26
|
Carino A, Marchianò S, Biagioli M, Scarpelli P, Bordoni M, Di Giorgio C, Roselli R, Fiorucci C, Monti MC, Distrutti E, Zampella A, Fiorucci S. The bile acid activated receptors GPBAR1 and FXR exert antagonistic effects on autophagy. FASEB J 2020; 35:e21271. [DOI: 10.1096/fj.202001386r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
|
27
|
Carino A, Moraca F, Fiorillo B, Marchianò S, Sepe V, Biagioli M, Finamore C, Bozza S, Francisci D, Distrutti E, Catalanotti B, Zampella A, Fiorucci S. Hijacking SARS-CoV-2/ACE2 Receptor Interaction by Natural and Semi-synthetic Steroidal Agents Acting on Functional Pockets on the Receptor Binding Domain. Front Chem 2020; 8:572885. [PMID: 33195060 PMCID: PMC7645072 DOI: 10.3389/fchem.2020.572885] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/12/2020] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is a respiratory tract infection caused by the severe acute respiratory syndrome coronavirus (SARS)-CoV-2. In light of the urgent need to identify novel approaches to be used in the emergency phase, we have embarked on an exploratory campaign aimed at repurposing natural substances and clinically available drugs as potential anti-SARS-CoV2-2 agents by targeting viral proteins. Here we report on a strategy based on the virtual screening of druggable pockets located in the central β-sheet core of the SARS-CoV-2 Spike's protein receptor binding domain (RBD). By combining an in silico approach and molecular in vitro testing we have been able to identify several triterpenoid/steroidal agents that inhibit interaction of the Spike RBD with the carboxypeptidase domain of the Angiotensin Converting Enzyme (ACE2). In detail, we provide evidence that potential binding sites exist in the RBD of the SARS CoV-2 Spike protein and that occupancy of these pockets reduces the ability of the RBD to bind to the ACE2 consensus in vitro. Naturally occurring and clinically available triterpenoids such as glycyrrhetinic and oleanolic acids, as well as primary and secondary bile acids and their amidated derivatives such as glyco-ursodeoxycholic acid and semi-synthetic derivatives such as obeticholic acid reduces the RBD/ACE2 binding. In aggregate, these results might help to define novel approaches to COVID-19 based on SARS-CoV-2 entry inhibitors.
Collapse
|
28
|
Fiorucci S, Baldoni M, Ricci P, Zampella A, Distrutti E, Biagioli M. Bile acid-activated receptors and the regulation of macrophages function in metabolic disorders. Curr Opin Pharmacol 2020; 53:45-54. [DOI: 10.1016/j.coph.2020.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
|
29
|
Fiorucci S, Biagioli M, Sepe V, Zampella A, Distrutti E. Bile acid modulators for the treatment of nonalcoholic steatohepatitis (NASH). Expert Opin Investig Drugs 2020; 29:623-632. [PMID: 32552182 DOI: 10.1080/13543784.2020.1763302] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease (NAFLD) for which therapy is suboptimal. The farnesoid-X-receptor (FXR) and the G protein bile acid receptor (GPBAR)1 are two bile acid-activated receptors that exert regulatory effects on lipid, glucose, energy, and immune homeostasis. GPBAR1 and FXR ligands have shown efficacy in reversing steatohepatitis and fibrosis in preclinical models of NASH. AREA COVERED This article evaluates the efficacy and pitfalls of GPBAR1 and FXR-based therapies in the treatment of NASH. While there are no GPBAR1 agonist in clinical development, several FXR ligands have completed phase 2 and phase 3 trials in NASH. EDP305, tropifexor, cilofexor, nidufexor, TERN.101, Px-104, EYP001, MET409. Individual FXR agonists have shown variable efficacy in reversing liver steatohepatitis and fibrosis. Class-related, dose-dependent side effects: pruritus, increased plasma levels of cholesterol and LDLc, and reduction of HDL have been reported. EXPERT OPINION Efficacy of FXR agonists as stand-alone therapy is limited by dose-related side effects. Efficacy of combining an FXR agonist with statins, CCR2, and ACC inhibitors is currently investigated. Identification of patient subsets would allow development of patients tailored therapy using a combination of drugs acting on different molecular mechanisms.
