26
|
Mayo KE, Miller LJ, Bataille D, Dalle S, Göke B, Thorens B, Drucker DJ. International Union of Pharmacology. XXXV. The glucagon receptor family. Pharmacol Rev 2003; 55:167-94. [PMID: 12615957 DOI: 10.1124/pr.55.1.6] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Peptide hormones within the secretin-glucagon family are expressed in endocrine cells of the pancreas and gastrointestinal epithelium and in specialized neurons in the brain, and subserve multiple biological functions, including regulation of growth, nutrient intake, and transit within the gut, and digestion, energy absorption, and energy assimilation. Glucagon, glucagon-like peptide-1, glucagon-like peptide-2, glucose-dependent insulinotropic peptide, growth hormone-releasing hormone and secretin are structurally related peptides that exert their actions through unique members of a structurally related G protein-coupled receptor class 2 family. This review discusses advances in our understanding of how these peptides exert their biological activities, with a focus on the biological actions and structural features of the cognate receptors. The receptors have been named after their parent and only physiologically relevant ligand, in line with the recommendations of the International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR).
Collapse
|
27
|
Bataille D. [Molecular mechanisms of insulin secretion]. DIABETES & METABOLISM 2002; 28:4S7-13. [PMID: 12703060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Insulin secretion from the beta-cells in the islets of Langerhans is mainly regulated by glucose entry via its transporter. The intracellular glucose metabolism induces a rise in ATP/ADP ratio which increases the degree of closure of ATP-sensitive potassium channels (K(ATP) channels), inducing a higher intracellular K+, which, in turn, depolarizes the membrane and opens voltage-sensitive calcium channels. The ensuing Ca2+ entry triggers extrusion of insulin-containing secretory granules and, thus, hormone secretion. The analysis of the structure of the genes encoding K(ATP) channels that are made of four Kir subunits (forming the ionic pore) and four regulatory SUR subunits (that contain the binding site for antidiabetic sulfonylureas) allowed to several subclasses of those ionic channels to be described: Insulin secreting beta cells contain the SUR1/Kir 6.2 complex, while heart and skeletal muscles contain the SUR2A/Kir 6.2 set, vascular smooth muscles (such as those present in coronary arteries) have SUR2B/Kir 6.1 and nonvascular smooth muscle SUR2B/Kir 6.2. The pharmacological specificity of each sulfonylurea depends on the type of SUR protein present in each tissue: most of the second generation sulfonylureas used in diabetic clinics (e.g. glibenclamide, glimepiride) display almost the same affinity for SUR1 SUR2A and SUR2B, leading to possible harmful adverse effects in type 2 diabetic patients with an associated cardiovascular pathology. In contrast, among the second generation sulfonylureas, only gliclazide displays a remarkable specificity towards the beta-cell K(ATP) channels, making this drug particularly safe in all situations, as it does not induce any interference with the cardiovascular system.
Collapse
|
28
|
Gros L, Trapp S, Dabrowski M, Ashcroft FM, Bataille D, Blache P. Characterization of two novel forms of the rat sulphonylurea receptor SUR1A2 and SUR1BDelta31. Br J Pharmacol 2002; 137:98-106. [PMID: 12183335 PMCID: PMC1573464 DOI: 10.1038/sj.bjp.0704836] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2002] [Accepted: 06/10/2002] [Indexed: 11/08/2022] Open
Abstract
1. The ATP-sensitive potassium channel (K(ATP)) of pancreatic beta-cells is composed of the sulphonylurea-binding protein, SUR1, and the inwardly rectifying K(+) channel subunit, Kir6.2. We have characterized two novel isoforms of rat SUR1 in the RINm5F insulin-secreting cell line. 2. SUR1A2 is an allelic variant with a single amino acid change in the first nucleotide-binding domain. Coinjection of SUR1A2 plus Kir6.2 into Xenopus oocytes or expression of a SUR1A2-Kir6.2 tandem in HEK-293 cells yielded large currents with characteristics similar to the wild-type K(ATP) channel. 3. SUR1BDelta31, detected in several human tissues, is a splice variant of the rat SUR1 gene that lacks exon 31 of the corresponding human SUR1 gene. SUR1BDelta31 lacks the TM16-TM17 transmembrane-spanning helices leading to a protein with a different transmembrane topology. Coinjection of SUR1BDelta31 plus Kir6.2 into Xenopus oocytes or expression of the Kir6.2/SUR1BDelta31 tandem construct in HEK-293 cells did not result in any current, and a surface expression assay indicated that this channel does not reach the plasma membrane. 4. SUR1A2 and SUR1A1 proteins expressed in HEK-293 cells display similar binding affinities for [(3)H]-glibenclamide, while SUR1BDelta31 shows a 500-fold lower affinity. 5. These findings confirm that TM16-TM17 of SUR1 are important for high-affinity glibenclamide binding and that their deletion impairs trafficking of the K(ATP) channel to the surface membrane.
