26
|
Yu Y, Wang J, Tan Y, Wan H, Zheng N, He Z, Mao L, Ren W, Lin Z, He G, Chen Y, Wang J, Ouyang N, Yao H. 1136P A clinically applicable cervical cancer artificial intelligence screening system for accurate cytopathological diagnosis: A multicenter population-based study and randomized controlled trial. Ann Oncol 2021. [DOI: 10.1016/j.annonc.2021.08.778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
27
|
Hsu KJ, Villalobos LF, Huang S, Chi HY, Dakhchoune M, Lee WC, He G, Mensi M, Agrawal KV. Multipulsed Millisecond Ozone Gasification for Predictable Tuning of Nucleation and Nucleation-Decoupled Nanopore Expansion in Graphene for Carbon Capture. ACS NANO 2021; 15:13230-13239. [PMID: 34319081 PMCID: PMC8388115 DOI: 10.1021/acsnano.1c02927] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/23/2021] [Indexed: 06/01/2023]
Abstract
Predictable and tunable etching of angstrom-scale nanopores in single-layer graphene (SLG) can allow one to realize high-performance gas separation even from similar-sized molecules. We advance toward this goal by developing two etching regimes for SLG where the incorporation of angstrom-scale vacancy defects can be controlled. We screen several exposure profiles for the etchant, controlled by a multipulse millisecond treatment, using a mathematical model predicting the nucleation and pore expansion rates. The screened profiles yield a narrow pore-size-distribution (PSD) with a majority of defects smaller than missing 16 carbon atoms, suitable for CO2/N2 separation, attributing to the reduced pore expansion rate at a high pore density. Resulting nanoporous SLG (N-SLG) membranes yield attractive CO2 permeance of 4400 ± 2070 GPU and CO2/N2 selectivity of 33.4 ± 7.9. In the second etching regime, by limiting the supply of the etchant, the nanopores are allowed to expand while suppressing the nucleation events. Extremely attractive carbon capture performance marked with CO2 permeance of 8730 GPU, and CO2/N2 selectivity of 33.4 is obtained when CO2-selective polymeric chains are functionalized on the expanded nanopores. We show that the etching strategy is uniform and scalable by successfully fabricating high-performance centimeter-scale membrane.
Collapse
|
28
|
Kong Y, He X, Wu H, Yang Y, Cao L, Li R, Shi B, He G, Liu Y, Peng Q, Fan C, Zhang Z, Jiang Z. Tight Covalent Organic Framework Membranes for Efficient Anion Transport via Molecular Precursor Engineering. Angew Chem Int Ed Engl 2021; 60:17638-17646. [PMID: 34075668 DOI: 10.1002/anie.202105190] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Fabricating covalent organic frameworks (COFs) membranes with tight structure, which can fully utilize well-defined framework structure and thus achieve superior conduction performance, remains a grand challenge. Herein, through molecular precursor engineering of COFs, we reported the fabrication of tight COFs membrane with the ever-reported highest hydroxide ion conductivity over 200 mS cm-1 at 80 °C, 100 % RH. Six quaternary ammonium-functionalized COFs were synthesized by assembling functional hydrazides and different aldehyde precursors. In an organic-aqueous reaction system, the impact of the aldehyde precursors with different size, electrophilicity and hydrophilicity on the reaction-diffusion process for fabricating COFs membranes was elucidated. Particularly, more hydrophilic aldehydes were prone to push the reaction zone from the interface region to the aqueous phase of the reaction system, the tight membranes were thus fabricated via phase-transfer polymerization process, conferring around 4-8 times the anion conductivity over the loose membranes via interfacial polymerization process.
Collapse
|
29
|
Kong Y, He X, Wu H, Yang Y, Cao L, Li R, Shi B, He G, Liu Y, Peng Q, Fan C, Zhang Z, Jiang Z. Tight Covalent Organic Framework Membranes for Efficient Anion Transport via Molecular Precursor Engineering. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Tang J, He G, Yang Y, Li Q, He Y, Yu C, Luo L. Histological analysis of spermatogenesis and the germ cell seasonal development within the testis of domesticated tree shrews (Tupaia belangeri chinensis). Folia Morphol (Warsz) 2021; 81:412-420. [PMID: 33997948 DOI: 10.5603/fm.a2021.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022]
Abstract
This study aimed to address the lack of information on the male germ cell seasonal development of domesticated tree shrews (Tupaia belangeri chinensis). Testicular tissues were collected from 60 tree shrews (n=5 per month). The ultrastructures of the testes and spermatids were examined via transmission electron microscopy. Apoptosis of spermatogenic cells was measured through terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The expression of proliferation factors, namely, proliferating cell nuclear antigen (PCNA) and Ki67, in testicular tissues was assayed through immunohistochemistry. Spermatids ultrastructure showed seasonal differences, and spermatogenesis was relatively active in June and July and relatively stagnant from October to November. The percentage of TUNEL-positive germ cells was less during October and November, while greater in July than other phases. The number of PCNA-nucleus-positive germ cells was most in June and July, but with cytoplasm staining from October to November. Ki67 presented positive expression in the testes from April to September, with highest expression in June, but with no expression from October to March. In summary, there are seasonal differences in tissue morphology related to spermatogenesis in domesticated tree shrews. PCNA expression and Ki67 expression are good indicators of seasonal differences in male germ cells.