Collapse
|
30
|
Carino A, Biagioli M, Marchianò S, Fiorucci C, Bordoni M, Roselli R, Di Giorgio C, Baldoni M, Ricci P, Monti MC, Morretta E, Zampella A, Distrutti E, Fiorucci S. Opposite effects of the FXR agonist obeticholic acid on Mafg and Nrf2 mediate the development of acute liver injury in rodent models of cholestasis. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158733. [PMID: 32371093 DOI: 10.1016/j.bbalip.2020.158733] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022]
Abstract
The farnesoid-X-receptor (FXR) is validated target in the cholestatic disorders treatment. Obeticholic acid (OCA), the first in class of FXR agonist approved for clinical use, causes side effects including acute liver decompensation when administered to cirrhotic patients with primary biliary cholangitis at higher than recommended doses. The V-Maf avian-musculoaponeurotic-fibrosarcoma-oncogene-homolog-G (Mafg) and nuclear factor-erythroid-2-related-factor-2 (Nrf2) mediates some of the downstream effects of FXR. In the present study we have investigated the role of FXR/MafG/NRF2 pathway in the development of liver toxicity caused by OCA in rodent models of cholestasis. Cholestasis was induced by bile duct ligation (BDL) or administration of α-naphtyl-isothiocyanate (ANIT) to male Wistar rats and FXR-/- and FXR+/+ mice. Treating BDL and ANIT rats with OCA exacerbated the severity of cholestasis, hepatocytes injury and severely downregulated the expression of basolateral transporters. In mice, genetic ablation FXR or its pharmacological inhibition by 3-(naphthalen-2-yl)-5-(piperidin-4-yl)-1,2,4-oxadiazole rescued from negative regulation of MRP4 and protected against liver injury caused by ANIT. By RNAseq analysis we found that FXR antagonism effectively reversed the transcription of over 2100 genes modulated by OCA/ANIT treatment, including Mafg and Nrf2 and their target genes Cyp7a1, Cyp8b1, Mat1a, Mat2a, Gss. Genetic and pharmacological Mafg inhibition by liver delivery of siRNA antisense or S-adenosylmethionine effectively rescued from damage caused by ANIT/OCA. In contrast, Nrf2 induction by sulforaphane was protective. CONCLUSIONS: Liver injury caused by FXR agonism in cholestasis is FXR-dependent and is reversed by FXR and Mafg antagonism or Nrf2 induction.
Collapse
|
31
|
Biagioli M, Carino A, Fiorucci C, Marchianò S, Di Giorgio C, Bordoni M, Roselli R, Baldoni M, Distrutti E, Zampella A, Fiorucci S. The Bile Acid Receptor GPBAR1 Modulates CCL2/CCR2 Signaling at the Liver Sinusoidal/Macrophage Interface and Reverses Acetaminophen-Induced Liver Toxicity. THE JOURNAL OF IMMUNOLOGY 2020; 204:2535-2551. [PMID: 32213564 DOI: 10.4049/jimmunol.1901427] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/02/2020] [Indexed: 12/20/2022]
Abstract
Drug-induced liver injury caused by acetaminophen (acetyl-para-aminophenol [APAP]) is the main cause of acute liver failure and liver transplantation in several Western countries. Whereas direct toxicity exerted by APAP metabolites is a key determinant for early hepatocytes injury, the recruitment of cells of innate immunity exerts a mechanistic role in disease progression, determining the clinical outcomes. GPBAR1 is a G protein-coupled receptor for secondary bile acids placed at the interface between liver sinusoidal cells and innate immunity. In this report, using genetic and pharmacological approaches, we demonstrate that whereas Gpbar1 gene deletion worsens the severity of liver injury, its pharmacological activation by 6β-ethyl-3a,7b-dihydroxy-5b-cholan-24-ol rescues mice from liver injury caused by APAP. This protective effect was supported by a robust attenuation of liver recruitment of monocyte-derived macrophages and their repolarization toward an anti-inflammatory phenotype. Macrophage depletion by gadolinium chloride pretreatment abrogated disease development, whereas their reconstitution by spleen-derived macrophage transplantation restored the sensitivity to APAP in a GPBAR1-dependent manner. RNA sequencing analyses demonstrated that GPBAR1 agonism modulated the expression of multiple pathways, including the chemokine CCL2 and its receptor, CCR2. Treating wild-type mice with an anti-CCL2 mAb attenuated the severity of liver injury. We demonstrated that negative regulation of CCL2 production by GPBAR1 agonism was promoter dependent and involved FOXO1. In conclusion, we have shown that GPBAR1 is an upstream modulator of CCL2/CCR2 axis at the sinusoidal cell/macrophage interface, providing a novel target in the treatment of liver damage caused by APAP.
Collapse
|
32
|
Abstract
This review provides a historical perspective of bile acids and their receptors as therapeutic targets. Bile acids are atypical steroids generated by the liver from cholesterol and have been used for almost half a century for treating liver and biliary disorders. Since the early 1970s of the last century, chenodeoxycholic acid (CDCA), a primary bile acid, and ursodeoxycholic acid (UDCA), a secondary bile acid and the 7βepimer of CDCA, have been shown effective in promoting the dissolution of cholesterol gallstones. However, lack of activity and side effects associated with the use of CDCA, along with the advent of laparoscopic cholecystectomy, have greatly reduced the clinical relevance of this application. At the turn of the century, however, the discovery that bile acids activate specific receptors, along with the discovery that those receptors are placed at the interface of the host and intestinal microbiota regulating physiologically relevant enterohepatic and entero-pancreatic axes, has led to a "bile acid renaissance." Similarly to other steroids, bile acids bind and activate both cell surface and nuclear receptors, including the bile acid sensor farnesoid X receptor (FXR) and a G-protein-coupled bile acid receptor, known as GPBAR1 (TGR5). Both receptors have been proved druggable, and several highly potent, selective, and nonselective ligands for the two receptors have been discovered in the last two decades. Currently, in addition to obeticholic acid, a semisynthetic derivative of CDCA and the first in class of FXR ligands approved for clinical use, either selective or dual FXR and GPBAR1 ligands, have been developed, and some of them are undergoing pre-approval trials. The effects of FXR and GPBAR1 ligands in different therapeutic area are reviewed.