Collapse
|
29
|
Daneshpouy M, Bataille D, Rivet J, Riviere O, Morel P, Amouroux J, Briere J, Sigaux F, Janin A. Peripheral T-cell lymphoma with eosinophilia presenting as monoarthritis: a case study. Leuk Lymphoma 2002; 43:1875-9. [PMID: 12685848 DOI: 10.1080/1042819021000006358] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Direct involvement of the joints is unusual in patients with non-Hodgkin's lymphoma (NHL). This may pose a diagnostic problem for pathologists, especially since synovial localization can disclose NHL. In the following case of T-cell NHL with eosinophilia, we point out the essential importance of clonality analysis on frozen tissue to distinguish between synovial NHL and specific inflammatory damage.
Collapse
|
30
|
Gros L, Bréant B, Duchene B, Leroy C, Fauconnier G, Bataille D, Virsolvy A. Localization of alpha-endosulphine in pancreatic somatostatin delta cells and expression during rat pancreas development. Diabetologia 2002; 45:703-10. [PMID: 12107751 DOI: 10.1007/s00125-002-0794-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2001] [Revised: 12/18/2001] [Indexed: 10/27/2022]
Abstract
AIMS/HYPOTHESIS alpha-Endosulphine, a protein that belongs to the cAMP-regulated-phosphoprotein family, has been reported to modulate insulin secretion in vitro through interaction with the pancreatic beta-cell ATP-sensitive potassium (K(ATP)) channel. In this study, we analysed the tissue distribution of alpha-endosulphine and determined its pancreatic cellular localization. METHODS Quantitative tissue distribution of alpha-endosulphine was studied by RIA on tissue extracts and cellular/subcellular localization was done using immunocytochemistry, morphometry and western blot analysis. alpha-Endosulphine and somatostatin release from RINT-3 somatostatin-secreting cells was quantified by RIA. RESULTS alpha-Endosulphine, concentrated particularly in the central nervous system, was also detected in a wide variety of tissues including the pancreas. Immunohistochemistry analysis of adult rat pancreatic sections showed that alpha-endosulphine localized in somatostatin delta cells, where its expression increased during post-natal development. Immunoreactive cells were detected from foetal age E19, and the number of somatostatin cells co-expressing alpha-endosulphine increased with developmental age from E19 until adult. alpha-Endosulphine, highly expressed in the cytoplasm of RINT3 somatostatin-secreting cell line, was recovered in the particulate fraction of RINT3 cell extracts but was not co-secreted with somatostatin. CONCLUSION/INTERPRETATION alpha-Endosulphine is expressed in all tissues tested including pancreas and is also detected in plasma. Pancreatic alpha-endosulphine is specifically localized in somatostatin delta cells. This cytosolic protein is not co-secreted with somatostatin and could be physically associated with particulate components of the cells. These findings are not in favour of an endocrine/paracrine effect of alpha-endosulphine on the beta-cell K(ATP) channel.
Collapse
|
31
|
Virsolvy A, Smith P, Bertrand G, Gros L, Héron L, Salazar G, Puech R, Bataille D. Block of Ca(2+)-channels by alpha-endosulphine inhibits insulin release. Br J Pharmacol 2002; 135:1810-8. [PMID: 11934823 PMCID: PMC1573300 DOI: 10.1038/sj.bjp.0704635] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. alpha-Endosulphine, isolated as an endogenous equivalent for sulphonylureas, is a 121-amino acids protein of 19 kDa apparent molecular mass, member of a cyclic AMP-regulated phosphoprotein family. We have previously shown that alpha-endosulphine inhibits sulphonylurea binding and K(ATP) channel activity, thereby stimulating basal insulin secretion. 2. We now describe that in the perfused rat pancreas, no stimulation was detected and that alpha-endosulphine inhibited glucose stimulated insulin release. This inhibition was dose-dependent and affected both phases of insulin secretion. 3. This inhibitory effect of alpha-endosulphine also occurred on MIN6 beta-cells when insulin release was stimulated either by glucose, sulphonylureas or a high K(+) depolarization. Inhibition was concentration-dependent with a half-maximal inhibition at 0.5 microM and was mirrored by inhibition of calcium influx. 4. Electrophysiological experiments demonstrated, in comparison to the effects of the sulphonylurea tolbutamide, that these inhibitory effects were linked to a direct inhibition of L-type Ca(2+)-channels and were independent from a regulation of K(ATP) channels. 5. Although alpha-endosulphine is able to stimulate insulin release under specific conditions acting via modulation of K(ATP) channel activity, the present study suggests that, under physiological conditions, the peptide mainly acts to block voltage-gated Ca(2+)-channels. This block leads to the inhibition of calcium influx and triggers inhibition of insulin release. 6. We conclude that alpha-endosulphine is not exclusively an endogenous equivalent for sulphonylureas and not solely a K(ATP) channel regulator.
