1
|
Yu C, Li X, Zeng F, Zheng F, Wu S. Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem Commun (Camb) 2013; 49:403-5. [PMID: 23192384 DOI: 10.1039/c2cc37329g] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
A FRET ratiometric fluorescent sensor was developed for detecting H(2)S in aqueous media and serum, as well as inside live cells. For this sensor, carbon dots serve as the energy donor and also the anchoring site for the probe. This sensor is highly selective and sensitive with a detection limit of 10 nM which is the lowest among fluorescent H(2)S sensors.
Collapse
|
|
12 |
316 |
2
|
Zheng F, Chen Z, Zhang J. A finite-difference time-domain method without the Courant stability conditions. ACTA ACUST UNITED AC 1999. [DOI: 10.1109/75.808026] [Citation(s) in RCA: 309] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
26 |
309 |
3
|
Bügl H, Fauman EB, Staker BL, Zheng F, Kushner SR, Saper MA, Bardwell JC, Jakob U. RNA methylation under heat shock control. Mol Cell 2000; 6:349-60. [PMID: 10983982 DOI: 10.1016/s1097-2765(00)00035-6] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Structural, biochemical, and genetic techniques were applied to investigate the function of FtsJ, a recently identified heat shock protein. FtsJ is well conserved, from bacteria to humans. The 1.5 A crystal structure of FtsJ in complex with its cofactor S-adenosylmethionine revealed that FtsJ has a methyltransferase fold. The molecular surface of FtsJ exposes a putative nucleic acid binding groove composed of highly conserved, positively charged residues. Substrate analysis showed that FtsJ methylates 23S rRNA within 50S ribosomal subunits in vitro and in vivo. Null mutations in ftsJ show a dramatically altered ribosome profile, a severe growth disadvantage, and a temperature-sensitive phenotype. Our results reveal an unexpected link between the heat shock response and RNA metabolism.
Collapse
|
|
25 |
190 |
4
|
Zheng F. Thermophoresis of spherical and non-spherical particles: a review of theories and experiments. Adv Colloid Interface Sci 2002; 97:255-78. [PMID: 12027022 DOI: 10.1016/s0001-8686(01)00067-7] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thermophoresis is an important mechanism of micro-particle transport due to a temperature gradient in the surrounding medium and has found numerous applications, especially in the field of aerosol technology. Extensive studies, both theoretical and experimental, have been done to understand the nature of this phenomenon. However, it is clear that a lot more of work needs to be done before we can predict thermophoresis accurately for any given gas-particle system as well as particle shape and orientation in any flow regime. This paper reviews the existing theories and data in two major categories, for spherical particles and for non-spherical particles, as well as the various techniques in making thermophoresis measurements. The current state of development for thermophoresis studies is that for spheres the theories and experimental data agree with each other fairly well but for non-spherical particles in the transition regime the theories are yet to be developed and experimental data showing the effect of particle shape are much needed in all Knudsen number range. The best techniques of thermophoretic force measurements involve the use of electrodynamic balances to work on single micro-particles and the use of microgravity to minimize the effect of convection. A combination of the above two has not been attempted and should provide the most accurate data.
Collapse
|
|
23 |
172 |
5
|
Yang F, Feng L, Zheng F, Johnson SW, Du J, Shen L, Wu CP, Lu B. GDNF acutely modulates excitability and A-type K(+) channels in midbrain dopaminergic neurons. Nat Neurosci 2001; 4:1071-8. [PMID: 11593232 DOI: 10.1038/nn734] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) prevents lesion-induced death of midbrain dopaminergic neurons, but its function in normal brain remains uncertain. Here we show that GDNF acutely and reversibly potentiated the excitability of cultured midbrain neurons by inhibiting transient A-type K(+) channels. The effects of GDNF were limited to large, tyrosine hydroxylase (TH)-positive dopaminergic neurons, and were mediated by mitogen associated protein (MAP) kinase. Application of GDNF also elicited a MAP kinase-dependent enhancement of the excitability in dopaminergic neurons in midbrain slice. These results demonstrate an acute regulation of GDNF on ion channels and its underlying signaling mechanism, and reveal an unexpected role of GDNF in normal midbrain dopaminergic neurons.