Collapse
|
33
|
Biagioli M, Carino A, Fiorucci C, Annunziato G, Marchianò S, Bordoni M, Roselli R, Giorgio CD, Castiglione F, Ricci P, Bruno A, Faccini A, Distrutti E, Baldoni M, Costantino G, Fiorucci S. The Aryl Hydrocarbon Receptor (AhR) Mediates the Counter-Regulatory Effects of Pelargonidins in Models of Inflammation and Metabolic Dysfunctions. Nutrients 2019; 11:E1820. [PMID: 31394746 PMCID: PMC6723439 DOI: 10.3390/nu11081820] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/15/2022] Open
Abstract
Pelargonidins are anthocyanidins thought to be beneficial for the human health, although controversies exist over the doses needed and the unclear mechanism of action, along with poor systemic bioavailability. One putative target of pelargonidins is the aryl hydrocarbon receptor (AhR). A synthetic pelargonidin (Mt-P) was synthesized by the methylation of the pelargonidin (the natural compound indicated as P). Mt-P transactivated the AhR with an EC50 of 1.97 µM and was ~2-fold more potent than the natural compound. In vitro Mt-P attenuated pro-inflammatory activities of Raw264.7 macrophage cells in an AhR-dependent manner. In vivo, administration of the Mt-P in Balb/c mice resulted in a dose-dependent attenuation of signs and symptoms of colitis induced by TNBS. A dose of 5 mg/kg Mt-P, but not the natural compound P, reversed intestinal inflammation and increased expression of Tnf-α, Ifn-ƴ, and Il-6, while promoted the expansion of regulatory T cells and M2 macrophages. In C57BL/6J mice fed a high fat diet (HFD), Mt-P attenuated body weight gain, intestinal and liver inflammation, and ameliorated insulin sensitivity, while worsened liver steatosis by up-regulating the liver expression of Cd36 and Apo100b. These effects were abrogated by AhR gene ablation. Mt-P is a synthetic pelargonidin endowed with robust AhR agonist activity that exerts beneficial effects in murine models of inflammation and metabolic dysfunction.
Collapse
|
34
|
Carino A, Biagioli M, Marchianò S, Fiorucci C, Zampella A, Monti MC, Scarpelli P, Ricci P, Distrutti E, Fiorucci S. Ursodeoxycholic acid is a GPBAR1 agonist and resets liver/intestinal FXR signaling in a model of diet-induced dysbiosis and NASH. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1422-1437. [PMID: 31325638 DOI: 10.1016/j.bbalip.2019.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 12/20/2022]
Abstract
Obeticholic acid (OCA) is a farnesoid-X-receptor (FXR) ligand, shown effective in reducing steatosis and fibrosis in NASH patients. However, OCA causes major side effects including pruritus, while increases the risk for liver decompensation in cirrhotic patients. Ursodeoxycholic acid (UDCA), is a safe and unexpensive bile acid used in the treatment of liver disorders whose mechanism of action is poorly defined. Here we have compared the effects of OCA and UDCA in a mouse model of NASH. In mice exposed to a diet rich in fat/cholesterol and fructose (HFD-F), treatment with OCA or UDCA effectively prevented body weight gain, insulin resistance, as demonstrated by OGTT, and AST plasma levels. After 12 weeks HFD-F mice developed liver microvesicular steatosis, inflammation and mild fibrosis, increased expression of inflammatory (TNFα, IL6, F4/80) and fibrosis (αSma, Col1α1, Tgfβ) markers, reduced liver expression of FXR, dysregulated liver FXR signaling and elevated levels of Tauro-α and β-muricholic acid (T-α and βMCA), two FXR antagonists in mice. Both compounds prevented these changes and improved liver histopathology. OCA reduced primary bile acid synthesis worsening the T-CA/T-βMCA ratio. UDCA effectively transactivated GPBAR1 in vitro. By RNAseq analysis we found that among over 2400 genes modulated by the HFD-F, only 32 and 60 genes were modulated by OCA and UDCA, with only 3 genes (Dbp, Adh7, Osgin1) being modulated by both agents. Both agents partially prevented the intestinal dysbiosis. CONCLUSIONS: UDCA is a GPBAR1 ligand and exerts beneficial effects in a rodent model of NASH by activating non-overlapping pathway with OCA.
Collapse
|
35
|
Biagioli M, Carino A, Fiorucci C, Marchianò S, Di Giorgio C, Roselli R, Magro M, Distrutti E, Bereshchenko O, Scarpelli P, Zampella A, Fiorucci S. GPBAR1 Functions as Gatekeeper for Liver NKT Cells and provides Counterregulatory Signals in Mouse Models of Immune-Mediated Hepatitis. Cell Mol Gastroenterol Hepatol 2019; 8:447-473. [PMID: 31226434 PMCID: PMC6718949 DOI: 10.1016/j.jcmgh.2019.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS GPBAR1, also known as TGR5, is a G protein-coupled receptor activated by bile acids. Hepatic innate immune cells are involved in the immunopathogenesis of human liver diseases and in several murine hepatitis models. Here, by using genetic and pharmacological approaches, we provide evidence that GPBAR1 ligation attenuates the inflammation in rodent models of hepatitis. MATERIAL AND METHODS Hepatitis was induced by concanavalin A (Con A) or α-galactosyl-ceramide (α-GalCer). 6b-Ethyl-3a,7b-dihydroxy-5b-cholan-24-ol (BAR501), a selective agonist of GPBAR1, was administrated by o.s. RESULTS In the mouse models of hepatitis, the genetic ablation of Gpabar1 worsened the severity of liver injury and resulted in a type I NKT cells phenotype that was biased toward a NKT1, a proinflammatory, IFN-γ producing, NKT cells subtype. Further on, NKT cells from GPBAR1-/- mice were sufficient to cause a severe hepatitis when transferred to naïve mice. In contrast, GPBAR1 agonism rescued wild-type mice from acute liver damage and redirects the NKT cells polarization toward a NKT10, a regulatory, IL-10 secreting, type I NKT cell subset. In addition, GPBAR1 agonism significantly expanded the subset of IL-10 secreting type II NKT cells. RNAseq analysis of both NKT cells type confirmed that IL-10 is a major target for GPABR1. Accordingly, IL-10 gene ablation abrogated protection afforded by GPBAR1 agonism in the Con A model. CONCLUSION Present results illustrate a role for GPBAR1 in regulating liver NKT ecology. Because NKT cells are an essential component of liver immune system, our data provide a compelling evidence for a GPBAR1-IL-10 axis in regulating of liver immunity.