Collapse
|
32
|
Dalle S, Fontés G, Lajoix AD, LeBrigand L, Gross R, Ribes G, Dufour M, Barry L, LeNguyen D, Bataille D. Miniglucagon (glucagon 19-29): a novel regulator of the pancreatic islet physiology. Diabetes 2002; 51:406-12. [PMID: 11812748 DOI: 10.2337/diabetes.51.2.406] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Miniglucagon, the COOH-terminal (19-29) fragment processed from glucagon, is a potent and efficient inhibitor of insulin secretion from the MIN 6 beta-cell line. Using the rat isolated-perfused pancreas, we investigated the inhibitory effect of miniglucagon on insulin secretion and evaluated the existence of an inhibitory tone exerted by this peptide inside the islet. Miniglucagon dose-dependently inhibited insulin secretion stimulated by 8.3 mol/l glucose, with no change in the perfusion flow rate. A concentration of 1 nmol/l miniglucagon had a significant inhibitory effect on a 1 nmol/l glucagon-like peptide 1 (7-36) amide-potentiated insulin secretion. A decrease in extracellular glucose concentration simultaneously stimulated glucagon and miniglucagon secretion from pancreatic alpha-cells. Using confocal and electron microscopy analysis, we observed that miniglucagon is colocalized with glucagon in mature secretory granules of alpha-cells. Perfusion of an anti-miniglucagon antiserum directed against the biologically active moiety of the peptide resulted in a more pronounced effect of a glucose challenge on insulin secretion, indicating that miniglucagon exerts a local inhibitory tone on beta-cells. We concluded that miniglucagon is a novel local regulator of the pancreatic islet physiology and that any abnormal inhibitory tone exerted by this peptide on the beta-cell would result in an impaired insulin secretion, as observed in type 2 diabetes.
Collapse
|
33
|
Bataille D. Endosulfines: Novel regulators of insulin secretion. DRUG NEWS & PERSPECTIVES 2000; 13:453-62. [PMID: 12937617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
ATP-dependent potassium (K(ATP)) channels are at a key position in the control of insulin release from pancreatic beta-cells, as they couple the polarity of the cell membrane to the cell metabolism. These channels turn to a closed state when intracellular ATP rises, following an increase in glucose metabolism. These channels are also controlled by sulfonylureas, a class of drugs used in type 2 diabetic patients for triggering insulin secretion. We have obtained evidence of the existence of endogenous equivalents to sulfonylureas in the central nervous system and other K(ATP) channel-containing tissues (including the endocrine pancreas). These molecules, of a peptidic nature, have been called "endosulfines" (for "endogenous sulfonylureas"). In this review, we describe the discovery, isolation and biological features of these molecules--which represent novel regulators of insulin secretion--and the molecular cloning of the large molecular mass form (alpha-endosulfine), and discuss their possible implication in the physiology of beta-cells, as well as in pathology.
Collapse
|
34
|
Anini Y, Jarrousse C, Chariot J, Nagain C, Yanaihara N, Sasaki K, Bernad N, Le Nguyen D, Bataille D, Rozé C. Oxyntomodulin inhibits pancreatic secretion through the nervous system in rats. Pancreas 2000; 20:348-60. [PMID: 10824688 DOI: 10.1097/00006676-200005000-00003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glicentin (GLIC), oxyntomodulin (OXM), and peptide YY (PYY) released in blood by ileocolonic L-cells after meals may inhibit pancreatic secretion. Whereas OXM interacts with glucagon and tGLP-1 receptors, OXM 19-37, a biologically active fragment, does not. The purpose of this study was to measure the effect of OXM, OXM 19-37, GLIC, tGLP-1, and PYY on pancreatic secretion stimulated by 2 deoxyglucose (2DG), electrical stimulation of the vagus nerves (VES), acetylcholine and cholecystokinin octapeptide (CCK8) in anesthetized rats. The effect of OXM was also studied in dispersed pancreatic acini. Plasma oxyntomodulin-like immunoreactivity (OLI) was measured by radioimmunoassay after the exogenous infusion of OXM and after an intraduodenal meal. OXM 19-37, infused at doses mimicking postprandial plasma levels of OLI, decreased pancreatic secretion stimulated by 2DG, VES, or CCK8. Similar effects were found with OXM and GLIC. OXM 19-37 did not change the pancreatic stimulation induced by acetylcholine in vivo, or CCK-induced amylase release in isolated acini. Vagotomy completely suppressed the inhibitory effect of OXM 19-37 on CCK8-stimulated pancreatic secretion. PYY inhibited the effect of 2DG, but not that of CCK8, whereas tGLP-1, even in pharmacologic doses, had no effect on stimulated pancreatic secretion. OXM, OXM 19-37, but not tGLP-1, inhibit pancreatic secretion at physiologic doses, through a vagal neural indirect mechanism, different from that used by PYY, and probably through a GLIC-related peptide-specific receptor.
