26
|
Borné Y, Söderholm M, Barregard L, Fagerberg B, Persson M, Melander O, Thévenod F, Hedblad B, Engström G. Genome wide association study identifies two loci associated with cadmium in erythrocytes among never-smokers. Hum Mol Genet 2016; 25:2342-2348. [DOI: 10.1093/hmg/ddw083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/09/2016] [Indexed: 12/15/2022] Open
|
27
|
Cabedo Martinez AI, Weinhäupl K, Lee WK, Wolff NA, Storch B, Żerko S, Konrat R, Koźmiński W, Breuker K, Thévenod F, Coudevylle N. Biochemical and Structural Characterization of the Interaction between the Siderocalin NGAL/LCN2 (Neutrophil Gelatinase-associated Lipocalin/Lipocalin 2) and the N-terminal Domain of Its Endocytic Receptor SLC22A17. J Biol Chem 2016; 291:2917-30. [PMID: 26635366 PMCID: PMC4742754 DOI: 10.1074/jbc.m115.685644] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/29/2015] [Indexed: 11/22/2022] Open
Abstract
The neutrophil gelatinase-associated lipocalin (NGAL, also known as LCN2) and its cellular receptor (LCN2-R, SLC22A17) are involved in many physiological and pathological processes such as cell differentiation, apoptosis, and inflammation. These pleiotropic functions mainly rely on NGAL's siderophore-mediated iron transport properties. However, the molecular determinants underlying the interaction between NGAL and its cellular receptor remain largely unknown. Here, using solution-state biomolecular NMR in conjunction with other biophysical methods, we show that the N-terminal domain of LCN2-R is a soluble extracellular domain that is intrinsically disordered and interacts with NGAL preferentially in its apo state to form a fuzzy complex. The relatively weak affinity (≈10 μm) between human LCN2-R-NTD and apoNGAL suggests that the N terminus on its own cannot account for the internalization of NGAL by LCN2-R. However, human LCN2-R-NTD could be involved in the fine-tuning of the interaction between NGAL and its cellular receptor or in a biochemical mechanism allowing the receptor to discriminate between apo- and holo-NGAL.
Collapse
|
28
|
van Swelm RPL, Wetzels JFM, Verweij VGM, Laarakkers CMM, Pertijs JCLM, van der Wijst J, Thévenod F, Masereeuw R, Swinkels DW. Renal Handling of Circulating and Renal-Synthesized Hepcidin and Its Protective Effects against Hemoglobin-Mediated Kidney Injury. J Am Soc Nephrol 2016; 27:2720-32. [PMID: 26825531 DOI: 10.1681/asn.2015040461] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 12/12/2015] [Indexed: 11/03/2022] Open
Abstract
Urinary hepcidin may have protective effects against AKI. However, renal handling and the potential protective mechanisms of hepcidin are not fully understood. By measuring hepcidin levels in plasma and urine using mass spectrometry and the kidney using immunohistochemistry after intraperitoneal administration of human hepcidin-25 (hhep25) in C57Bl/6N mice, we showed that circulating hepcidin is filtered by the glomerulus and degraded to smaller isoforms detected in urine but not plasma. Moreover, hepcidin colocalized with the endocytic receptor megalin in proximal tubules, and compared with wild-type mice, megalin-deficient mice showed higher urinary excretion of injected hhep25 and no hepcidin staining in proximal tubules that lack megalin. This indicates that hepcidin is reaborbed in the proximal tubules by megalin dependent endocytosis. Administration of hhep25 concomitant with or 4 hours after a single intravenous dose of hemoglobin abolished hemoglobin-induced upregulation of urinary kidney injury markers (NGAL and KIM-1) and renal Interleukin-6 and Ngal mRNA observed 24 hours after administration but did not affect renal ferroportin expression at this point. Notably, coadministration of hhep25 and hemoglobin but not administration of either alone greatly increased renal mRNA expression of hepcidin-encoding Hamp1 and hepcidin staining in distal tubules. These findings suggest a role for locally synthesized hepcidin in renal protection. Our observations did not support a role for ferroportin in hhep25-mediated protection against hemoglobin-induced early injury, but other mechanisms of cellular iron handling may be involved. In conclusion, our data suggest that both systemically delivered and locally produced hepcidin protect against hemoglobin-induced AKI.