Collapse
|
36
|
Carino A, Marchianò S, Biagioli M, Fiorucci C, Zampella A, Monti MC, Morretta E, Bordoni M, Di Giorgio C, Roselli R, Ricci P, Distrutti E, Fiorucci S. Transcriptome Analysis of Dual FXR and GPBAR1 Agonism in Rodent Model of NASH Reveals Modulation of Lipid Droplets Formation. Nutrients 2019; 11:nu11051132. [PMID: 31117231 PMCID: PMC6567134 DOI: 10.3390/nu11051132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a progressive, chronic, liver disease whose prevalence is growing worldwide. Despite several agents being under development for treating NASH, there are no drugs currently approved. The Farnesoid-x-receptor (FXR) and the G-protein coupled bile acid receptor 1 (GPBAR1), two bile acid activated receptors, have been investigated for their potential in treating NASH. Here we report that BAR502, a steroidal dual ligand for FXR/GPBAR1, attenuates development of clinical and liver histopathology features of NASH in mice fed a high fat diet (HFD) and fructose (F). By RNAseq analysis of liver transcriptome we found that BAR502 restores FXR signaling in the liver of mice feed HFD-F, and negatively regulates a cluster of genes including Srebf1 (Srepb1c) and its target genes-fatty acid synthase (Fasn) and Cell death-inducing DFF45-like effector (CIDE) genes, Cidea and Cidec-involved in lipid droplets formation and triglycerides storage in hepatocytes. Additionally, BAR502 increased the intestinal expression of Fgf15 and Glp1 and energy expenditure by white adipose tissues. Finally, exposure to BAR502 reshaped the intestinal microbiota by increasing the amount of Bacteroidaceae. In conclusion, we have shown that dual FXR/GPBAR1 agonism might have utility in treatment of NASH.
Collapse
|
37
|
Fiorucci S, Di Giorgio C, Distrutti E. Obeticholic Acid: An Update of Its Pharmacological Activities in Liver Disorders. Handb Exp Pharmacol 2019; 256:283-295. [PMID: 31201552 DOI: 10.1007/164_2019_227] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Obeticholic acid (OCA), 6α-ethyl-3α,7α-dihydroxy-5-cholan-24-oic acid, is a semisynthetic derivative of the chenodeoxycholic acid (CDCA, 3α,7α-dihydroxy-5-cholan-24-oic acid), a relatively hydrophobic primary bile acid synthesized in the liver from cholesterol. OCA, also known as 6-ethyl-CDCA or INT-747, was originally described by investigators at the Perugia University in 2002 as a selective ligand for the bile acid sensor, farnesoid-X-receptor (FXR). In addition to FXR and similarly to CDCA, OCA also activates GPBAR1/TGR5, a cell membrane G protein-coupled receptor for secondary bile acids. In 2016, based on the results of phase II studies showing efficacy in reducing the plasma levels of alkaline phosphatase, a surrogate biomarker for disease progression in primary biliary cholangitis (PBC), OCA has gained approval as a second-line treatment for PBC patients nonresponsive to UDCA. The use of OCA in PBC patients associates with several side effects, the most common of which is pruritus, whose incidence is dose-dependent and is extremely high when this agent is used as a monotherapy. Additionally, the use of OCA associates with the increased risk for the development of liver failure in cirrhotic PBC patients. Currently, OCA is investigated for its potential in the treatment of nonalcoholic steatohepatitis (NASH). Phase II and III trials have shown that OCA might attenuate the severity of liver fibrosis in patients with NASH, but it has no efficacy in reversing the steatotic component of the disease, while reduces the circulating levels of HDL-C and increases LDL-C. In summary, OCA has been the first-in-class of FXR ligands advanced to a clinical stage and is now entering its third decade of life, highlighting the potential benefits and risk linked to FXR-targeted therapies.
