, Wen B, Li XX, Xu L, Gao JZ, Chen ZZ. Astaxanthin mitigates oxidative stress caused by microplastics at the expense of reduced skin pigmentation in discus fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162494. [PMID: 36863590 DOI: 10.1016/j.scitotenv.2023.162494] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) exposure generally triggers oxidative stress in fish species and vertebrate pigmentation is commonly influenced by oxidative stress, but MPs-induced oxidative stress on fish pigmentation and body color phenotype has not been reported. The aim of this study is to determine whether astaxanthin could mitigate the oxidative stress caused by MPs but at the expense of reduced skin pigmentation in fish. Here, we induced oxidative stress in discus fish (red skin color) by 40 or 400 items/L MPs under both astaxanthin (ASX) deprivation and supplementation. We found that lightness (L*) and redness (a*) values of fish skin were significantly inhibited by MPs under ASX deprivation. Moreover, MPs exposure significantly reduced ASX deposition in fish skin. The total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity in fish liver and skin were both significantly increased with the increase of MPs concentration, but content of glutathione (GSH) in fish skin showed a significant decrease. For ASX supplementation, the L*, a* values and ASX deposition were significantly improved by ASX, including the skin of MPs-exposed fish. The T-AOC and SOD levels changed non-significantly in fish liver and skin under the interaction of MPs and ASX, but ASX significantly reduced GSH content in fish liver. Biomarker response index indicated that ASX could improve the moderately altered antioxidant defense status of MPs-exposed fish. This study suggests that the oxidative stress caused by MPs was mitigated by ASX but at expense of reduced fish skin pigmentation.
Collapse
|
38
|
Liu X, Qin T, Li T, Shan L, Lei X, Xu X, Wen B, Feng Y, Yin P, Fan D. "Huoling Shengji granule" for amyotrophic lateral sclerosis: protocol for a multicenter, randomized, double-blind, riluzole parallel controlled clinical trial. Front Aging Neurosci 2023; 15:1153973. [PMID: 37228252 PMCID: PMC10203426 DOI: 10.3389/fnagi.2023.1153973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Background There is still a large demand for effective treatments to delay disease deterioration in amyotrophic lateral sclerosis (ALS). Typical symptoms of ALS are considered "flaccidity syndrome" in traditional Chinese medicine (TCM). Huoling Shengji Granule (HLSJ) is a TCM formula used to treat flaccidity syndrome. Results of preclinical tests and a previous clinical study support HLSJ as a novel drug for ALS patients. This trial proposed to examine whether a 48-week course of HLSJ is effective and safe for ALS patients diagnosed with the Chinese medicine syndrome of spleen qi insufficiency and kidney yang deficiency. Methods and analysis In this phase II, multicenter, randomized, double-blind, riluzole parallel-controlled, superiority-design study, eligible participants had the equal opportunity to be assigned to receive either HLSJ or riluzole randomly. Eleven specialized ALS centers in Mainland China will recruit 144 patients for this trial. The primary and secondary outcomes included the change in the ALSFRS-R score and the Rasch-Built Overall Amyotrophic Lateral Sclerosis Disability Scale (ROADS) from baseline to Week 48. Discussion Here, we endeavored to evaluate TCM for ALS using a standard evidence-based approach for the first time. In addition, the ROADS, a self-report linear-weighted questionnaire, was selected as a secondary outcome measure. We expect to offer a new reference for the outcome evaluation of ALS trials.Clinical trial registration:http://www.Chictr.org.cn, identifier ChiCTR2100044085.