Collapse
|
29
|
Wolff NA, Garrick LM, Zhao L, Garrick MD, Thévenod F. Mitochondria represent another locale for the divalent metal transporter 1 (DMT1). Channels (Austin) 2015; 8:458-66. [PMID: 25483589 DOI: 10.4161/19336950.2014.956564] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The divalent metal transporter (DMT1) is well known for its roles in duodenal iron absorption across the apical enterocyte membrane, in iron efflux from the endosome during transferrin-dependent cellular iron acquisition, as well as in uptake of non-transferrin bound iron in many cells. Recently, using multiple approaches, we have obtained evidence that the mitochondrial outer membrane is another subcellular locale of DMT1 expression. While iron is of vital importance for mitochondrial energy metabolism, its delivery is likely to be tightly controlled due to iron's damaging redox properties. Here we provide additional support for a role of DMT1 in mitochondrial iron acquisition by immunofluorescence colocalization with mitochondrial markers in cells and isolated mitochondria, as well as flow cytometric quantification of DMT1-positive mitochondria from an inducible expression system. Physiological consequences of mitochondrial DMT1 expression are discussed also in consideration of other DMT1 substrates, such as manganese, relevant to mitochondrial antioxidant defense.
Collapse
Key Words
- AIF, apoptosis-inducing factor
- BSA, bovine serum albumin
- CHO, Chinese hamster ovary
- COXII, cytochrome C oxidase subunit II
- DMT1, divalent metal transporter 1
- HEK293, human embryonic kidney cells
- IRE, iron responsive element
- Lamp1, lysosome-associated membrane protein 1
- MRB, Mitochondrial Resuspending Buffer
- OMM, outer mitochondrial membrane
- PBS, phosphate-buffered saline
- Tf, transferrin
- Tom6/Tom20, translocase of the outer mitochondrial membrane 6 kDa subunit homolog/20 kDa subunit, respectively
- VDAC1, voltage-dependent anion-selective channel protein 1
- divalent metal transporter 1 (DMT1)
- flow cytometry
- immunofluorescence microscopy
- iron transport
- mitochondrial outer membrane
Collapse
|
30
|
Thévenod F, Lee WK. Live and Let Die: Roles of Autophagy in Cadmium Nephrotoxicity. TOXICS 2015; 3:130-151. [PMID: 29056654 PMCID: PMC5634690 DOI: 10.3390/toxics3020130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 03/30/2015] [Accepted: 04/03/2015] [Indexed: 01/07/2023]
Abstract
The transition metal ion cadmium (Cd2+) is a significant environmental contaminant. With a biological half-life of ~20 years, Cd2+ accumulates in the kidney cortex, where it particularly damages proximal tubule (PT) cells and can result in renal fibrosis, failure, or cancer. Because death represents a powerful means by which cells avoid malignant transformation, it is crucial to clearly identify and understand the pathways that determine cell fate in chronic Cd2+ nephrotoxicity. When cells are subjected to stress, they make a decision to adapt and survive, or—depending on the magnitude and duration of stress—to die by several modes of death (programmed cell death), including autophagic cell death (ACD). Autophagy is part of a larger system of intracellular protein degradation and represents the channel by which organelles and long-lived proteins are delivered to the lysosome for degradation. Basal autophagy levels in all eukaryotic cells serve as a dynamic physiological recycling system, but they can also be induced by intra- or extracellular stress and pathological processes, such as endoplasmic reticulum (ER) stress. In a context-dependent manner, autophagy can either be protective and hence contribute to survival, or promote death by non-apoptotic or apoptotic pathways. So far, the role of autophagy in Cd2+-induced nephrotoxicity has remained unsettled due to contradictory results. In this review, we critically survey the current literature on autophagy in Cd2+-induced nephrotoxicity in light of our own ongoing studies. Data obtained in kidney cells illustrate a dual and complex function of autophagy in a stimulus- and time-dependent manner that possibly reflects distinct outcomes in vitro and in vivo. A better understanding of the context-specific regulation of cell fate by autophagy may ultimately contribute to the development of preventive and novel therapeutic strategies for acute and chronic Cd2+ nephrotoxicity.