Collapse
|
35
|
Voute N, Bataille D, Girot P, Boschetti E. Characterization of very dense mineral oxide-gel composites for fluidized-bed adsorption of biomolecules. BIOSEPARATION 2000; 8:121-9. [PMID: 10734563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Efficient design of fluidized-bed biomolecule adsorption from crude feed stock requires particles with elevated density, large adsorption capacity and broad chemical stability. Moreover, combinations of small particle diameters with high densities allow for high fluidization velocities while preserving a rapid mass transfer. This approach has been implemented by combining stable porous mineral oxide of high density (2.2, 4.7, 5.7, 9.4 g/ml) with functionalized hydrogels. The cross-linked hydrogel derivative fills the internal porosity of the beads and provides a high equilibrium binding capacity. Various porous mineral oxides (silica, titania, zirconia and hafnia) have been characterized in term of fluidization behavior, surface reactivity and chemical resistance to harsh CIP procedures. Porous zirconia particles were also modified into ion-exchangers by suitable surface modification and intraparticle polymerization of functionalized stable derivatives of acrylic monomers. Back-mixings in fluidized bed columns were analyzed by residence time distribution analysis of inert tracers. 328 and 218 mixing plates per meter were found for respectively, bed expansions of 1.7 and 2.9. The dynamic protein adsorption behaviors of zirconia-based polymeric anion-exchange sorbents were obtained in fluidized-bed, using BSA as model protein. A dynamic binding capacity of 62 mg/ml was observed at a fluidizing velocity of 320 cm/h. These investigations substantiate the favorable physical and chemical characteristics anticipated for dense composite beads for use as fluidized bed adsorbents.
Collapse
|
36
|
Le Brigand L, Virsolvy A, Manechez D, Godfroid JJ, Guardiola-Lemaître B, Gribble FM, Ashcroft FM, Bataille D. In vitro mechanism of action on insulin release of S-22068, a new putative antidiabetic compound. Br J Pharmacol 1999; 128:1021-6. [PMID: 10556939 PMCID: PMC1571726 DOI: 10.1038/sj.bjp.0702883] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The MIN6 cell line derived from in vivo immortalized insulin-secreting pancreatic beta cells was used to study the insulin-releasing capacity and the cellular mode of action of S-22068, a newly synthesized imidazoline compound known for its antidiabetic effect in vivo. 2. S-22068, was able to release insulin from MIN6 cells in a dose-dependent manner with a half-maximal stimulation at 100 micronM. Its efficacy (8 fold over the basal value), which did not differ whatever the glucose concentration (stimulatory or not), was intermediate between that of sulphonylurea and that of efaroxan. 3. Similarly to sulphonylureas and classical imidazolines, S-22068 blocked K(ATP) channels and, in turn, opened nifedipine-sensitive voltage-dependent Ca2+ channels, triggering Ca2+ entry. 4. Similarly to other imidazolines, S-22068 induced a closure of cloned K(ATP) channels injected to Xenopus oocytes by interacting with the pore-forming Kir6.2 moiety. 5. S-22068 did not interact with the sulphonylurea binding site nor with the non-I1 and non-I2 imidazoline site evidenced in the beta cells that is recognized by the imidazoline compounds efaroxan, phentolamine and RX821002. 6. We conclude that S-22068 is a novel imidazoline compound which stimulates insulin release via interaction with an original site present on the Kir6.2 moiety of the beta cell K(ATP) channels.