Collapse
|
|
24 |
165 |
6
|
Zheng F, Gingrich MB, Traynelis SF, Conn PJ. Tyrosine kinase potentiates NMDA receptor currents by reducing tonic zinc inhibition. Nat Neurosci 1998; 1:185-91. [PMID: 10195142 DOI: 10.1038/634] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/1998] [Accepted: 05/22/1998] [Indexed: 11/10/2022]
Abstract
Activation of the tyrosine kinase Src potentiates NMDA-receptor currents, which is thought to be necessary for induction of hippocampal long-term potentiation. Although the carboxy(C)-terminal domain of the NR2A subunit contains potential tyrosine phosphorylation sites, the mechanisms by which Src modulates synaptic plasticity and NMDA receptor currents is not fully understood. Here we present evidence from NR1 mutants and splice variants that Src potentiates NMDA-receptor currents by reducing the tonic inhibition of receptors composed of NR1 and NR2A subunits by extracellular zinc. Using site-directed mutagenesis, we have identified three C-terminal tyrosine residues of NR2A that are required for Src's modulation of the zinc sensitivity of NMDA receptors. Our data link two modulatory sites of NMDA receptors that were previously thought to be independent.
Collapse
|
|
27 |
152 |
7
|
Park CW, Zhang Y, Zhang X, Wu J, Chen L, Cha DR, Su D, Hwang MT, Fan X, Davis L, Striker G, Zheng F, Breyer M, Guan Y. PPARα agonist fenofibrate improves diabetic nephropathy in db/db mice. Kidney Int 2006; 69:1511-7. [PMID: 16672921 DOI: 10.1038/sj.ki.5000209] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peroxisome proliferator-activated receptor alpha (PPARalpha) is a member of the ligand-activated nuclear receptor superfamily, and plays an important role in lipid metabolism and glucose homeostasis. The purpose of this study is to determine whether the activation of PPARalpha by fenofbrate would improve diabetes and its renal complications in type II diabetes mellitus. Male C57 BLKS db/db mice and db/m controls at 8 weeks of age were divided to receive either a regular diet chow (db/db, n=8; db/m, n=6) or a diet containing fenofibrate (db/db, n=8; db/m, n=7). Mice were followed for 8 weeks. Fenofibrate treatment dramatically reduced fasting blood glucose (P<0.001) and HbA1c levels (P<0.001), and was associated with decreased food intake (P<0.01) and slightly reduced body weight. Fenofibrate also ameliorated insulin resistance (P<0.001) and reduced plasma insulin levels (P<0.05) in db/db mice. Hypertrophy of pancreatic islets was decreased and insulin content markedly increased (P<0.05) in fenofibrate-treated diabetic animals. In addition, fenofibrate treatment significantly reduced urinary albumin excretion (P<0.001). This was accompanied by dramatically reduced glomerular hypertrophy and mesangial matrix expansion. Furthermore, the addition of fenofibrate to cultured mesangial cells, which possess functional active PPARalpha, decreased type I collagen production. Taken together, the PPARalpha agonist fenofibrate dramatically improves hyperglycemia, insulin resistance, albuminuria, and glomerular lesions in db/db mice. The activation of PPARalpha by fenofibrate in mesangial cells may partially contribute to its renal protection. Thus, fenofibrate may serve as a therapeutic agent for type II diabetes and diabetic nephropathy.
Collapse
|
|
19 |
152 |
8
|
Low CM, Zheng F, Lyuboslavsky P, Traynelis SF. Molecular determinants of coordinated proton and zinc inhibition of N-methyl-D-aspartate NR1/NR2A receptors. Proc Natl Acad Sci U S A 2000; 97:11062-7. [PMID: 10984504 PMCID: PMC27148 DOI: 10.1073/pnas.180307497] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2000] [Accepted: 07/03/2000] [Indexed: 11/18/2022] Open
Abstract
Modulation of the N-methyl-d-aspartate (NMDA)-selective glutamate receptors by extracellular protons and Zn(2+) may play important roles during ischemia in the brain and during seizures. Recombinant NR1/NR2A receptors exhibit a much higher apparent affinity for voltage-independent Zn(2+) inhibition than receptors with other subunit combinations. Here, we show that the mechanism of this apparent high-affinity, voltage-independent Zn(2+) inhibition for NR2A-containing receptors results from the enhancement of proton inhibition. We also show that the N-terminal leucine/isoleucine/valine binding protein (LIVBP)-like domain of the NR2A subunit contains critical determinants of the apparent high-affinity, voltage-independent Zn(2+) inhibition. Mutations H42A, H44G, or H128A greatly increase the Zn(2+) IC(50) (by up to approximately 700-fold) with no effect on the potencies of glutamate and glycine or on voltage-dependent block by Mg(2+). Furthermore, the amino acid residue substitution H128A, which mediates the largest effect on the apparent high-affinity Zn(2+) inhibition among all histidine substitutions we tested, is also critical to the pH-dependency of Zn(2+) inhibition. Our data revealed a unique interaction between two important extracellular modulators of NMDA receptors.