Collapse
|
31
|
Nair AR, Lee WK, Smeets K, Swennen Q, Sanchez A, Thévenod F, Cuypers A. Glutathione and mitochondria determine acute defense responses and adaptive processes in cadmium-induced oxidative stress and toxicity of the kidney. Arch Toxicol 2014; 89:2273-89. [PMID: 25388156 DOI: 10.1007/s00204-014-1401-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/21/2014] [Indexed: 01/09/2023]
Abstract
Cadmium (Cd(2+)) induces oxidative stress that ultimately defines cell fate and pathology. Mitochondria are the main energy-producing organelles in mammalian cells, but they also have a central role in formation of reactive oxygen species, cell injury, and death signaling. As the kidney is the major target in Cd(2+) toxicity, the roles of oxidative signature and mitochondrial function and biogenesis in Cd(2+)-related stress outcomes were investigated in vitro in cultured rat kidney proximal tubule cells (PTCs) (WKPT-0293 Cl.2) for acute Cd(2+) toxicity (1-30 µM, 24 h) and in vivo in Fischer 344 rats for sub-chronic Cd(2+) toxicity (1 mg/kg CdCl2 subcutaneously, 13 days). Whereas 30 µM Cd(2+) caused ~50 % decrease in cell viability, apoptosis peaked at 10 µM Cd(2+) in PTCs. A steep, dose-dependent decline in reduced glutathione (GSH) content occurred after acute exposure and an increase of the oxidized glutathione (GSSG)/GSH ratio. Quantitative PCR analyses evidenced increased antioxidative enzymes (Sod1, Gclc, Gclm), proapoptotic Bax, metallothioneins 1A/2A, and decreased antiapoptotic proteins (Bcl-xL, Bcl-w). The positive regulator of mitochondrial biogenesis Pparγ and mitochondrial DNA was increased, and cellular ATP was unaffected with Cd(2+) (1-10 µM). In vivo, active caspase-3, and hence apoptosis, was detected by FLIVO injection in the kidney cortex of Cd(2+)-treated rats together with an increase in Bax mRNA. However, antiapoptotic genes (Bcl-2, Bcl-xL, Bcl-w) were also upregulated. Both GSSG and GSH increased with chronic Cd(2+) exposure with no change in GSSG/GSH ratio and augmented expression of antioxidative enzymes (Gpx4, Prdx2). Mitochondrial DNA, mitofusin 2, and Pparα were increased indicating enhanced mitochondrial biogenesis and fusion. Hence, these results demonstrate a clear involvement of higher mitochondria copy numbers or mass and mitochondrial function in acute defense against oxidative stress induced by Cd(2+) in renal PTCs as well as in adaptive processes associated with chronic renal Cd(2+) toxicity.
Collapse
|
32
|
Nair AR, Smeets K, Keunen E, Lee WK, Thévenod F, Van Kerkhove E, Cuypers A. Renal cells exposed to cadmium in vitro and in vivo: normalizing gene expression data. J Appl Toxicol 2014; 35:478-84. [PMID: 25042840 DOI: 10.1002/jat.3047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/27/2014] [Accepted: 06/12/2014] [Indexed: 11/12/2022]
Abstract
Cadmium (Cd) is a toxic metal with a long half-life in biological systems. This half-life is partly as a result of metallothioneins (MTs), metal-binding proteins with a high affinity for Cd. The high retention properties of the kidneys reside in proximal tubular cells that possess transport mechanisms for Cd-MT uptake, ultimately leading to more Cd accumulation. Researchers have studied MT-metal interactions using various techniques including quantitative real-time PCR (qPCR), an efficient tool for quantifying gene expression. Often a poor choice of reference genes, which is represented by their instability and condition dependency, leads to inefficient normalization of gene expression data and misinterpretations. This study demonstrates the importance of an efficient normalization strategy in toxicological research. A selection of stable reference genes was proposed in order to acquire reliable and reproducible gene quantification under metal stress using MT expression as an example. Moreover, in vitro and in vivo setups were compared to identify the influence of toxicological compounds in function of the experimental design. This study shows that glyceraldehyde-3-phosphate dehydrogenase (Gapdh), tyrosine monooxygenase/tryptophan5-monooxygenase activation-protein, zeta polypeptide (Ywhaz) and beta-actin (Actb) are the most stable reference genes in a kidney proximal tubular cell line exposed to moderate and high Cd concentrations, applied as CdCl2 . A slightly different sequence in reference gene stability was found in renal cells isolated from rats in vivo exposed to Cd. It was further shown that three reference genes are required for efficient normalization in this experimental setup. This study demonstrates the importance of an efficient normalization strategy in toxicological research.
Collapse
|
33
|
Dahdouh F, Raane M, Thévenod F, Lee WK. Nickel-induced cell death and survival pathways in cultured renal proximal tubule cells: roles of reactive oxygen species, ceramide and ABCB1. Arch Toxicol 2014; 88:881-92. [DOI: 10.1007/s00204-014-1194-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/09/2014] [Indexed: 12/17/2022]
|
34
|
Wolff NA, Ghio AJ, Garrick LM, Garrick MD, Zhao L, Fenton RA, Thévenod F. Evidence for mitochondrial localization of divalent metal transporter 1 (DMT1). FASEB J 2014; 28:2134-45. [PMID: 24448823 DOI: 10.1096/fj.13-240564] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In mammalian cells, mitochondria receive most incoming iron, yet no entry pathway for iron at the outer mitochondrial membrane (OMM) has been characterized. Our results show that the divalent metal transporter 1 (DMT1) occurs in the OMM. Immunoblots detected DMT1 in mitochondria from a pneumocyte cell model in their OMM. Using the split-ubiquitin yeast 2-hybrid system, we found that cytochrome c oxidase subunit II (COXII) and the translocase of OMM 6-kDa subunit (Tom6) homologue interact with DMT1. COXII coimmunoprecipitates with DMT1. There are 4 DMT1 isoforms that differ at the N and C termini. Using HEK293 cells that inducibly express all of the 4 ends of DMT1, we found all of them in the OMM, as detected by immunoblots after cell fractionation, and in isolated mitochondria, as detected by immunofluorescence. Immunoblot analysis of purified cell fractions from rat renal cortex confirmed and extended these results to the kidney, which expressed high levels of DMT1. Immunogold labeling detected DMT1 colocalization in mitochondria with the voltage-dependent anion-selective channel protein-1, which is expressed in the OMM. We suggest that DMT1 not only exports iron from endosomes, but also serves to import the metal into the mitochondria.