Collapse
|
37
|
Bataille D, Héron L, Virsolvy A, Peyrollier K, LeCam A, Gros L, Blache P. alpha-Endosulfine, a new entity in the control of insulin secretion. Cell Mol Life Sci 1999; 56:78-84. [PMID: 11213264 PMCID: PMC11146951 DOI: 10.1007/s000180050008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ATP-dependent potassium (K ATP) channels occupy a key position in the control of insulin release from the pancreatic beta cell since they couple cell polarity to metabolism. These channels close when more ATP is produced via glucose metabolism. They are also controlled by sulfonylureas, a class of drugs used in type 2 diabetic patients for triggering insulin secretion from beta cells that have lost part of their sensitivity to glucose. We have demonstrated the existence of endogenous counterparts to sulfonylureas which we have called 'endosulfines.' In this review, we describe the discovery, isolation, cloning, and biological features of the high-molecular-mass form, alpha-endosulfine, and discuss its possible role in the physiology of the beta cell as well as in pathology.
Collapse
|
38
|
Héron L, Virsolvy A, Apiou F, Le Cam A, Bataille D. Isolation, characterization, and chromosomal localization of the human ENSA gene that encodes alpha-endosulfine, a regulator of beta-cell K(ATP) channels. Diabetes 1999; 48:1873-6. [PMID: 10480622 DOI: 10.2337/diabetes.48.9.1873] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human alpha-endosulfine is an endogenous regulator of the beta-cell K(ATP) channels. The recombinant alpha-endosulfine inhibits sulfonylurea binding to beta-cell membranes, reduces cloned K(ATP) channel currents, and stimulates insulin secretion from beta-cells. These properties led us to study the human ENSA gene that encodes alpha-endosulfine. Here, we describe the isolation, the partial characterization, and the chromosomal localization of the ENSA gene. The ENSA gene appears to be a 1.8-kb-long sequence that contains the transcription initiation site located 528 bp upstream of the initiation codon. The ENSA gene is intronless, and a single copy gene seems to be present in the genome. Finally, the ENSA gene co-localizes on human chromosome 14 (14q24.3-q31) with a locus for susceptibility to type 1 diabetes called IDDM11; thus, the ENSA gene represents an IDDM11 candidate.
Collapse
|
39
|
Gros L, Virsolvy A, Salazar G, Bataille D, Blache P. Characterization of low-affinity binding sites for glibenclamide on the Kir6.2 subunit of the beta-cell KATP channel. Biochem Biophys Res Commun 1999; 257:766-70. [PMID: 10208857 DOI: 10.1006/bbrc.1999.0529] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ATP-sensitive K+ channel, an octameric complex of two structurally unrelated types of subunits, SUR1 and Kir6.2, plays a central role in the physiological regulation of insulin secretion. The sulfonylurea glibenclamide, which trigger insulin secretion by blocking the ATP-sensitive K+ channel, interacts with both high and low affinity binding sites present on beta-cells. The high affinity binding site has been localized on SUR1 but the molecular nature of the low affinity site is still uncertain. In this study, we analyzed the pharmacology of glibenclamide in a transformed COS-7 cell line expressing the rat Kir6.2 cDNA and compared with that of the MIN6 beta cell line expressing natively both the Kir6.2 and the SUR1 subunits. Binding studies and Scatchard analysis revealed the presence of a single class of low affinity binding sites for glibenclamide on the COS/Kir6.2 cells with characteristics similar to that observed for the low affinity site of the MIN6 beta cells.
Collapse
|
40
|
Dalle S, Smith P, Blache P, Le-Nguyen D, Le Brigand L, Bergeron F, Ashcroft FM, Bataille D. Miniglucagon (glucagon 19-29), a potent and efficient inhibitor of secretagogue-induced insulin release through a Ca2+ pathway. J Biol Chem 1999; 274:10869-76. [PMID: 10196164 DOI: 10.1074/jbc.274.16.10869] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using the MIN6 B-cell line, we investigated the hypothesis that miniglucagon, the C-terminal () fragment processed from glucagon and present in pancreatic A cells, modulates insulin release, and we analyzed its cellular mode of action. We show that, at concentrations ranging from 0.01 to 1000 pM, miniglucagon dose-dependently (ID50 = 1 pM) inhibited by 80-100% the insulin release triggered by glucose, glucagon, glucagon-like peptide-1-(7-36) amide (tGLP-1), or glibenclamide, but not that induced by carbachol. Miniglucagon had no significant effects on cellular cAMP levels. The increase in 45Ca2+ uptake induced by depolarizing agents (glucose or extracellular K+), by glucagon, or by the Ca2+channel agonist Bay K-8644 was blocked by miniglucagon at the doses active on insulin release. Electrophysiological experiments indicated that miniglucagon induces membrane hyperpolarization, probably by opening potassium channels, which terminated glucose-induced electrical activity. Pretreatment with pertussis toxin abolished the effects of miniglucagon on insulin release. It is concluded that miniglucagon is a highly potent and efficient inhibitor of insulin release by closing, via hyperpolarization, voltage-dependent Ca2+ channels linked to a pathway involving a pertussis toxin-sensitive G protein.