Collapse
|
38
|
Fiorucci S, Distrutti E. Chenodeoxycholic Acid: An Update on Its Therapeutic Applications. Handb Exp Pharmacol 2019; 256:265-282. [PMID: 31267167 DOI: 10.1007/164_2019_226] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chenodeoxycholic acid (CDCA), 3α,7α-dihydroxy-5β-cholan-24-oic acid, is a primary bile acid generated in the liver from cholesterol. In liver cells CDCA is conjugated with glycine or taurine to form two bile salts, Glyco-CDCA and Tauro-CDCA, before being released into the bile ducts. In the intestine, CDCA is further metabolized to generate a 7β epimer, i.e., the ursodeoxycholic acid (UDCA), or dehydroxylate to generate lithocolic acid (LCA). In humans, CDCA is the physiological ligand for the bile acid sensor farnesoid X receptor (FXR), while LCA is a potent agonist for a G protein-coupled receptor, known as GPBAR1 (TGR5). Along with UDCA, CDCA has been clinically used for the dissolution of gallbladder stones at doses ranging from 375 to 750 mg/day, with a success rate of 8 to 18%. Because the efficacy of CDCA was significantly lower than that of UDCA and 18-30% of patients developed significant side effects, the most frequent being diarrhea and a reversible increase in aminotransferases plasma levels, this application has lost its therapeutic relevance. Additionally, the combination of CDCA with UDCA, generally at doses of 5-10 mg/kg each, has failed to provide significant advantages over UDCA alone. In 2017, CDCA has been approved as an orphan indication for the treatment of patients with cerebrotendinous xanthomatosis (CTX), a rare autosomal recessive disorder caused by mutations of sterol 27-hydroxylase (CYP27A1) gene. Since CYP27A1 is essential for cholesterol breakdown, CTX patients develop abnormal lipid storage with increased plasma and tissue levels of cholestanol and very low/absent production of CDCA. CDCA is a potent inhibitor of CYP27A1, and early initiation of CDCA therapy, at doses up to 750 mg/day, is considered the standard medical therapy for CTX resulting in decreased plasma levels of cholestanol and stabilization of neurologic symptoms. Studies in CTX patients have also shown that CDCA might suppress the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase in the liver. Furthermore, CDCA promotes the release of glucagon-like peptide-1 (GLP-1) in diabetic patients, likely by activating GPBAR1.
Collapse
|
39
|
Skledar DG, Carino A, Trontelj J, Troberg J, Distrutti E, Marchianò S, Tomašič T, Zega A, Finel M, Fiorucci S, Mašič LP. Endocrine activities and adipogenic effects of bisphenol AF and its main metabolite. CHEMOSPHERE 2019; 215:870-880. [PMID: 30408883 DOI: 10.1016/j.chemosphere.2018.10.129] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
Bisphenol AF (BPAF) is a fluorinated analog of bisphenol A (BPA), and it is a more potent estrogen receptor (ER) agonist. BPAF is mainly metabolized to BPAF-glucuronide (BPAF-G), which has been reported to lack ER agonist activity and is believed to be biologically inactive. The main goal of the current study was to examine the influence of the metabolism of BPAF via glucuronidation on its ER activity and adipogenesis. Also, as metabolites can have different biological activities, the effects of BPAF-G on other nuclear receptors were evaluated. First, in-vitro BPAF glucuronidation was investigated using recombinant human enzymes. Specific reporter-gene assays were used to determine BPAF and BPAF-G effects on estrogen, androgen, glucocorticoid, and thyroid receptor pathways, and on PXR, FXR, and PPARγ pathways. Their effects on lipid accumulation and differentiation were determined in murine 3T3L1 preadipocytes using Nile Red, with mRNA expression analysis of the adipogenic markers adiponectin, Fabp4, Cebpα, and PPARγ. BPAF showed strong agonistic activity for hERα and moderate antagonistic activities for androgen and thyroid receptors, and for PXR. BPAF-G was antagonistic for PXR and PPARγ. BPAF (0.1 μM) and BPAF-G (1.0 μM) induced lipid accumulation and increased expression of key adipogenic markers in murine preadipocytes. BPAF-G is therefore not an inactive metabolite of BPAF. Further toxicological and epidemiological investigations of BPAF effects on human health are warranted, to provide better understanding of the metabolic end-elimination of BPAF.
Collapse
|
40
|
Carino A, Marchianò S, Biagioli M, Bucci M, Vellecco V, Brancaleone V, Fiorucci C, Zampella A, Monti MC, Distrutti E, Fiorucci S. Agonism for the bile acid receptor GPBAR1 reverses liver and vascular damage in a mouse model of steatohepatitis. FASEB J 2018; 33:2809-2822. [PMID: 30303744 DOI: 10.1096/fj.201801373rr] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is associated with an increased risk of developing cardiovascular complications and mortality, suggesting that treatment of NASH might benefit from combined approaches that target the liver and the cardiovascular components of NASH. Using genetic and pharmacologic approaches, we show that G protein-coupled bile acid-activated receptor 1 (GPBAR1) agonism reverses liver and vascular damage in mouse models of NASH. NASH is associated with accelerated vascular inflammation representing an independent risk factor for development of cardiovascular diseases and cardiovascular-related mortality. GPBAR1, also known as TGR5, is a G protein-coupled receptor for secondary bile acids that reduces inflammation and promotes energy expenditure. Using genetic and pharmacologic approaches, we investigated whether GPBAR1 agonism by 6β-ethyl-3α,7β-dihydroxy-5β-cholan-24-ol (BAR501) reverses liver and vascular damage induced by exposure to a diet enriched in fat and fructose (HFD-F). Treating HFD-F mice with BAR501 reversed liver injury and promoted the browning of white adipose tissue in a Gpbar1-dependent manner. Feeding HFD-F resulted in vascular damage, as shown by the increased aorta intima-media thickness and increased expression of inflammatory genes (IL-6,TNF-α, iNOS, and F4/80) and adhesion molecules (VCAM, intercellular adhesion molecule-1, and endothelial selectin) in the aorta, while reducing the expression of genes involved in NO and hydrogen sulfide generation, severely altering vasomotor activities of aortic rings in an ex vivo assay. BAR501 reversed this pattern in a Gpbar1-dependent manner, highlighting a potential role for GPBAR1 agonism in treating the liver and vascular component of NASH.-Carino, A., Marchianò, S., Biagioli, M., Bucci, M., Vellecco, V., Brancaleone, V., Fiorucci, C., Zampella, A., Monti, M. C., Distrutti, E., Fiorucci, S. Agonism for the bile acid receptor GPBAR1 reverses liver and vascular damage in a mouse model of steatohepatitis.