Collapse
|
35
|
Langelueddecke C, Roussa E, Fenton RA, Thévenod F. Expression and function of the lipocalin-2 (24p3/NGAL) receptor in rodent and human intestinal epithelia. PLoS One 2013; 8:e71586. [PMID: 23940770 PMCID: PMC3734285 DOI: 10.1371/journal.pone.0071586] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/08/2013] [Indexed: 02/06/2023] Open
Abstract
The lipocalin 2//NGAL/24p3 receptor (NGAL-R/24p3-R) is expressed in rodent distal nephron where it mediates protein endocytosis. The mechanisms of apical endocytosis and transcytosis of proteins and peptides in the intestine are poorly understood. In the present study, the expression and localization of rodent 24p3-R (r24p3-R) and human NGAL-R (hNGAL-R) was investigated in intestinal segments by immunofluorescence and confocal laser scanning microscopy, immunohistochemistry and immunoblotting. r24p3-R/hNGAL-R was also studied in human Caco-2 BBE cells and CHO cells transiently transfected with r24p3-R by immunofluorescence microscopy, RT-PCR and immunoblotting of plasma membrane enriched vesicles (PM). To assay function, endocytosis/transcytosis of putative ligands phytochelatin (PC3), metallothionein (MT) and transferrin (Tf) was assayed by measuring internalization of fluorescence-labelled ligands in Caco-2 BBE cells grown on plastic or as monolayers on Transwell inserts. The binding affinity of Alexa 488-PC3 to colon-like Caco-2 BBE PM was quantified by microscale thermophoresis (MST). r24p3-R/hNGAL-R expression was detected apically in all intestinal segments but showed the highest expression in ileum and colon. Colon-like, but not duodenum-like, Caco-2 BBE cells expressed hNGAL-R on their surface. Colon-like Caco-2 BBE cells or r24p3-R transfected CHO cells internalized fluorescence-labelled PC3 or MT with half-maximal saturation at submicromolar concentrations. Uptake of PC3 and MT (0.7 µM) by Caco-2 BBE cells was partially blocked by hNGAL (500 pM) and an EC50 of 18.6 ± 12.2 nM was determined for binding of Alexa 488-PC3 to PM vesicles by MST. Transwell experiments showed rapid (0.5-2 h) apical uptake and basolateral delivery of fluorescent PC3/MT/Tf (0.7 µM). Apical uptake of ligands was significantly blocked by 500 pM hNGAL. hNGAL-R dependent uptake was more prominent with MT but transcytosis efficiency was reduced compared to PC3 and Tf. Hence, r24p3-R/hNGAL-R may represent a high-affinity multi-ligand receptor for apical internalization and transcytosis of intact proteins/peptides by the lower intestine.