Collapse
|
41
|
Rodier G, Magous R, Mochizuki T, Le Nguyen D, Martinez J, Bali JP, Bataille D, Jarrousse C, Geneviève R. Glicentin and oxyntomodulin modulate both the phosphoinositide and cyclic adenosine monophosphate signaling pathways in gastric myocytes. Endocrinology 1999; 140:22-8. [PMID: 9886802 DOI: 10.1210/endo.140.1.6424] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have investigated the transduction pathways mediating the contractile effect of two glucagon-containing peptides, glicentin (GLIC) and oxyntomodulin (OXM), on smooth muscle cells isolated from rabbit antrum. Low concentrations of GLIC induced a biphasic and rapid (first phase at 5-8 sec) Ins(1,4,5)P3 production. By comparison, higher concentrations of OXM or OXM(19-37) were required to obtain biphasic time-courses of Ins(1,4,5)P3 production. In a Ca2+ free medium, the first phase of Ins(1,4,5)P3 production induced by GLIC or OXM was maintained, while the second phase disappeared. In saponin-permeabilized cells, all three peptides induced cell contraction with similar efficacies and potencies. Exogenous Ins(1,4,5)P3 mimicked the contractile effect of the peptides and heparin, which inhibits the Ins(1,4,5)P3 binding to its receptor, prevented contraction stimulated by each effector. We conclude that a Ca2+ mobilization from the intracellular stores is essential in the contractile effects of GLIC and OXM. Using the fluo-3 probe, a [Ca2+]i increase was observed in the presence of GLIC, OXM, or OXM(19-37). The three peptides reduced by 30-40% the cAMP content of cells stimulated by forskolin. This effect was pertussis toxin sensitive as demonstrated with OXM(19-37). Our data constitute important clues for the existence in smooth muscle cells of receptor(s) specific for the GLIC/OXM hormones, coupled via G protein(s) to both Ca2+ and cAMP pathways.
Collapse
|
42
|
Rodier G, Magous R, Mochizuki T, Bali JP, Bataille D, Jarrousse C. A target cell to oxyntomodulin and glicentin: the antral smooth muscle cell. Ann N Y Acad Sci 1998; 865:458-62. [PMID: 9928049 DOI: 10.1111/j.1749-6632.1998.tb11215.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Dalle S, Blache P, Le-Nguyen D, Le Brigand L, Bataille D. Miniglucagon: a local regulator of islet physiology. Ann N Y Acad Sci 1998; 865:132-40. [PMID: 9928005 DOI: 10.1111/j.1749-6632.1998.tb11171.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Miniglucagon, or glucagon-[19-29], is partially processed from glucagon in its target tissues where it modulates the glucagon action. In the islets of Langerhans, the glucagon-producing A cells contain miniglucagon at a significant level (2-5% of the glucagon content). We studied a possible control of insulin release by miniglucagon using as a model the MIN6 cell line. Miniglucagon, in the 10(-14) to 10(-9) M range, inhibited insulin release induced by glucose, glucagon, tGLP-1, or glibenclamide by 85-100% with an IC50 close to 1 pM. While no change in the cyclic AMP content was noted, Ca2+ influx was reduced in parallel with the inhibition of insulin release. Use of pharmacological modulators of L-type voltage-sensitive Ca2+ channels and bacterial toxins indicates that miniglucagon blocks insulin release by closing this type of channel via a pertussis toxin-sensitive G protein. Miniglucagon is a novel, possibly physiologically relevant, local regulator of islet function.