Collapse
|
41
|
Fiorucci S, Biagioli M, Zampella A, Distrutti E. Bile Acids Activated Receptors Regulate Innate Immunity. Front Immunol 2018; 9:1853. [PMID: 30150987 PMCID: PMC6099188 DOI: 10.3389/fimmu.2018.01853] [Citation(s) in RCA: 319] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Once known exclusively for their role in nutrients absorption, primary bile acids, chenodeoxycholic and cholic acid, and secondary bile acids, deoxycholic and lithocholic acid, are signaling molecules, generated from cholesterol breakdown by the interaction of the host and intestinal microbiota, acting on several receptors including the G protein-coupled bile acid receptor 1 (GPBAR1 or Takeda G-protein receptor 5) and the Farnesoid-X-Receptor (FXR). Both receptors are placed at the interface of the host immune system with the intestinal microbiota and are highly represented in cells of innate immunity such as intestinal and liver macrophages, dendritic cells and natural killer T cells. Here, we review how GPBAR1 and FXR modulate the intestinal and liver innate immune system and contribute to the maintenance of a tolerogenic phenotype in entero-hepatic tissues, and how regulation of innate immunity might help to explain beneficial effects exerted by GPBAR1 and FXR ligands in immune and metabolic disorders.
Collapse
|
42
|
Fiorucci S, Biagioli M, Distrutti E. Future trends in the treatment of non-alcoholic steatohepatitis. Pharmacol Res 2018; 134:289-298. [PMID: 30021122 DOI: 10.1016/j.phrs.2018.07.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022]
Abstract
With an estimated prevalence of ≈25% in Western and Asian countries, non alcoholic fatty liver disease (NAFLD), caused by chronic excessive caloric intake, is the emerging as the most prevalent liver disorder worldwide. NAFLD exists in two clinical entities, non-alcoholic fatty liver disease (NAFL), a relative benign disease that carry on minimal risk of liver-related morbidity but significant risk of cardiovascular complications, and non-alcoholic steatohepatitis (NASH), a progressive liver disorder with a significant risk for development of liver-related morbidities and mortality. While, liver injury in NASH is contributed by lipid overload in hepatocytes, lipotoxicity, the main determinant of disease progression is an inflammation-driven fibrotic response. Here, we review the landscape of emerging pharmacological interventions in the treatment of NAFL and NASH. A consensus exists that, while treating the liver component of NASH requires development of novel pharmacological approaches, the future therapy of NASH needs to be tailored to the single patient and most likely will be a combination of agents acting on specific pathogenic mechanisms at different disease stage.
Collapse
|
43
|
Sepe V, Distrutti E, Fiorucci S, Zampella A. Farnesoid X receptor modulators 2014-present: a patent review. Expert Opin Ther Pat 2018; 28:351-364. [DOI: 10.1080/13543776.2018.1459569] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Carino A, Graziosi L, D'Amore C, Cipriani S, Marchianò S, Marino E, Zampella A, Rende M, Mosci P, Distrutti E, Donini A, Fiorucci S. The bile acid receptor GPBAR1 (TGR5) is expressed in human gastric cancers and promotes epithelial-mesenchymal transition in gastric cancer cell lines. Oncotarget 2018; 7:61021-61035. [PMID: 27409173 PMCID: PMC5308633 DOI: 10.18632/oncotarget.10477] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/09/2016] [Indexed: 12/13/2022] Open
Abstract
GPBAR1 (also known as TGR5) is a bile acid activated receptor expressed in several adenocarcinomas and its activation by secondary bile acids increases intestinal cell proliferation. Here, we have examined the expression of GPBAR1 in human gastric adenocarcinomas and investigated whether its activation promotes the acquisition of a pro-metastatic phenotype. By immunohistochemistry and RT-PCR analysis we found that expression of GPBAR1 associates with advanced gastric cancers (Stage III-IV). GPBAR1 expression in tumors correlates with the expression of N-cadherin, a markers of epithelial-mesenchymal transition (EMT) (r=0.52; P<0.01). Expression of GPBAR1, mRNA and protein, was detected in cancer cell lines, with MKN 45 having the higher expression. Exposure of MKN45 cells to GPBAR1 ligands, TLCA, oleanolic acid or 6-ECDCA (a dual FXR and GPBAR1 ligand) increased the expression of genes associated with EMT including KDKN2A, HRAS, IGB3, MMP10 and MMP13 and downregulated the expression of CD44 and FAT1 (P<0.01 versus control cells). GPBAR1 activation in MKN45 cells associated with EGF-R and ERK1 phosphorylation. These effects were inhibited by DFN406, a GPBAR1 antagonist, and cetuximab. GPBAR1 ligands increase MKN45 migration, adhesion to peritoneum and wound healing. Pretreating MKN45 cells with TLCA increased propensity toward peritoneal dissemination in vivo. These effects were abrogated by cetuximab. In summary, we report that GPBAR1 is expressed in advanced gastric cancers and its expression correlates with markers of EMT. GPBAR1 activation in MKN45 cells promotes EMT. These data suggest that GPBAR1 antagonist might have utility in the treatment of gastric cancers.