Collapse
|
36
|
Lee WK, Chakraborty PK, Thévenod F. Pituitary homeobox 2 (PITX2) protects renal cancer cell lines against doxorubicin toxicity by transcriptional activation of the multidrug transporter ABCB1. Int J Cancer 2013; 133:556-67. [PMID: 23354914 DOI: 10.1002/ijc.28060] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/16/2012] [Accepted: 01/08/2013] [Indexed: 12/21/2022]
Abstract
The multidrug resistance (MDR) P-glycoprotein ABCB1 plays a major role in MDR of malignant cells and is regulated by various transcription factors, including Wnt/β-catenin/TCF4. The transcription factor PITX2 (Pituitary homeobox-2) is essential for embryonic development. PITX2 operates by recruiting and interacting with β-catenin to increase the expression of growth-regulating genes, such as cyclin D1/2 and c-Myc. The importance of PITX2 in malignancy is not yet known. Here we demonstrate that in the renal cancer cell lines ACHN and A498, the level of ABCB1 expression and function correlate with nuclear PITX2 localization and PITX2-luciferase reporter gene activity (A498 > ACHN). In A498 cells, doxorubicin toxicity is augmented by the ABCB1 inhibitor, PSC833. PITX2 overexpression increases ABCB1 expression and cell survival in ACHN cells. Silencing of PITX2 by siRNA downregulates ABCB1 and induces a greater chemotherapeutic response to doxorubicin in A498 cells, as determined by MTT cell viability and clonogenic survival assays. Two PITX2 binding sequences were identified in the ABCB1 promoter sequence. PITX2 binding was confirmed by chromatin immunoprecipitation. β-Catenin is not required for PITX2 upregulation of ABCB1 because ABCB1 mRNA increased and doxorubicin toxicity decreased upon PITX2 overexpression in β-catenin(-/-) cells. The data show for the first time that ABCB1 is a target gene of PITX2 transcriptional activity, promoting MDR and cell survival of cancer cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Carcinoma, Renal Cell/drug therapy
- Cell Line, Tumor
- Cell Survival
- Chromatin Immunoprecipitation
- Cyclosporins/pharmacology
- Doxorubicin/pharmacology
- Gene Expression Regulation, Neoplastic
- Homeodomain Proteins/metabolism
- Humans
- Kidney Neoplasms/drug therapy
- Promoter Regions, Genetic
- RNA Interference
- RNA, Messenger/biosynthesis
- RNA, Small Interfering
- Signal Transduction/genetics
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptional Activation
- beta Catenin/genetics
- Homeobox Protein PITX2
Collapse
|
37
|
Thévenod F, Ciarimboli G, Leistner M, Wolff NA, Lee WK, Schatz I, Keller T, Al-Monajjed R, Gorboulev V, Koepsell H. Substrate- and cell contact-dependent inhibitor affinity of human organic cation transporter 2: studies with two classical organic cation substrates and the novel substrate cd2+. Mol Pharm 2013; 10:3045-56. [PMID: 23763587 DOI: 10.1021/mp400113d] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Polyspecific organic cation transporter Oct2 from rat (gene Slc22A2) has been previously shown to transport Cs(+). Here we report that human OCT2 (hOCT2) is able to transport Cd(2+) showing substrate saturation with a Michaelis-Menten constant (Km) of 54 ± 5.8 μM. Uptake of Cd(2+) by hOCT2 was inhibited by typical hOCT2 ligands (unlabeled substrates and inhibitors), and the rate of uptake was decreased by a point mutation in a substrate binding domain of hOCT2. Incubation of hOCT2 overexpressing human embryonic kidney 293 cells (HEK-hOCT2-C) or rat renal proximal tubule cells expressing rOct2 (NRK-52E-C) with Cd(2+) resulted in an increased level of apoptosis that was reduced by OCT2 inhibitory ligand cimetidine(+). HEK-hOCT2-C exhibited different functional properties when they were confluent or had been dissociated by removal of Ca(2+) and Mg(2+). Only confluent HEK-hOCT2-C transported Cd(2+), and confluent and dissociated cells exhibited different potencies for inhibition of uptake of 1-methyl-4-phenylpyridinium(+) (MPP(+)) by Cd(2+), MPP(+), tetraethylammonium(+), cimetidine(+), and corticosterone. In confluent HEK-hOCT2-C, largely different inhibitor potencies were obtained upon comparison of inhibition of Cd(2+) uptake, 4-[4-(dimethylamino)styryl]-N-methylpyridinium(+) (ASP(+)) uptake, and MPP(+) uptake using substrate concentrations far below the respective Km values. Employing a point mutation in the previously identified substrate binding site of rat Oct1 produced evidence that short distance allosteric effects between binding sites for substrates and inhibitors are involved in substrate-dependent inhibitor potency. Substrate-dependent inhibitor affinity is probably a common property of OCTs. To predict interactions between drugs that are transported by OCTs and inhibitory drugs, it is necessary to employ the specific transported drug rather than a model substrate for in vitro measurements.