Collapse
|
39
|
Liu X, Ding XF, Wen B, Ma TF, Qin-Wang, Li ZJ, Zhang YS, Gao JZ, Chen ZZ. Genome-wide identification and skin expression of immunoglobulin superfamily in discus fish (Symphysodon aequifasciatus) reveal common genes associated with vertebrate lactation. Gene 2023; 862:147260. [PMID: 36775217 DOI: 10.1016/j.gene.2023.147260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/12/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
Discus Symphysodon spp. employs an unusual parental care behavior where fry feed on parental skin mucus after hatching. Studies on discus immunoglobulin superfamily (IgSF) especially during parental care are scarce. Here, a total of 518 IgSF members were identified based on discus genome and clustered into 12 groups, unevenly distributing on 30 linkage groups. A total of 92 pairs of tandem duplication and 40 pairs of segmental duplication that underwent purifying selection were identified. IgSF genes expressed differentially in discus skin during different care stages and between male and female parents. Specifically, the transcription of btn1a1, similar with mammalian lactation, increased after spawning, reached a peak when fry started biting on parents' skin mucus, and then decreased. The expression of btn2a1 and other immune members, e.g., nect4, fcl5 and cd22, were up-regulated when fry stopped biting on mucus. These results suggest the expression differentiation of IgSF genes in skin of discus fish during parental care.
Collapse
|
40
|
Jiang Q, Chen M, Yang X, Zhuge D, Yin Q, Tian D, Li L, Zhang X, Xu W, Liu S, Li F, Weng C, Lin Y, Wang H, Rao D, Chen Y, Cai Q, Yan L, Wang L, Wang F, Lu X, Wen B, Zhao Y, Zhang F, Xia W, Zhu H, Chen Y. Doxorubicin Detoxification in Healthy Organs Improves Tolerability to High Drug Doses for Enhanced Antitumor Therapy. ACS NANO 2023; 17:7705-7720. [PMID: 37022161 DOI: 10.1021/acsnano.3c00195] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
With its well-documented toxicity, the use of doxorubicin (Dox) for cancer treatment requires trade-offs between safety and effectiveness. This limited use of Dox also hinders its functionality as an immunogenic cell death inducer, thus impeding its usefulness for immunotherapeutic applications. Here, we develop a biomimetic pseudonucleus nanoparticle (BPN-KP) by enclosing GC-rich DNA within erythrocyte membrane modified with a peptide to selectively target healthy tissue. By localizing treatment to organs susceptible to Dox-mediated toxicity, BPN-KP acts as a decoy that prevents the drug from intercalating into the nuclei of healthy cells. This results in significantly increased tolerance to Dox, thereby enabling the delivery of high drug doses into tumor tissue without detectable toxicity. By lessening the leukodepletive effects normally associated with chemotherapy, dramatic immune activation within the tumor microenvironment was also observed after treatment. In three different murine tumor models, high-dose Dox with BPN-KP pretreatment resulted in significantly prolonged survival, particularly when combined with immune checkpoint blockade therapy. Overall, this study demonstrates how targeted detoxification using biomimetic nanotechnology can help to unlock the full potential of traditional chemotherapeutics.
Collapse
|
41
|
Su H, Zhang Y, Liu Y, Lu R, Gao A, Han Q, Wen B, Hu B, Yang P. Enhancing Bioavailability of Fertilizer through Amyloid-Like Protein Coating. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300829. [PMID: 37074223 DOI: 10.1002/adma.202300829] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/31/2023] [Indexed: 05/03/2023]
Abstract
Foliar fertilization acts as a ubiquitous component of conventional crop production because the nutrients can be absorbed more quickly than soil fertilizers, which brings considerable economic and ecological costs. Due to droplets rebounding and splashing during spraying and rain erosion, low bioavailability of fertilizer results in soil salinity, heavy metal accumulation, water eutrophication and the greenhouse effect. Contrary to conventional fertilizer formulations with polymers, surfactants, and organic reagents, we herein present a method of improving fertilizer bioavailability based on a biocompatible protein coating. In this system, whey protein concentrate (WPC) can undergo amyloid-like aggregation after the reduction of its disulfide bond by the reducing agent tris(2-carboxyethyl) phosphine (TCEP). Such aggregation affords a fast formation of the optically transparent and colorless phase-transitioned WPC (PTW) coating at solid/water interface, with robust interfacial adhesion stability. Upon packaging with fertilizers through electrostatic and hydrogen bonding interactions, such reliable interfacial adhesion thereby facilitates the effective deposition of fertilizers on superhydrophobic and hydrophobic leaf surfaces, with excellent adhesion stability under sufficient exposure to simulated weather conditions. In this regard, the PTW coating shows the highest fertilizer retention capability in all known outcome, even under rainfall conditions that are 100 times more intense than those described in literature. High optical transmittance of the PTW also does not affect normal photosynthetic capacity of plant. Based on further practical farmland test, this work experimentally demonstrates that the application of an amyloid-like protein aggregation could significantly boost the bioavailability of fertilizers and decrease at least 30% fertilizer use in large-scale crop planting. This innovative strategy has the great potential to offer a transformative step forward in managing fertilizer contamination and overuse in future agriculture. This article is protected by copyright. All rights reserved.