Collapse
|
45
|
Biagioli M, Mencarelli A, Carino A, Cipriani S, Marchianò S, Fiorucci C, Donini A, Graziosi L, Baldelli F, Distrutti E, Costantino G, Fiorucci S. Genetic and Pharmacological Dissection of the Role of Spleen Tyrosine Kinase (Syk) in Intestinal Inflammation and Immune Dysfunction in Inflammatory Bowel Diseases. Inflamm Bowel Dis 2017; 24:123-135. [PMID: 29272492 DOI: 10.1093/ibd/izx031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND The DNAX adaptor protein 12 (DAP12) is a transmembrane adaptor molecule that signals through the activation of Syk (Spleen Tyrosine Kinase) in myeloid cells. The purpose of this study is to investigate the role of DAP12 and Syk pathways in inflammatory bowel diseases (IBDs). METHODS DAP12 deficient and DAP12 transgenic, overexpressing an increased amount of DAP12, mice and Syk deficient mice in the C57/BL6 background were used for these studies. Colitis was induced by administering mice with dextran sulfate sodium (DSS), in drinking water, or 2,4,6-trinitrobenzene sulfonic acid (TNBS), by intrarectal enema. RESULTS Abundant expression of DAP12 and Syk was detected in colon samples obtained from Crohn's disease patients with expression restricted to immune cells infiltrating the colonic wall. In rodents development of DSS colitis as measured by assessing severity of wasting diseases, global colitis score,and macroscopic and histology scores was robustly attenuated in DAP12-/- and Syk-/- mice. In contrast, DAP12 overexpression resulted in a striking exacerbation of colon damage caused by DSS. Induction of colon expression of proinflammatory cytokines and chemokines in response to DSS administration was attenuated in DAP12-/- and Syk-/- mice, whereas opposite results were observed in DAP12 transgenic mice. Treating wild-type mice with a DAP-12 inhibitor or a Syk inhibitor caused a robust attenuation of colitis induced by DSS and TNBS. CONCLUSIONS DAP12 and Syk are essential mediators in inflammation-driven immune dysfunction in murine colitides. Because DAP12 and Syk expression is upregulated in patients with active disease, present findings suggest a beneficial role for DAP12 and Syk inhibitors in IBD.
Collapse
|
46
|
Biagioli M, Laghi L, Carino A, Cipriani S, Distrutti E, Marchianò S, Parolin C, Scarpelli P, Vitali B, Fiorucci S. Metabolic Variability of a Multispecies Probiotic Preparation Impacts on the Anti-inflammatory Activity. Front Pharmacol 2017; 8:505. [PMID: 28804459 PMCID: PMC5532379 DOI: 10.3389/fphar.2017.00505] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022] Open
Abstract
Background: In addition to strain taxonomy, the ability of probiotics to confer beneficial effects on the host rely on a number of additional factors including epigenetic modulation of bacterial genes leading to metabolic variability and might impact on probiotic functionality. Aims: To investigate metabolism and functionality of two different batches of a probiotic blend commercialized under the same name in Europe in models of intestinal inflammation. Methods: Boxes of VSL#3, a probiotic mixture used in the treatment of pouchitis, were obtained from pharmacies in UK subjected to metabolomic analysis and their functionality tested in mice rendered colitis by treatment with DSS or TNBS. Results: VSL#3-A (lot DM538), but not VSL#3-B (lot 507132), attenuated “clinical” signs of colitis in the DSS and TNBS models. In both models, VSL#3-A, but not VSL#3-B, reduced macroscopic scores, intestinal permeability, and expression of TNFα, IL-1β, and IL-6 mRNAs, while increased the expression of TGFβ and IL-10, occludin, and zonula occludens-1 (ZO-1) mRNAs and shifted colonic macrophages from a M1 to M2 phenotype (P < 0.05 vs. TNBS). In contrast, VSL#3-B failed to reduce inflammation, and worsened intestinal permeability in the DSS model (P < 0.001 vs. VSL#3-A). A metabolomic analysis of the two formulations allowed the identification of two specific patterns, with at least three-folds enrichment in the concentrations of four metabolites, including 1–3 dihydroxyacetone (DHA), an intermediate in the fructose metabolism, in VSL#3-B supernatants. Feeding mice with DHA, increased intestinal permeability. Conclusions: Two batches of a commercially available probiotic show divergent metabolic activities. DHA, a product of probiotic metabolism, increases intestinal permeability, highlighting the complex interactions between food, microbiota, probiotics, and intestinal inflammation.