Collapse
|
38
|
Lee W, Chakraborty PK, Thévenod F. Pituitary homeobox 2 (PITX2) protects renal cancer cell lines against doxorubicin toxicity by transcriptional activation of the multidrug transporter ABCB1. FASEB J 2013. [DOI: 10.1096/fasebj.27.1_supplement.471.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Lee WK, Bork U, Thévenod F. Mitochondria as a target of cadmium nephrotoxicity: induction of swelling and cytochrome C release. Toxicol Mech Methods 2012; 14:67-71. [PMID: 20021126 DOI: 10.1080/15376520490257509] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cadmium (Cd) is a potent environmental toxic compound that damages the kidney by inducing apoptosis of the proximal tubule cells. The mitochondrion is a pivotal point of the apoptotic pathway because it releases pro-apoptotic factors such as cytochrome c. Using mitochondria isolated by differential centrifugation from rat kidney cortex, we monitored swelling, which is thought to reflect the opening of a mitochondrial permeability transition pore and mitochondrial dysfunction. At Cd concentrations of 5 muM or more, rapid swelling occurred. Moreover, Cd had concentration-dependent effects on swelling induced by the permeability transition pore opener PO(4)(3-): At concentrations of 5 muM or less, PO(4)(3-)-induced swelling was enhanced and cytochrome c release was increased, whereas more than 5 muM Cd significantly inhibited both PO(4)(3-)-induced swelling and cytochrome c release. Thus, Cd may directly interfere with normal mitochondrial function and may also trigger pro-apoptotic pathways in proximal tubule cells in the kidney.
Collapse
|
40
|
Lee WK, Chakraborty PK, Roussa E, Wolff NA, Thévenod F. ERK1/2-dependent bestrophin-3 expression prevents ER-stress-induced cell death in renal epithelial cells by reducing CHOP. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1864-76. [DOI: 10.1016/j.bbamcr.2012.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 01/14/2023]
|
41
|
Lopin KV, Gray IP, Obejero-Paz CA, Thévenod F, Jones SW. Fe²⁺ block and permeation of CaV3.1 (α1G) T-type calcium channels: candidate mechanism for non-transferrin-mediated Fe²⁺ influx. Mol Pharmacol 2012; 82:1194-204. [PMID: 22973060 DOI: 10.1124/mol.112.080184] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Iron is a biologically essential metal, but excess iron can cause damage to the cardiovascular and nervous systems. We examined the effects of extracellular Fe²⁺ on permeation and gating of Ca(V)3.1 channels stably transfected in HEK293 cells, by using whole-cell recording. Precautions were taken to maintain iron in the Fe²⁺ state (e.g., use of extracellular ascorbate). With the use of instantaneous I-V currents (measured after strong depolarization) to isolate the effects on permeation, extracellular Fe²⁺ rapidly blocked currents with 2 mM extracellular Ca²⁺ in a voltage-dependent manner, as described by a Woodhull model with K(D) = 2.5 mM at 0 mV and apparent electrical distance δ = 0.17. Extracellular Fe²⁺ also shifted activation to more-depolarized voltages (by ∼10 mV with 1.8 mM extracellular Fe²⁺) somewhat more strongly than did extracellular Ca²⁺ or Mg²⁺, which is consistent with a Gouy-Chapman-Stern model with surface charge density σ = 1 e(-)/98 Ų and K(Fe) = 4.5 M⁻¹ for extracellular Fe²⁺. In the absence of extracellular Ca²⁺ (and with extracellular Na⁺ replaced by TEA), Fe²⁺ carried detectable, whole-cell, inward currents at millimolar concentrations (73 ± 7 pA at -60 mV with 10 mM extracellular Fe²⁺). With a two-site/three-barrier Eyring model for permeation of Ca(V)3.1 channels, we estimated a transport rate for Fe²⁺ of ∼20 ions/s for each open channel at -60 mV and pH 7.2, with 1 μM extracellular Fe²⁺ (with 2 mM extracellular Ca²⁺). Because Ca(V)3.1 channels exhibit a significant "window current" at that voltage (open probability, ∼1%), Ca(V)3.1 channels represent a likely pathway for Fe²⁺ entry into cells with clinically relevant concentrations of extracellular Fe²⁺.
Collapse
|
42
|
Lopin KV, Thévenod F, Page JC, Jones SW. Cd²⁺ block and permeation of CaV3.1 (α1G) T-type calcium channels: candidate mechanism for Cd²⁺ influx. Mol Pharmacol 2012; 82:1183-93. [PMID: 22973059 DOI: 10.1124/mol.112.080176] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cd²⁺ is an industrial pollutant that can cause cytotoxicity in multiple organs. We examined the effects of extracellular Cd²⁺ on permeation and gating of Ca(v)3.1 (α1G) channels stably transfected in HEK293 cells, by using whole-cell recording. With the use of instantaneous I-V currents (measured after strong depolarization) to isolate the effects on permeation, Cd²⁺ rapidly blocked currents with 2 mM Ca²⁺ in a voltage-dependent manner. The block caused by Cd²⁺ was relieved at more-hyperpolarized potentials, which suggests that Cd²⁺ can permeate through the selectivity filter of the channel into the cytosol. In the absence of other permeant ions (Ca²⁺ and Na⁺ replaced by N-methyl-d-glucamine), Cd²⁺ carried sizable inward currents through Ca(v)3.1 channels (210 ± 20 pA at -60 mV with 2 mM Cd²⁺). Ca(v)3.1 channels have a significant "window current" at that voltage (open probability, ∼1%), which makes them a candidate pathway for Cd²⁺ entry into cells during Cd²⁺ exposure. Incubation with radiolabeled ¹⁰⁹Cd²⁺ confirmed uptake of Cd²⁺ into cells with Ca(v)3.1 channels.