Collapse
|
42
|
Wen B, Zhang M, Zhang L, Zhou Y, Xu L. How over-parenting impedes individual career exploration: a goal disengagement perspective. BMC Psychol 2023; 11:109. [PMID: 37046353 PMCID: PMC10099645 DOI: 10.1186/s40359-023-01163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023] Open
Abstract
Individuals' early experiences can shape their lifelong development. Notably, healthy parenting experiences will build a good foundation for successful development, whereas inappropriate parenting experiences hinder healthy development. From the goal disengagement perspective, we propose that over-parenting can elicit individual goal disengagement in the development process, which hinders goal-pursuit behaviors. Data collected from 536 university students from China at three time points supported our hypotheses. Specifically, over-parenting promotes more career-exploration goal disengagement, inhibiting career-exploration behavior. In addition, the process mentioned above is more salient for individuals with a high need for parental approval. The theoretical and practical implications of this research are also discussed.
Collapse
|
43
|
Peng P, Wen B, Chen R, Deng X. Sorafenib Plus Hepatic Arterial Infusion Chemotherapy in Advanced Hepatocellular Carcinoma: A Systematic Review and Meta-analysis. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2023; 34:311-321. [PMID: 37089046 DOI: 10.5152/tjg.2023.22383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
This meta-analysis aimed to determine whether sorafenib combined with hepatic arterial infusion chemotherapy is beneficial for advanced hepatocellular carcinoma. We searched PubMed, Cochrane Library, and Embase to identify comparative studies evaluating sorafenib plus hepatic arterial infusion chemotherapy versus sorafenib for advanced hepatocellular carcinoma. Overall survival, progression-free survival, objective response rate, rate of progressive disease, and adverse events were evaluated. This meta-analysis included 5 randomized controlled trials (690 patients). Pooled estimates showed that compared with sorafenib, sorafenib plus hepatic arterial infusion chemotherapy was associated with higher overall survival (hazard ratio = 0.52, 95% CI: 0.28-0.95, P = .03), progressionfree survival (hazard ratio = 0.57, 95% CI: 0.33-0.98, P = .04), objective response rate (risk ratio = 3.84, 95% CI: 1.23-12.05, P = .02), as well as higher rates of neutropenia (risk ratio = 7.90, 95% CI: 3.0-20.78, P < .0001) and thrombocytopenia (risk ratio = 2.73, 95% CI: 1.70- 4.36, P < .0001), but had no significant influence for rate of progressive disease (risk ratio = 0.76, 95% CI: 0.43-1.37, P = .37). Sorafenib plus hepatic arterial infusion chemotherapy improved overall survival, progression-free survival, and objective response rate, but it had no effect on the rate of progressive disease. Combination therapy has a survival benefit for advanced hepatocellular carcinoma patients, and adverse events can be accepted. However, more large-scale randomized controlled trials are needed for further investigation.
Collapse
|
44
|
Peng P, Chen Z, Wang M, Wen B, Deng X. Polysaccharide-modified liposomes and their application in cancer research. Chem Biol Drug Des 2023; 101:998-1011. [PMID: 36597375 DOI: 10.1111/cbdd.14201] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023]
Abstract
Nanodrug delivery systems have been widely used in cancer treatment. Among these, liposomal drug carriers have gained considerable attention due to their biocompatibility, biodegradability, and low toxicity. However, conventional liposomes have several shortcomings, such as poor stability, rapid clearance, aggregation, fusion, degradation, hydrolysis, and oxidation of phospholipids. Polysaccharides are natural polymers of biological origin that exhibit structural stability, excellent biocompatibility and biodegradability, flexibility, non-immunogenicity, low toxicity, and targetability. Therefore, they represent a promising class of polymers for the modification of the surface properties of liposomes to overcome their shortcomings. In addition, polysaccharides can be readily combined with other materials to develop new composite materials. Hence, they represent the optimal choice for liposomal modification to improve pharmacokinetics and clinical utility. Polysaccharide-coated liposomes exhibit better stability, drug release kinetics, and cellular uptake than conventional liposomes. The oncologic application of polysaccharide-coated liposomes has become a research hotspot. We summarize the preparation, physicochemical properties, and antineoplastic effects of polysaccharide-coated liposomes to facilitate antitumor drug development.