Collapse
|
44
|
Le Quellec A, Clapié M, Callamand P, Lehmann M, Kervran A, Bataille D, Rieu D. Circulating oxyntomodulin-like immunoreactivity in healthy children and children with celiac disease. J Pediatr Gastroenterol Nutr 1998; 27:513-8. [PMID: 9822314 DOI: 10.1097/00005176-199811000-00003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND The aim of the study was to evaluate the new hormonal entity oxyntomodulin-like immunoreactivity in malabsorption states, and to assess its potential in celiac disease management. METHODS We measured basal and postprandial oxyntomodulin-like immunoreactivity values in 35 children divided into 3 groups: group 1 was composed of 13 children with celiac disease, either under a gluten-free diet (8 patients) or normal diet (5 patients); group 2 was composed of 8 children hospitalized for gastroenteritis or chronic diarrhea, without biological evidence of malabsorption nor abnormal jejunal mucosa; group 3 was composed of 22 control subjects. RESULTS Fasting and meal-stimulated levels in the control group were 71+/-10 and 130+/-26 pmol/l, respectively. Mean concentrations were elevated in patients with celiac disease (basal = 349+/-254 pmol/l, postprandial = 446+/-332 pmol/l) and in the group 2 (basal = 139+/-58 pmol/l, postprandial = 218+/-85 pmol/l), but the difference with control subjects did not reach statistical significance. In children with celiac disease, basal and stimulated values correlated with the degree of malabsorption as assessed by hemoglobin (p = 0.006 and p = 0.01, respectively) and serum folate concentrations (p = 0.03 and p = 0.02, respectively). CONCLUSIONS Oxyntomodulin-like immunoreactivity is noticeably higher in healthy children than previously measured in healthy adult subjects. This hormonal parameter is not an adequate diagnostic tool in celiac disease. Nevertheless, in the context of celiac disease, its elevation reflects the degree of malabsorption and may provide a quantitative approach of the extent of mucosal damage.
Collapse
|
45
|
Bergeron F, Otto A, Blache P, Day R, Denoroy L, Brandsch R, Bataille D. Molecular cloning and tissue distribution of rat sarcosine dehydrogenase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1998; 257:556-61. [PMID: 9839943 DOI: 10.1046/j.1432-1327.1998.2570556.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sarcosine dehydrogenase (SarDH) is a mitochondrial flavoenzyme involved in the oxidative degradation of choline to glycine. The absence of SarDH activity in humans is genetically transmitted and is the cause of an amino acid metabolism disorder called sarcosinemia. Tryptic fragments of the purified enzyme from rat liver were subjected to Edman degradation and the sequences obtained were used to clone the cDNA encoding the full length protein. The deduced amino acid sequence of SarDH shares an overall similarity of 47% with dimethylglycine dehydrogenase (Me2GlyDH), another flavoenzyme involved in the mitochondrial choline catabolism with a similar FAD-binding domain. Covalent binding of FAD to SarDH was demonstrated by the observation of strong fluorescence at 530 nm under excitation at 450 nm of the enzyme immunoprecipitated under denaturing conditions from liver extracts. The localization of SarDH immunoreactivity in the mitochondrial matrix was confirmed by Western-blot analysis of purified mitochondrial fractions. Finally, the tissue distribution of SarDH was investigated by Northern-blot analysis of total RNA and Western-blot analysis of total protein from several rat tissues. A strong expression in the liver, but also in the lung, pancreas, kidney, thymus, and oviduct was observed. We therefore suggest that the enzymes of the choline catabolism pathway are important also for metabolism in nonhepatic tissues.
Collapse
|
46
|
Bataille D, Dalle S, Blache P, Bergeron F. [Post-translational maturation of proglucagon: variations in tissues and regulation pathways]. JOURNEES ANNUELLES DE DIABETOLOGIE DE L'HOTEL-DIEU 1998:127-40. [PMID: 9773615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
47
|
Beauclair F, Eto B, Pansu D, Rodier G, Mochizuki T, Martinez J, Bataille D, Jarrousse C. Oxyntomodulin reduces hydromineral transport through rat small intestine. Dig Dis Sci 1998; 43:1814-23. [PMID: 9724174 DOI: 10.1023/a:1018804307972] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Glicentin (GLIC) and oxyntomodulin (OXM) are released from the ileum and colon during digestion. Both hormones reduce fluid and proton secretion in the stomach. The luminal concentration of sodium and chloride underlying the nutrient absorption, the effect of OXM on electrolyte transport through the small intestine, was assessed in vivo using ligated loops and in vitro using Ussing chambers. In vivo, a zero transport state, estimated by the net water, chloride, and sodium fluxes, was observed when an 80 mM NaCl normoosmolar solution (274 mosm) was administered intraluminally. Active secretion was observed with hyperosmotic challenge (474 mosm). The amplitude of this active secretion increased 2.5- to 3-fold when an electrogenic challenge (NaCl 40 mM) was substituted to the hyperosmotic one. OXM (800 fmol/ml plasma) did not modify the basal transport in the duodenum or in the jejunum (t = 45 min). When active secretion was induced by the hyperosmotic challenge, OXM (200 fmol/ml plasma) had no effect on duodenal or jejunal transport (t = 50 min). When active secretion was induced by an electrogenic challenge, OXM (300 fmol/ml plasma) preferentially reduced the hydromineral transport in jejunum. In vitro, OXM also induced a reduction in the ion transport towards the jejunal lumen (EC50 = 20 pM), the amplitude of which depended upon the integrity of the tetrodotoxin-sensitive neurons. In conclusion, OXM was able to reduce the large secretion induced in rat jejunum in vivo by an electrogenic gradient. In vitro, the antisecretory effect of OXM was partly mediated by the neurons present in the intrajejunal wall.