Collapse
|
43
|
Löhr M, Müller P, Zauner I, Schmidt C, Trautmann B, Thévenod F, Capellá G, Farré A, Liebe S, Jesenofsky R. Erratum to: Immortalized bovine pancreatic duct cells become tumorigenic after transfection with mutant k-ras. Virchows Arch 2012. [DOI: 10.1007/s00428-012-1221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Lee WK, Chakraborty PK, Roussa E, Wolff NA, Thévenod F. ERK1/2‐dependent bestrophin‐3 (Best‐3) expression prevents ER‐stress‐induced cell death of renal epithelial cells by reducing CHOP. FASEB J 2012. [DOI: 10.1096/fasebj.26.1_supplement.1064.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Langelueddecke C, Roussa E, Fenton RA, Wolff NA, Lee WK, Thévenod F. Lipocalin-2 (24p3/neutrophil gelatinase-associated lipocalin (NGAL)) receptor is expressed in distal nephron and mediates protein endocytosis. J Biol Chem 2011; 287:159-169. [PMID: 22084236 DOI: 10.1074/jbc.m111.308296] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In the kidney, bulk reabsorption of filtered proteins occurs in the proximal tubule via receptor-mediated endocytosis (RME) through the multiligand receptor complex megalin-cubilin. Other mechanisms and nephron sites for RME of proteins are unclear. Recently, the secreted protein 24p3 (lipocalin-2, neutrophil gelatinase-associated lipocalin (NGAL)), which is expressed in the distal nephron, has been identified as a sensitive biomarker of kidney damage. A high-affinity receptor for 24p3 (24p3R) that is involved in endocytotic iron delivery has also been cloned. We investigated the localization of 24p3R in rodent kidney and its role in RME of protein-metal complexes and albumin. Immunostaining of kidney tissue showed expression of 24p3R in apical membranes of distal tubules and collecting ducts, but not of proximal tubule. The differential expression of 24p3R in these nephron segments was confirmed in the respective cell lines. CHO cells transiently transfected with 24p3R or distal tubule cells internalized submicromolar concentrations of fluorescence-coupled proteins transferrin, albumin, or metallothionein (MT) as well as the toxic cadmium-MT (Cd2+(7)-MT) complex, which caused cell death. Uptake of MT or transferrin and Cd2+(7)-MT toxicity were prevented by picomolar concentrations of 24p3. An EC50 of 123±50 nM was determined for binding of MT to 24p3R by microscale thermophoresis. Hence, 24p3R binds proteins filtered by the kidney with high affinity and may contribute to RME of proteins, including 24p3, and to Cd2+(7)-MT toxicity in distal nephron segments.
Collapse
|
46
|
Wolff NA, Lee WK, Thévenod F. Role of Arf1 in endosomal trafficking of protein-metal complexes and cadmium-metallothionein-1 toxicity in kidney proximal tubule cells. Toxicol Lett 2011; 203:210-8. [PMID: 21421027 DOI: 10.1016/j.toxlet.2011.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Revised: 03/06/2011] [Accepted: 03/07/2011] [Indexed: 11/26/2022]
Abstract
Cadmium (Cd) is nephrotoxic. Circulating Cd-metallothionein complexes (CdMT) are filtered by the kidney, reabsorbed by proximal tubule cells (PTC) via receptor-mediated endocytosis, and trafficked to lysosomes which results in apoptosis. ADP-ribosylation factors (Arfs) regulate vesicular trafficking. Arf1 is traditionally associated with the secretory pathway, but has been recently found involved in endocytotic trafficking in PTC. Hence, the role of Arf1 was investigated in MT-1 and transferrin (Tf) endocytosis, and in CdMT-1-induced cell death in a PTC line by overexpressing Arf1-wildtype (WT) or dominant-negative mutant Arf1-T31N. Endogenous Arf1 distribution in PTC was punctate throughout the cytosol, but was not detected in the plasma membrane. Arf1 colocalized with markers for sorting to late endosomes (Rab7, CLC6). Arf1 weakly overlapped with the late endosomal/lysosomal marker CLC7, but not with markers for early (Rab5, CLC5) and recycling endosomes (Rab11). Arf1-T31N significantly attenuated CdMT-1 toxicity by ∼60% when compared to Arf1-WT. However, overexpression of Arf1-T31N did not prevent internalization of Alexa Fluor 546-coupled Tf or MT-1 which accumulated in an EEA1-positive early endocytotic compartment, but not in Arf1-WT overexpressing cells. We conclude that Arf1 is involved in trafficking of protein-metal complexes, including CdMT, to late endosomes/lysosomes in renal PTC.