Collapse
|
research-article |
25 |
144 |
9
|
Abstract
This review on the control of schistosomiasis in China consists of the disease in the past, epidemiology, control programme, control approaches, achievements, problems existed and an appendix: the criteria for control and elimination of schistosomiasis in China.
Collapse
|
|
26 |
136 |
10
|
Zhang LF, Zhou J, Chen S, Cai LL, Bao QY, Zheng FY, Lu JQ, Padmanabha J, Hengst K, Malcolm K, Frazer IH. HPV6b virus like particles are potent immunogens without adjuvant in man. Vaccine 2000; 18:1051-8. [PMID: 10590325 DOI: 10.1016/s0264-410x(99)00351-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Subjects with genital warts were immunized three times or more with HPV6b VLPs without adjuvant. All immunized subjects had DTH to HPV6b L1 protein. Of 32 subjects, nine had HPV6b specific antibody prior to immunization and 22 acquired antibody with immunization. VLP specific antibody increased following a single immunization in 6 of 8 subjects with low level antibody at recruitment. Complete regression of genital warts was observed in 25 of 33 evaluable subjects over the 20-week observation period. We conclude that immunization with HPV6b L1 VLPs without adjuvant induces immunity to the L1 protein epitopes recognised during natural infection, and may accelerate regression of warts.
Collapse
|
Clinical Trial |
25 |
128 |
11
|
Zheng F, Gallagher JP. Metabotropic glutamate receptors are required for the induction of long-term potentiation. Neuron 1992; 9:163-72. [PMID: 1352982 DOI: 10.1016/0896-6273(92)90231-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent observations have led to the suggestion that the metabotropic glutamate receptor may play a role in the induction or maintenance of long-term potentiation (LTP). However, experimental evidence supporting a role for this receptor in the induction of LTP is still inconclusive and controversial. Here we report that, in rat dorsolateral septal nucleus (DLSN) neurons, which have the highest density of metabotropic receptors and show functional responses, the induction of LTP is not blocked by the NMDA receptor antagonist 2-amino-5-phosphonovalerate, but is blocked by two putative metabotropic glutamate receptor antagonists, L-2-amino-3-phosphonopropionic acid and L-2-amino-4-phosphonobutyrate. Furthermore, superfusion of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid, a selective metabotropic glutamate agonist, resulted in a long-lasting potentiation of synaptic transmission similar to that induced by tetanic stimuli. Our results demonstrated that activation of postsynaptic metabotropic receptors is both necessary and sufficient for the induction of LTP in the DLSN, and we suggest that such a mechanism may be important at other CNS synapses.
Collapse
|
|
33 |
122 |
12
|
Zheng F, Tang W, Li H, Huang YX, Xie YL, Zhou ZG. Clinical characteristics of 161 cases of corona virus disease 2019 (COVID-19) in Changsha. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2020; 24:3404-3410. [PMID: 32271459 DOI: 10.26355/eurrev_202003_20711] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE In December 2019, a new type of coronavirus-infected pneumonia broke out in Wuhan and spread rapidly to other parts of the country. The purpose of this study was to investigate the clinical features of coronavirus disease 2019 (COVID-19). MATERIALS AND METHODS A retrospective analysis was performed on the confirmed cases of COVID-19, who were admitted to the North Hospital of Changsha first Hospital (Changsha Public Health treatment Center) from January 17 to February 7, 2020. RESULTS The median age of COVID-19 patients was 45 years (range 33.5-57). The male patients accounted for 49.7%, 64.6% of the patients had a history of exposure in Wuhan, and 31.7% had family aggregation. The median days of onset were six, and the incidence of severe illness was 18.6%. Compared with the non-severe group, the severe group showed statistical significance in older age, hypertension, bilateral lung plaque shadow, decrease in lymphocyte count, increase in C-reactive protein (CRP), aspartate aminotransferase (AST), lactate dehydrogenase, and creatine kinase. CONCLUSIONS Age, combined hypertension, oxygenation index, double lung patch, decreased lymphocyte count, and elevated levels of C-reactive protein, aspartate aminotransferase, lactate dehydrogenase, and creatine kinase can be used as predictors of the disease severity.