Collapse
|
47
|
Festa C, De Marino S, Carino A, Sepe V, Marchianò S, Cipriani S, Di Leva FS, Limongelli V, Monti MC, Capolupo A, Distrutti E, Fiorucci S, Zampella A. Targeting Bile Acid Receptors: Discovery of a Potent and Selective Farnesoid X Receptor Agonist as a New Lead in the Pharmacological Approach to Liver Diseases. Front Pharmacol 2017; 8:162. [PMID: 28424617 PMCID: PMC5371667 DOI: 10.3389/fphar.2017.00162] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/13/2017] [Indexed: 12/21/2022] Open
Abstract
Bile acid (BA) receptors represent well-defined targets for the development of novel therapeutic approaches to metabolic and inflammatory diseases. In the present study, we report the generation of novel C-3 modified 6-ethylcholane derivatives. The pharmacological characterization and molecular docking studies for the structure-activity rationalization, allowed the identification of 3β-azido-6α-ethyl-7α-hydroxy-5β-cholan-24-oic acid (compound 2), a potent and selective FXR agonist with a nanomolar potency in transactivation assay and high efficacy in the recruitment of SRC-1 co-activator peptide in Alfa Screen assay. In vitro, compound 2 was completely inactive towards common off-targets such as the nuclear receptors PPARα, PPARγ, LXRα, and LXRβ and the membrane G-coupled BA receptor, GPBAR1. This compound when administered in vivo exerts a robust FXR agonistic activity increasing the liver expression of FXR-target genes including SHP, BSEP, OSTα, and FGF21, while represses the expression of CYP7A1 gene that is negatively regulated by FXR. Collectively these effects result in a significant reshaping of BA pool in mouse. In summary, compound 2 represents a promising candidate for drug development in liver and metabolic disorders.
Collapse
|
48
|
Fiorucci S, Zampella A, Cirino G, Bucci M, Distrutti E. Decoding the vasoregulatory activities of bile acid-activated receptors in systemic and portal circulation: role of gaseous mediators. Am J Physiol Heart Circ Physiol 2016; 312:H21-H32. [PMID: 27765751 DOI: 10.1152/ajpheart.00577.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 01/06/2023]
Abstract
Bile acids are end products of cholesterol metabolism generated in the liver and released in the intestine. Primary and secondary bile acids are the result of the symbiotic relation between the host and intestinal microbiota. In addition to their role in nutrient absorption, bile acids are increasingly recognized as regulatory signals that exert their function beyond the intestine by activating a network of membrane and nuclear receptors. The best characterized of these bile acid-activated receptors, GPBAR1 (also known as TGR5) and the farnesosid-X-receptor (FXR), have also been detected in the vascular system and their activation mediates the vasodilatory effects of bile acids in the systemic and splanchnic circulation. GPBAR1, is a G protein-coupled receptor, that is preferentially activated by lithocholic acid (LCA) a secondary bile acid. GPBAR1 is expressed in endothelial cells and liver sinusoidal cells (LSECs) and responds to LCA by regulating the expression of both endothelial nitric oxide synthase (eNOS) and cystathionine-γ-lyase (CSE), an enzyme involved in generation of hydrogen sulfide (H2S). Activation of CSE by GPBAR1 ligands in LSECs is due to genomic and nongenomic effects, involves protein phosphorylation, and leads to release of H2S. Despite that species-specific effects have been described, vasodilation caused by GPBAR1 ligands in the liver microcirculation and aortic rings is abrogated by inhibition of CSE but not by eNOS inhibitor. Vasodilation caused by GPBAR1 (and FXR) ligands also involves large conductance calcium-activated potassium channels likely acting downstream to H2S. The identification of GPBAR1 as a vasodilatory receptor is of relevance in the treatment of complex disorders including metabolic syndrome-associated diseases, liver steatohepatitis, and portal hypertension.
Collapse
|
49
|
Gramec Skledar D, Tomašič T, Carino A, Distrutti E, Fiorucci S, Peterlin Mašič L. New brominated flame retardants and their metabolites as activators of the pregnane X receptor. Toxicol Lett 2016; 259:116-123. [DOI: 10.1016/j.toxlet.2016.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/01/2016] [Accepted: 08/05/2016] [Indexed: 01/30/2023]
|
50
|
Mencarelli A, Cipriani S, Francisci D, Santucci L, Baldelli F, Distrutti E, Fiorucci S. Highly specific blockade of CCR5 inhibits leukocyte trafficking and reduces mucosal inflammation in murine colitis. Sci Rep 2016; 6:30802. [PMID: 27492684 PMCID: PMC4974621 DOI: 10.1038/srep30802] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/07/2016] [Indexed: 01/09/2023] Open
Abstract
Targeted disruption of leukocyte trafficking to the gut represents a promising approach for the treatment of inflammatory bowel diseases (IBDs). CCR5, the shared receptor for MIP1α and β and RANTES, is expressed by multiple leukocytes. Here, we aimed to determine the role of CCR5 in mediating leukocyte trafficking in models of colitis, and evaluate the therapeutic potential of maraviroc, an orally active CCR5 antagonist used in the treatment of CCR5-tropic HIV. Acute and chronic colitis were induced by administration of DSS or TNBS to wild-type and CCR5−/− mice or adoptive transfer of splenic naïve CD4+ T-cells from wild type or CCR5−/− mice into RAG-1−/−. CCR5 gene ablation reduced the mucosal recruitment and activation of CCR5-bearing CD4+ and CD11b+ leukocytes, resulting in profound attenuation of signs and symptoms of inflammation in the TNBS and transfer models of colitis. In the DSS/TNBS colitis and in the transfer model, maraviroc attenuated development of intestinal inflammation by selectively reducing the recruitment of CCR5 bearing leukocytes. In summary, CCR5 regulates recruitment of blood leukocytes into the colon indicating that targeting CCR5 may offer therapeutic options in IBDs.
Collapse
|