Collapse
|
47
|
Wolff NA, Liu W, Fenton RA, Lee WK, Thévenod F, Smith CP. Ferroportin 1 is expressed basolaterally in rat kidney proximal tubule cells and iron excess increases its membrane trafficking. J Cell Mol Med 2011; 15:209-19. [PMID: 20015204 PMCID: PMC3822789 DOI: 10.1111/j.1582-4934.2009.00985.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 11/18/2009] [Indexed: 12/29/2022] Open
Abstract
Ferroportin 1 (FPN1) is an iron export protein expressed in liver and duodenum, as well as in reticuloendothelial macrophages. Previously, we have shown that divalent metal transporter 1 (DMT1) is expressed in late endosomes and lysosomes of the kidney proximal tubule (PT), the nephron segment responsible for the majority of solute reabsorption. We suggested that following receptor mediated endocytosis of transferrin filtered by the glomerulus, DMT1 exports iron liberated from transferrin into the cytosol. FPN1 is also expressed in the kidney yet its role remains obscure. As a first step towards determining the role of renal FPN1, we localized FPN1 in the PT. FPN1 was found to be located in association with the basolateral PT membrane and within the cytosolic compartment. FPN1 was not expressed on the apical brush-border membrane of PT cells. These data support a role for FPN1 in vectorial export of iron out of PT cells. Furthermore, under conditions of iron loading of cultured PT cells, FPN1 was trafficked to the plasma membrane suggesting a coordinated cellular response to export excess iron and limit cellular iron concentrations.
Collapse
|
48
|
Jentsch TJ, Maritzen T, Keating DJ, Zdebik AA, Thévenod F. ClC-3--a granular anion transporter involved in insulin secretion? Cell Metab 2010; 12:307-308. [PMID: 20889118 DOI: 10.1016/j.cmet.2010.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Thévenod F, Chakraborty PK. The role of Wnt/beta-catenin signaling in renal carcinogenesis: lessons from cadmium toxicity studies. Curr Mol Med 2010; 10:387-404. [PMID: 20455852 DOI: 10.2174/156652410791316986] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 07/10/2009] [Indexed: 11/22/2022]
Abstract
Wnt/beta-catenin signaling plays a crucial role during embryogenesis. However, this signaling pathway also plays a role in normal adult tissues and in carcinogenesis, including cadmium (Cd2+) induced nephrocarcinogenesis, which is the topic of this review. Wnt/beta-catenin signaling is tightly regulated in mature epithelia to balance cell proliferation, differentiation and death. This is accomplished by modulating phosphorylation of the multifunctional protein beta-catenin which in turn determines its preference for a particular fate, i.e. cell-cell adhesion by binding to E-cadherin, proteasomal degradation, or co-activation of the transcription factor Tcf/Lef. The pivotal role of beta-catenin is not limited to Wnt signaling, but can be challenged by other transcription factors under stress conditions (e.g. FOXO, HIF-1alpha, NF-kappaB, c-jun), where beta-catenin acts as a molecular switch in response to the cellular redox status. Aberrant Wnt/beta-catenin signaling can contribute to carcinogenesis of intestinal, lung or kidney epithelia, either by mutations of its signaling components and/or disruption of linked signaling networks. The nephrotoxic metal Cd2+ causes renal cancer in humans. Because it is not genotoxic Cd2+ is thought to induce mutations and carcinomas indirectly: Possible mechanisms include oxidative stress, inhibition of DNA repair, aberrant gene expression, deregulation of cell proliferation, resistance to apoptosis, and/or disruption of cell adhesion. Wnt signaling may contribute to Cd2+ carcinogenesis because Cd2+ disrupts the junctional E-cadherin/beta-catenin complex, resulting in excessive nuclear translocation of beta-catenin and activation of Tcf4. Up-regulation of target genes of the beta-catenin/Tcf4 complex, such as c-myc, cyclin D1 and the multidrug transporter P-glycoprotein (MDR1/ABCB1), leads to increased proliferation, evasion of apoptosis, adaptation to Cd2+ toxicity and thereby promotes the selection of mutated and pre-neoplastic cells.
Collapse
|
50
|
Moulis JM, Thévenod F. New perspectives in cadmium toxicity: an introduction. Biometals 2010; 23:763-8. [DOI: 10.1007/s10534-010-9365-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 07/07/2010] [Indexed: 12/22/2022]
|