Collapse
|
Journal Article |
5 |
118 |
13
|
Zheng F, Guo S, Zeng F, Li J, Wu S. Ratiometric Fluorescent Probe for Alkaline Phosphatase Based on Betaine-Modified Polyethylenimine via Excimer/Monomer Conversion. Anal Chem 2014; 86:9873-9. [DOI: 10.1021/ac502500e] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
|
11 |
116 |
14
|
Huang Y, Yin H, Han J, Huang B, Xu J, Zheng F, Tan Z, Fang M, Rui L, Chen D, Wang S, Zheng X, Wang CY, Gong F. Extracellular hmgb1 functions as an innate immune-mediator implicated in murine cardiac allograft acute rejection. Am J Transplant 2007; 7:799-808. [PMID: 17331117 DOI: 10.1111/j.1600-6143.2007.01734.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hmgb1, an evolutionarily conserved chromosomal protein, was recently re-discovered to be an innate immune-mediator contributing to both innate and adaptive immune responses. Here, we show a pivotal role for Hmgb1 in acute allograft rejection in a murine cardiac transplantation model. Extracellular Hmgb1 was found to be a potent stimulator for adaptive immune responses. Hmgb1 can be either passively released from damaged cells after organ harvest and ischemia/reperfusion insults, or actively secreted by allograft infiltrated immune cells. After transplantation, allografts show a significant temporal up-regulation of Hmgb1 expression accompanied by inflammatory infiltration, a consequence of graft destruction. These data suggest the involvement of Hmgb1 in acute allograft rejection. In line with these observations, treatment of recipients with rA-box, a specific blockade for endogenous Hmgb1, significantly prolonged cardiac allograft survival as compared to those recipients treated with either rGST or control vehicle. The enhanced graft survival is associated with reduced allograft expression of TNFalpha, IFNgamma and Hmgb1 and impaired Th1 immune response.
Collapse
|
|
18 |
116 |
15
|
Ma B, Zeng F, Zheng F, Wu S. A Fluorescence Turn-on Sensor for Iodide Based on a Thymine-HgII-Thymine Complex. Chemistry 2011; 17:14844-50. [DOI: 10.1002/chem.201102024] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/11/2011] [Indexed: 12/19/2022]
|
|
14 |
115 |
16
|
Xiao WH, Zheng H, Zheng FY, Nuydens R, Meert TF, Bennett GJ. Mitochondrial abnormality in sensory, but not motor, axons in paclitaxel-evoked painful peripheral neuropathy in the rat. Neuroscience 2011; 199:461-9. [PMID: 22037390 DOI: 10.1016/j.neuroscience.2011.10.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 10/16/2022]
Abstract
The dose-limiting side effect of the anti-neoplastic agent, paclitaxel, is a chronic distal symmetrical peripheral neuropathy that produces sensory dysfunction (hypoesthesia and neuropathic pain) but little or no distal motor dysfunction. Similar peripheral neuropathies are seen with chemotherapeutics in the vinca alkaloid, platinum-complex, and proteasome inhibitor classes. Studies in rats suggest that the cause is a mitotoxic effect on axonal mitochondria. If so, then the absence of motor dysfunction may be due to mitotoxicity that affects sensory axons but spares motor axons. To investigate this, paclitaxel exposure levels in the dorsal root, ventral root, dorsal root ganglion, peripheral nerve, and spinal cord were measured, and the ultrastructure and the respiratory function of mitochondria in dorsal roots and ventral roots were compared. Sensory and motor axons in the roots and nerve had comparably low exposure to paclitaxel and exposure in the spinal cord was negligible. However, sensory neurons in the dorsal root ganglion had a very high and remarkably persistent (up to 10 days or more after the last injection) exposure to paclitaxel. Paclitaxel evoked a significant increase in the incidence of swollen and vacuolated mitochondria in the myelinated and unmyelinated sensory axons of the dorsal root (as seen previously in the peripheral nerve) but not in the motor axons of the ventral root. Stimulated mitochondrial respiration in the dorsal root was significantly depressed in paclitaxel-treated animals examined 2-4 weeks after the last injection, whereas respiration in the ventral root was normal. We conclude that the absence of motor dysfunction in paclitaxel-evoked peripheral neuropathy may be due to the absence of a mitotoxic effect in motor neuron axons, whereas the sensory dysfunction may be due to a mitotoxic effect resulting from the primary afferent neuron's cell body being exposed to high and persistent levels of paclitaxel.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
107 |
17
|