Collapse
|
45
|
Meng LJ, Hu X, Wen B, Liu YH, Luo GZ, Gao JZ, Chen ZZ. Microplastics inhibit biofloc formation and alter microbial community composition and nitrogen transformation function in aquaculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161362. [PMID: 36610618 DOI: 10.1016/j.scitotenv.2022.161362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/13/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Biofloc technology, extensively used in intensive aquaculture systems, can prompt the formation of microbial aggregates. Microplastics (MPs) are detected abundantly in aquaculture waters. This study explored the effects of MPs on biofloc formation, microbial community composition and nitrogen transformation function in simulated biofloc aquaculture production systems. The formation process and settling performance of bioflocs were examined. High-throughput sequencing of 16S and 18S rRNA genes was used to investigate the microbial community compositions of bioflocs. Nitrogen dynamics were monitored and further explained from functional genes and microorganisms related to nitrogen transformation by metagenome sequencing. We found that the aggregates consisting of bioflocs and MPs were formed and the systems with MPs had relatively weak settling performance. No significant differences in bacterial diversity (p > 0.05) but significant differences in eukaryotic diversity (p < 0.05) were found between systems without and with MPs. Significant separations in the microbial communities of prokaryotes (p = 0.01) and eukaryotes (p = 0.01) between systems without and with MPs were observed. The peak concentration of nitrite nitrogen (NO2--N) in systems with MPs was lower than that in systems without MPs (pControl/MPs Low = 0.02 and pControl/MPs High = 0.03), probably due to the low abundance of hao and affiliated Alphaproteobacteria_bacterium_HGW-Alphaproteobacteria-1 and Alphaproteobacteria_bacterium, but the high abundance of nxrA and affiliated Alphaproteobacteria_bacterium_SYSU_XM001 and Hydrogenophaga_pseudoflava that related to nitrification. The low concentration of NO2--N in systems with MPs suggested that the presence of MPs might inhibit ammonia oxidation but promote nitrite oxidation by altering the microbial community structure and function. These results indicated that aggregates consisting of bioflocs and MPs could be formed in aquaculture water, and thus, inhibiting their settlement and altering nitrogen transformation function by affecting the microbial community composition.
Collapse
|
46
|
Shen L, Dong J, Wen B, Wen X, Li J. Facile Synthesis of Hollow Fe 3O 4-rGO Nanocomposites for the Electrochemical Detection of Acetaminophen. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040707. [PMID: 36839075 PMCID: PMC9964092 DOI: 10.3390/nano13040707] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 05/27/2023]
Abstract
Acetaminophen (AC) is one of the most popular pharmacologically active substances used as an analgesic and antipyretic drug. Herein, a new type of hollow Fe3O4-rGO/GCE electrode was prepared for electrochemical detection of AC through a three-step approach involving a solvothermal method for the synthesis of hollow Fe3O4 and the chemical reduction of graphene oxide (GO) for reduced graphene oxide (rGO) and Fe3O4-rGO nanocomposites modified on the glassy carbon electrode (GCE) surface. The as-prepared Fe3O4-rGO nanocomposites were characterized using a transmission electron microscope (TEM), X-ray diffraction (XRD), and a magnetic measurement system (SQUID-VSM). The magnetic Fe3O4-rGO/GCE electrodes were employed for the electrochemical detection of AC using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and square wave voltammetry (SWV) and exhibited an ultra-high selectivity and accuracy, a low detection limit of 0.11 µmol/L with a wider linear range from 5 × 10-7 to 10-4 mol/L, and high recovery between 100.52% and 101.43%. The obtained Fe3O4-rGO-modified GCE displays great practical significance for the detection of AC in drug analysis.