Collapse
|
48
|
Heron L, Virsolvy A, Peyrollier K, Gribble FM, Le Cam A, Ashcroft FM, Bataille D. Human alpha-endosulfine, a possible regulator of sulfonylurea-sensitive KATP channel: molecular cloning, expression and biological properties. Proc Natl Acad Sci U S A 1998; 95:8387-91. [PMID: 9653196 PMCID: PMC20985 DOI: 10.1073/pnas.95.14.8387] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/1998] [Accepted: 04/28/1998] [Indexed: 02/08/2023] Open
Abstract
Sulfonylureas are a class of drugs commonly used in the management of non-insulin-dependent diabetes mellitus. Their therapeutic action results primarily from their ability to inhibit ATP-sensitive potassium (KATP) channels in the plasma membrane of pancreatic beta cells and thereby stimulate insulin release. A key question is whether an endogenous ligand for the KATP channel exists that is able to mimic the inhibitory effects of sulfonylureas. We describe here the cloning of the cDNA encoding human alpha-endosulfine, a 13-kDa peptide that is a putative candidate for such a role. alpha-Endosulfine is expressed in a wide range of tissues including muscle, brain, and endocrine tissues. The recombinant protein displaces binding of the sulfonylurea [3H]glibenclamide to beta cell membranes, inhibits cloned KATP channel currents, and stimulates insulin secretion. We propose that endosulfine is an endogenous regulator of the KATP channel, which has a key role in the control of insulin release and, more generally, couples cell metabolism to electrical activity.
Collapse
|
49
|
Blache P, Gros L, Salazar G, Bataille D. Cloning and tissue distribution of a new rat olfactory receptor-like (OL2). Biochem Biophys Res Commun 1998; 242:669-72. [PMID: 9464275 DOI: 10.1006/bbrc.1997.8041] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polymerase chain reaction (PCR) was used to clone an intronless cDNA encoding a new member (named OL2) of the G protein-coupled receptor superfamily. The coding region of the rat OL2 receptor gene predicts a seven transmembrane domain receptor of 315 amino acids. OL2 has 46.4 percent amino acid identity with OL1, an olfactory receptor expressed in the developing rat heart, and slightly lower percent indentities with several other olfactory receptors. PCR analysis reveals that the transcript is present mainly in the rat spleen and in a mouse insulin-secreting cell line (MIN6). No correlation was found between the tissue distribution of OL2 and that of the olfaction-related GTP-binding protein Golf alpha subunit. These findings suggest a role for this new hypothetical G-protein coupled receptor and for its still unknown ligand in the spleen and in the insulin-secreting beta cells.
Collapse
|
50
|
Rodier G, Magous R, Mochizuki T, Martinez J, Nguyen DL, Bali JP, Bataille D, Jarrousse C. Effect of glicentin, oxyntomodulin and related peptides on isolated gastric smooth muscle cells. Pflugers Arch 1997; 434:729-34. [PMID: 9306005 DOI: 10.1007/s004240050458] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glicentin (proglucagon 1-69 GLIC) and oxyntomodulin (proglucagon 33-69 or OXM) are two peptide hormones that are co-released from ileum and large intestine during digestion. They modulate in vivo gastric acid secretion and the gastro-pyloro-duodenal activity. The specificity of their effects is linked to the presence of their C-terminal octapepide. As yet, no isolated target cell that responds specifically to this family of peptides has been described. The present report describes the in vitro effect of human synthetic GLIC, OXM and octapeptide-bearing fragments on smooth muscle cells isolated from the rabbit antrum. GLIC or OXM decreased the mean length of the cells by: 13.9 +/- 0.8% and 15.5 +/- 0.9%, respectively - GLIC being 16 times more potent than OXM (respective EC50 values: 5 and 83 pM). The C-terminal fragments OXM(19-37) and OXM(30-37) were as efficient as GLIC or OXM. Their potencies were OXM = OXM(19-37)>>OXM(30-37). Glucagon, which corresponds to OXM without the C-terminal octapeptide, or glucagon-like peptide-1 (7-36 amide) did not have any effect. The response to OXM was not influenced by antagonists to muscarinic, cholecystokinin or substance P receptors. In conclusion, our studies demonstrate for the first time an isolated target cell that responds specifically to GLIC, OXM and other octapeptide-bearing peptides.
Collapse
|