Mukherjee AB, Kundu GC, Mantile-Selvaggi G, Yuan CJ, Mandal AK, Chattopadhyay S, Zheng F, Pattabiraman N, Zhang Z. Uteroglobin: a novel cytokine? Cell Mol Life Sci 1999; 55:771-87. [PMID: 10379362 PMCID: PMC11146838 DOI: 10.1007/s000180050331] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Blastokinin or uteroglobin (UG) is a steroid-inducible, evolutionarily conserved, multifunctional protein secreted by the mucosal epithelial of virtually all mammals. It is present in the blood and in other body fluids including urine. An antigen immunoreactive to UG antibody is also detectable in the mucosal epithelia of all vertebrates. UG-binding proteins (putative receptor), expressed on several normal and cancer cell types, have been characterized. The human UG gene is mapped to chromosome 11q12.2 13.1, a region that is frequently rearranged or deleted in many cancers. The generation of UG knockout mice revealed that disruption of this gene causes: (i) severe renal disease due to an abnormal deposition of fibronectin and collagen in the glomeruli; (ii) predisposition to a high incidence of malignancies; and (iii) a lack of polychlorinated biphenyl binding and increased oxygen toxicity in the lungs. The mechanism(s) of UG action is likely to be even more complex as it also functions via a putative receptor-mediated pathway that has not yet been clearly defined. Molecular characterization of the UG receptor and signal transduction via this receptor pathway may show that this protein belongs to a novel cytokine/chemokine family.
Collapse
|
Review |
26 |
107 |
18
|
Liu B, Xu Q, Wang Q, Feng S, Lai F, Wang P, Zheng F, Xiang Y, Wu J, Nie J, Qiu C, Xia W, Li L, Yu G, Lin Z, Xu K, Xiong Z, Kong F, Liu L, Huang C, Yu Y, Na J, Xie W. The landscape of RNA Pol II binding reveals a stepwise transition during ZGA. Nature 2020; 587:139-144. [PMID: 33116310 DOI: 10.1038/s41586-020-2847-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 08/04/2020] [Indexed: 12/22/2022]
Abstract
Zygotic genome activation (ZGA) is the first transcription event in life1. However, it is unclear how RNA polymerase is engaged in initiating ZGA in mammals. Here, by developing small-scale Tn5-assisted chromatin cleavage with sequencing (Stacc-seq), we investigated the landscapes of RNA polymerase II (Pol II) binding in mouse embryos. We found that Pol II undergoes 'loading', 'pre-configuration', and 'production' during the transition from minor ZGA to major ZGA. After fertilization, Pol II is preferentially loaded to CG-rich promoters and accessible distal regions in one-cell embryos (loading), in part shaped by the inherited parental epigenome. Pol II then initiates relocation to future gene targets before genome activation (pre-configuration), where it later engages in full transcription elongation upon major ZGA (production). Pol II also maintains low poising at inactive promoters after major ZGA until the blastocyst stage, coinciding with the loss of promoter epigenetic silencing factors. Notably, inhibition of minor ZGA impairs the Pol II pre-configuration and embryonic development, accompanied by aberrant retention of Pol II and ectopic expression of one-cell targets upon major ZGA. Hence, stepwise transition of Pol II occurs when mammalian life begins, and minor ZGA has a key role in the pre-configuration of transcription machinery and chromatin for genome activation.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
96 |
19
|
Zheng F, Erreger K, Low CM, Banke T, Lee CJ, Conn PJ, Traynelis SF. Allosteric interaction between the amino terminal domain and the ligand binding domain of NR2A. Nat Neurosci 2001; 4:894-901. [PMID: 11528420 DOI: 10.1038/nn0901-894] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fast desensitization is an important regulatory mechanism of neuronal NMDA receptor function. Only recombinant NMDA receptors composed of NR1/NR2A exhibit a fast component of desensitization similar to neuronal NMDA receptors. Here we report that the fast desensitization of NR1/NR2A receptors is caused by ambient zinc, and that a positive allosteric interaction occurs between the extracellular zinc-binding site located in the amino terminal domain and the glutamate-binding domain of NR2A. The relaxation of macroscopic currents reflects a shift to a new equilibrium due to increased zinc affinity after binding of glutamate. We also show a similar interaction between the ifenprodil binding site and the glutamate binding site of NR1/NR2B receptors. These data raise the possibility that there is an allosteric interaction between the amino terminal domain and the ligand-binding domain of other glutamate receptors. Our findings may provide insight into how zinc and other extracellular modulators regulate NMDA receptor function.