Collapse
|
47
|
Hou Y, Wen B, Xu J, Ye J, Zhu Z. [sEMG Wireless Acquisition System Based on CC3200 and ADS1299]. ZHONGGUO YI LIAO QI XIE ZA ZHI = CHINESE JOURNAL OF MEDICAL INSTRUMENTATION 2023; 47:150-153. [PMID: 37096467 DOI: 10.3969/j.issn.1671-7104.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A multi-channel surface electromyography wireless acquisition system is designed, which is mainly composed of ADS1299 integrated analog front-end chip and CC3200 wireless MCU of TI company. The key indicators of hardware are measured according to the industry standard, and the results are better than the industry standard, which can meet the continuous use of multi-scene tasks. This system has the advantages of high performance, low power consumption and small size. It has been applied to the detection of surface EMG signal in motion gesture recognition and has a good application value.
Collapse
|
48
|
Chen W, Yang X, Sun J, Chen Y, Zhao W, He C, An H, Pang J, Xu W, Wen B, Sun H, He S. Biejiajian pill inhibits progression of hepatocellular carcinoma by downregulating PDGFRβ signaling in cancer-associated fibroblasts. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115825. [PMID: 36240978 DOI: 10.1016/j.jep.2022.115825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Biejiajian pill (BJJP) is a canonical formula that is clinically used to treat chronic liver disease, especially to decrease the incidence of hepatocellular carcinoma (HCC). However, the mechanisms underlying the prevention of HCC progression by BJJP remain unclear. AIM OF THE STUDY This study aimed to determine whether BJJP inhibits HCC progression by downregulating platelet-derived growth factor receptor beta (PDGFRβ) signaling in cancer-associated fibroblasts (CAFs) in a mouse model of diethylnitrosamine (DEN)/carbon tetrachloride (CCl4)-induced HCC. MATERIALS AND METHODS C57BL/6 male mice were intraperitoneally injected with DEN 2 weeks after birth, followed by repeated injections of CCl4 weekly from 6 weeks of age onwards, to recapitulate features of HCC. At week 14, BJJP was orally administered to mice. The effects of BJJP on HCC progression were evaluated using histology, immunohistochemistry, and serum biochemical marker levels. Transcriptome analysis, molecular docking, quantitative real-time PCR, and Western blot were used to study the genes targeted by BJJP and the associated signaling pathway. The effects of BJJP on PDGFRβ signaling in CAFs and the underlying mechanism were demonstrated. RESULTS BJJP treatment significantly suppressed carcinogenesis and cancer progression, and it ameliorated liver inflammation in mice with HCC. A total of 176 genes, including PDGFRβ, were significantly downregulated after BJJP treatment and five components of BJJP with high binding affinity to PDGFRβ were identified. BJJP inhibited the phosphorylation of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and glycogen synthase kinase 3 beta (GSK3β) by suppressing PDGFRβ expression in CAFs, and it also downregulated the expression of the downstream proteins hepatocyte growth factor (HGF) and vascular endothelial growth factor A (VEGF-A). Furthermore, BJJP-containing serum consistently reduced PDGFRβ, HGF, and VEGF-A expression levels in HSC-derived CAFs in vitro. Importantly, PDGF-BB induced PDGFRβ activation in CAFs and both BJJP and sunitinib (a kinase inhibitor) inhibited PDGF-BB/PDGFRβ signaling. CONCLUSION BJJP inhibits the progression of HCC through suppressing VEGF-A and HGF expression in CAFs by downregulating PDGFRβ signaling.