Collapse
|
|
24 |
96 |
20
|
Zheng F, Zeng F, Yu C, Hou X, Wu S. A PEGylated fluorescent turn-on sensor for detecting fluoride ions in totally aqueous media and its imaging in live cells. Chemistry 2012. [PMID: 23197478 DOI: 10.1002/chem.201202732] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Owing to the considerable significance of fluoride anions for health and environmental issues, it is of great importance to develop methods that can rapidly, sensitively and selectively detect the fluoride anion in aqueous media and biological samples. Herein, we demonstrate a robust fluorescent turn-on sensor for detecting the fluoride ion in a totally aqueous solution. In this study, a biocompatible hydrophilic polymer poly(ethylene glycol) (PEG) is incorporated into the sensing system to ensure water solubility and to enhance biocompatibility. tert-Butyldiphenylsilyl (TBDPS) groups were then covalently introduced onto the fluorescein moiety, which effectively quenched the fluorescence of the sensor. Upon addition of fluoride ion, the selective fluoride-mediated cleavage of the Si-O bond leads to the recovery of the fluorescein moiety, resulting in a dramatic increase in fluorescence intensity under visible light excitation. The sensor is responsive and highly selective for the fluoride anion over other common anions; it also exhibits a very low detection limit of 19 ppb. In addition, this sensor is operative in some real samples such as running water, urine, and serum and can accurately detect fluoride ions in these samples. The cytotoxicity of the sensor was determined to be Grade I toxicity according to United States Pharmacopoeia and ISO 10993-5, suggesting the very low cytotoxicity of the sensor. Moreover, it was found that the senor could be readily internalized by both HeLa and L929 cells and the sensor could be utilized to track fluoride level changes inside the cells.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
95 |
21
|
Zheng F, Kundu GC, Zhang Z, Ward J, DeMayo F, Mukherjee AB. Uteroglobin is essential in preventing immunoglobulin A nephropathy in mice. Nat Med 1999; 5:1018-25. [PMID: 10470078 DOI: 10.1038/12458] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The molecular mechanism(s) of immunoglobulin A (IgA) nephropathy, the most common primary renal glomerular disease worldwide, is unknown. Its pathologic features include hematuria, high levels of circulating IgA-fibronectin (Fn) complexes, and glomerular deposition of IgA, complement C3, Fn and collagen. We report here that two independent mouse models (gene knockout and antisense transgenic), both manifesting deficiency of an anti-inflammatory protein, uteroglobin (UG), develop almost all of the pathologic features of human IgA nephropathy. We further demonstrate that Fn-UG heteromerization, reported to prevent abnormal glomerular deposition of Fn and collagen, also abrogates both the formation of IgA-Fn complexes and their binding to glomerular cells. Moreover, UG prevents glomerular accumulation of exogenous IgA in UG-null mice. These results define an essential role for UG in preventing mouse IgA nephropathy and warrant further studies to determine if a similar mechanism(s) underlies the human disease.
Collapse
MESH Headings
- Animals
- Antigen-Antibody Complex/analysis
- Antigen-Antibody Complex/blood
- Antigen-Antibody Complex/drug effects
- Antigen-Antibody Complex/immunology
- Cells, Cultured
- Collagen/genetics
- Collagen/metabolism
- Complement C3/analysis
- Complement C3/immunology
- Disease Models, Animal
- Fibronectins/analysis
- Fibronectins/blood
- Fibronectins/genetics
- Fibronectins/immunology
- Gene Deletion
- Glomerular Mesangium/cytology
- Glomerular Mesangium/drug effects
- Glomerular Mesangium/immunology
- Glomerular Mesangium/pathology
- Glomerulonephritis, IGA/genetics
- Glomerulonephritis, IGA/immunology
- Glomerulonephritis, IGA/pathology
- Glomerulonephritis, IGA/physiopathology
- Hematuria/pathology
- Hematuria/urine
- Humans
- Immunoglobulin A/analysis
- Immunoglobulin A/blood
- Immunoglobulin A/drug effects
- Immunoglobulin A/immunology
- Kidney Glomerulus/immunology
- Kidney Glomerulus/metabolism
- Kidney Glomerulus/pathology
- Kidney Glomerulus/physiopathology
- Mice
- Mice, Knockout
- Mice, Transgenic
- Platelet-Derived Growth Factor/analysis
- Platelet-Derived Growth Factor/genetics
- Proto-Oncogene Proteins/analysis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-sis
- RNA, Antisense/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Uteroglobin/deficiency
- Uteroglobin/genetics
- Uteroglobin/pharmacology
- Uteroglobin/physiology
Collapse
|
Comparative Study |
26 |
82 |
22
|
Lupia E, Elliot SJ, Lenz O, Zheng F, Hattori M, Striker GE, Striker LJ. IGF-1 decreases collagen degradation in diabetic NOD mesangial cells: implications for diabetic nephropathy. Diabetes 1999; 48:1638-44. [PMID: 10426384 DOI: 10.2337/diabetes.48.8.1638] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nonobese diabetic (NOD) mice develop glomerulosclerosis shortly after the onset of diabetes. We showed that mesangial cells (MCs) from diabetic mice exhibited a stable phenotypic switch, consisting of both increased IGF-1 synthesis and proliferation (Elliot SJ, Striker LJ, Hattori M, Yang CW, He CJ, Peten EP, Striker GE: Mesangial cells from diabetic NOD mice constitutively secrete increased amounts of insulin-like growth factor-I. Endocrinology 133:1783-1788, 1993). Because the extracellular matrix (ECM) accumulation in diabetic glomerulosclerosis may be partly due to decreased degradation, we examined the effect of excess IGF-1 on collagen turnover and the activity of metalloproteinases (MMPs) and tissue inhibitors of metalloproteinase (TIMPs) in diabetic and nondiabetic NOD-MC. Total collagen degradation was reduced by 58 +/- 18% in diabetic NOD-MCs, which correlated with a constitutive decrease in MMP-2 activity and mRNA levels, and nearly undetectable MMP-9 activity and mRNA. TIMP levels were slightly decreased in diabetic NOD-MC. The addition of recombinant IGF-1 to nondiabetic NOD-MC resulted in a decrease in MMP-2 and TIMP activity. Furthermore, treatment of diabetic NOD-MC with a neutralizing antibody against IGF-1 increased the latent form, and restored the active form, of MMP-2. In conclusion, the excessive production of IGF-1 contributes to the altered ECM turnover in diabetic NOD-MC, largely through a reduction of MMP-2 activity. These data suggest that IGF-1 could be a major contributor to the development of diabetic glomerulosclerosis.
Collapse
|
|
26 |
81 |
23
|
Zheng F, Striker GE, Esposito C, Lupia E, Striker LJ. Strain differences rather than hyperglycemia determine the severity of glomerulosclerosis in mice. Kidney Int 1998; 54:1999-2007. [PMID: 9853264 DOI: 10.1046/j.1523-1755.1998.00219.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND We reported that ROP, but not C57, mice were prone to glomerulosclerosis (GS) after nephron reduction (J Clin Invest 97:1242, 1996). METHODS In this study, we induced diabetes in ROP and C57 mice to determine if the glomerulosclerotic response was stimulus specific. We used the oligosyndactyly mutation (Os), to produce a congenital 50% reduction in nephron number. Stable hyperglycemia was induced by streptozotocin and mice were maintained for 12 weeks without insulin treatment. RESULTS Glomerular hypertrophy occurred in diabetic ROP +/+ and C57 +/+ mice, but glomeruli of diabetic ROP +/+ mice had 1.92-fold higher laminin B1 and 1.5-fold higher tenascin mRNA levels than diabetic C57 +/+ mice. Diabetic ROP Os/+ mice had severe glomerulosclerosis with arteriolar and tubulointerstitial lesions while there was only moderate mesangial sclerosis in diabetic C57 Os/+ mice. Glomerular size was increased in all non-diabetic Os/+ mice. It was further increased in diabetic ROP Os/+ mice, but not in diabetic C57 Os/+ mice. Glomerular mRNA levels were higher in diabetic ROP OS/+ than in diabetic C57 OS/+ mice [alpha 1 (i.v.) collagen 3.2-fold, laminin B1 2.1-fold, and tenascin 1.6-fold]. CONCLUSION Overall, our data further support the hypothesis that the susceptibility to glomerulosclerosis is inherited, and suggest that hyperglycemia serves principally as a triggering event in the development of diabetic nephropathy. Since the acceleration of diabetic nephropathy by nephron reduction was also largely strain dependent, it appears that the propensity to glomerulosclerosis is a general renal response and is not stimulus specific.