Collapse
|
49
|
Ren Z, Zhao Y, Han X, Yue M, Wang B, Zhao Z, Wen B, Hong Y, Wang Q, Hong Y, Zhao T, Wang N, Zhao P. An objective model for diagnosing comorbid cognitive impairment in patients with epilepsy based on the clinical-EEG functional connectivity features. Front Neurosci 2023; 16:1060814. [PMID: 36711136 PMCID: PMC9878185 DOI: 10.3389/fnins.2022.1060814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Objective Cognitive impairment (CI) is a common disorder in patients with epilepsy (PWEs). Objective assessment method for diagnosing CI in PWEs would be beneficial in reality. This study proposed to construct a diagnostic model for CI in PWEs using the clinical and the phase locking value (PLV) functional connectivity features of the electroencephalogram (EEG). Methods PWEs who met the inclusion and exclusion criteria were divided into a cognitively normal (CON) group (n = 55) and a CI group (n = 76). The 23 clinical features and 684 PLV EEG features at the time of patient visit were screened and ranked using the Fisher score. Adaptive Boosting (AdaBoost) and Gradient Boosting Decision Tree (GBDT) were used as algorithms to construct diagnostic models of CI in PWEs either with pure clinical features, pure PLV EEG features, or combined clinical and PLV EEG features. The performance of these models was assessed using a five-fold cross-validation method. Results GBDT-built model with combined clinical and PLV EEG features performed the best with accuracy, precision, recall, F1-score, and an area under the curve (AUC) of 90.11, 93.40, 89.50, 91.39, and 0.95%. The top 5 features found to influence the model performance based on the Fisher scores were the magnetic resonance imaging (MRI) findings of the head for abnormalities, educational attainment, PLV EEG in the beta (β)-band C3-F4, seizure frequency, and PLV EEG in theta (θ)-band Fp1-Fz. A total of 12 of the top 5% of features exhibited statistically different PLV EEG features, while eight of which were PLV EEG features in the θ band. Conclusion The model constructed from the combined clinical and PLV EEG features could effectively identify CI in PWEs and possess the potential as a useful objective evaluation method. The PLV EEG in the θ band could be a potential biomarker for the complementary diagnosis of CI comorbid with epilepsy.
Collapse
|
50
|
Zhang W, Zhang L, Yang S, Wen B, Chen J, Chang J. Electroacupuncture ameliorates knee osteoarthritis in rats via inhibiting NLRP3 inflammasome and reducing pyroptosis. Mol Pain 2023; 19:17448069221147792. [PMID: 36510338 PMCID: PMC9841849 DOI: 10.1177/17448069221147792] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective: Knee Osteoarthritis (KOA), is the most common joint disease worldwide. The pathogenesis of KOA is complex and electroacupuncture (EA) is an effective therapy for KOA, but the mechanism remains unclear. In this study, we aim to investigate the potential therapeutic effect of EA on the rat model of KOA induced by monosodium iodoacetate (MIA) and its relationship with NLRP3 inflammasome by immunohistochemistry and western blot. Methods: KOA was induced by intra-articular injection of MIA (3 mg/50 μL) into the right knee joint of rats. Forty-five male rats weighing 250-300 g were randomly divided into 3 groups: control group, KOA group, and KOA + electroacupuncture group (KOA+EA). EA treatment lasted for 2 weeks (6 times a week). Paw withdrawal threshold tests were used to assess mechanical allodynia once a week. Safranin O/Fast Green and hematoxylin and eosin (H&E) staining were used to assess the damage to cartilage, synovium, and subpatellar fat pad (IFP). Immunohistochemistry was used to observe NLRP3 inflammasome-associated protein-positive cells in the same field of view and western blot was used to detect the expression of the associated protein in cartilage tissue. Results: The KOA group showed mechanical hyperalgesia, joint inflammation, and significant cartilage tissue destruction. Safranin O/Fast Green and H&E staining revealed that EA alleviated the joint pathological changes caused by KOA and had a protective effect on cartilage, synovium, and IFP destruction. Mechanical allodynia pain and joint swelling were reduced in KOA rats after EA treatment. Immunohistochemistry and western blot showed significant inhibition of NLRP3 inflammasome-associated protein. Conclusion: The results indicate that EA can inhibit NLRP3 inflammasome and reduce pyroptosis, which results in the protection of cartilage tissue and the treatment of KOA. It provides reliable evidence for the development of EA in the treatment of KOA and the clinical application of acupuncture.
Collapse
|