Collapse
|
|
27 |
75 |
24
|
Liao YJ, Bai HY, Li ZH, Zou J, Chen JW, Zheng F, Zhang JX, Mai SJ, Zeng MS, Sun HD, Pu JX, Xie D. Longikaurin A, a natural ent-kaurane, induces G2/M phase arrest via downregulation of Skp2 and apoptosis induction through ROS/JNK/c-Jun pathway in hepatocellular carcinoma cells. Cell Death Dis 2014; 5:e1137. [PMID: 24651440 PMCID: PMC3973226 DOI: 10.1038/cddis.2014.66] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/15/2014] [Accepted: 01/27/2014] [Indexed: 12/26/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, and is also highly resistant to conventional chemotherapy treatments. In this study, we report that Longikaurin A (LK-A), an ent-kaurane diterpenoid isolated from the plant Isodon ternifolius, induced cell cycle arrest and apoptosis in human HCC cell lines. LK-A also suppressed tumor growth in SMMC-7721 xenograft models, without inducing any notable major organ-related toxicity. LK-A treatment led to reduced expression of the proto-oncogene S phase kinase-associated protein 2 (Skp2) in SMMC-7721 cells. Lower Skp2 levels correlated with increased expression of p21 and p-cdc2 (Try15), and a corresponding decrease in protein levels of Cyclin B1 and cdc2. Overexpression of Skp2 significantly inhibited LK-A-induced cell cycle arrest in SMMC-7721 cells, suggesting that LK-A may target Skp2 to arrest cells at the G2/M phase. LK-A also induced reactive oxygen species (ROS) production and apoptosis in SMMC-7721 cells. LK-A induced phosphorylation of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase and P38 MAP kinase. Treatment with, the JNK inhibitor SP600125 prevented LK-A-induced apoptosis in SMMC-7721 cells. Moreover, the antioxidant N-acetylcysteine prevented phosphorylation of both JNK and c-Jun. Taken together, these data indicate that LK-A induces cell cycle arrest and apoptosis in cancer cells by dampening Skp2 expression, and thereby activating the ROS/JNK/c-Jun signaling pathways. LK-A is therefore a potential lead compound for development of antitumor drugs targeting HCC.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
70 |
25
|
Tang G, You P, Tai Q, Yang A, Cao J, Zheng F, Zhou Z, Zhao J, Chan PKL, Yan F. Solution-Phase Epitaxial Growth of Perovskite Films on 2D Material Flakes for High-Performance Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807689. [PMID: 31033074 DOI: 10.1002/adma.201807689] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/04/2019] [Indexed: 06/09/2023]
Abstract
The quality of perovskite films is critical to the performance of perovskite solar cells. However, it is challenging to control the crystallinity and orientation of solution-processed perovskite films. Here, solution-phase van der Waals epitaxy growth of MAPbI3 perovskite films on MoS2 flakes is reported. Under transmission electron microscopy, in-plane coupling between the perovskite and the MoS2 crystal lattices is observed, leading to perovskite films with larger grain size, lower trap density, and preferential growth orientation along (110) normal to the MoS2 surface. In perovskite solar cells, when perovskite active layers are grown on MoS2 flakes coated on hole-transport layers, the power conversion efficiency is substantially enhanced for 15%, relatively, due to the increased crystallinity of the perovskite layer and the improved hole extraction and transfer rate at the interface. This work paves a way for preparing high-performance perovskite solar cells and other optoelectronic devices by introducing 2D materials as interfacial layers.
Collapse
|
|
6 |
64 |