Collapse
|
31
|
Arabchigavkani N, Somphonsane R, Ramamoorthy H, He G, Nathawat J, Yin S, Barut B, He K, Randle MD, Dixit R, Sakanashi K, Aoki N, Zhang K, Wang L, Mei WN, Dowben PA, Fransson J, Bird JP. Remote Mesoscopic Signatures of Induced Magnetic Texture in Graphene. PHYSICAL REVIEW LETTERS 2021; 126:086802. [PMID: 33709762 DOI: 10.1103/physrevlett.126.086802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Mesoscopic conductance fluctuations are a ubiquitous signature of phase-coherent transport in small conductors, exhibiting universal character independent of system details. In this Letter, however, we demonstrate a pronounced breakdown of this universality, due to the interplay of local and remote phenomena in transport. Our experiments are performed in a graphene-based interaction-detection geometry, in which an artificial magnetic texture is induced in the graphene layer by covering a portion of it with a micromagnet. When probing conduction at some distance from this region, the strong influence of remote factors is manifested through the appearance of giant conductance fluctuations, with amplitude much larger than e^{2}/h. This violation of one of the fundamental tenets of mesoscopic physics dramatically demonstrates how local considerations can be overwhelmed by remote signatures in phase-coherent conductors.
Collapse
|
32
|
Yuan Z, Govind Rajan A, He G, Misra RP, Strano MS, Blankschtein D. Predicting Gas Separation through Graphene Nanopore Ensembles with Realistic Pore Size Distributions. ACS NANO 2021; 15:1727-1740. [PMID: 33439000 DOI: 10.1021/acsnano.0c09420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of nanoporous single-layer graphene membranes for gas separation has prompted increasing theoretical investigations of gas transport through graphene nanopores. However, computer simulations and theories that predict gas permeances through individual graphene nanopores are not suitable to describe experimental results, because a realistic graphene membrane contains a large number of nanopores of diverse sizes and shapes. With this need in mind, here, we generate nanopore ensembles in silico by etching carbon atoms away from pristine graphene with different etching times, using a kinetic Monte Carlo algorithm developed by our group for the isomer cataloging problem of graphene nanopores. The permeances of H2, CO2, and CH4 through each nanopore in the ensembles are predicted using transition state theory based on classical all-atomistic force fields. Our findings show that the total gas permeance through a nanopore ensemble is dominated by a small fraction of large nanopores with low energy barriers of pore crossing. We also quantitatively predict the increase of the gas permeances and the decrease of the selectivities between the gases as functions of the etching time of graphene. Furthermore, by fitting the theoretically predicted selectivities to the experimental ones reported in the literature, we show that nanopores in graphene effectively expand as the temperature of permeation measurement increases. We propose that this nanopore "expansion" is due to the desorption of contaminants that partially clog the graphene nanopores. In general, our study highlights the effects of the pore size and shape distributions of a graphene nanopore ensemble on its gas separation properties and calls into attention the potential effect of pore-clogging contamination in experiments.
Collapse
|
33
|
Chu Z, Xu Q, Zhu Q, Ma X, Mo J, Lin G, Zhao Y, Gu Y, Bian L, Shao L, Guo J, Ye W, Li J, He G, Xu Y. Design, synthesis and biological evaluation of novel benzoxaborole derivatives as potent PDE4 inhibitors for topical treatment of atopic dermatitis. Eur J Med Chem 2021; 213:113171. [PMID: 33482600 DOI: 10.1016/j.ejmech.2021.113171] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
In this work, a series of structurally novel benzoxaborole derivatives were designed, synthesized and biologically evaluated as PDE4 inhibitors for battling atopic dermatitis (AD). Among them, the majority exhibited superior PDE4B inhibitory activities to that of the lead compound Crisaborole, an approved PDE4 inhibitor. In particular, 72, the most potent PDE4B inhibitor throughout this series, displayed 136-fold improved enzymatic activity (IC50 = 0.42 nM) as compared to Crisaborole (IC50 = 57.20 nM), along with favorable isoform specificity. In the phorbol ester (PMA)-induced mouse ear oedema model, 72 exerted remarkably greater efficacy than Crisaborole at the same dosage (P < 0.05). Moreover, the ointment of 72 exerted dramatically enhanced therapeutic potency than the ointment of Crisaborole (P < 0.05) in the calcipotriol-induced mouse AD model. In addition to the potent in vitro and in vivo activity, 72 displayed favorable safety in the repeated oral dose toxicity study and did not exhibit phototoxicity. With the above attractive biological performance, 72 is worthy of further functional investigation as a novel anti-AD therapeutic agent.
Collapse
|
34
|
Lee WC, Bondaz L, Huang S, He G, Dakhchoune M, Agrawal KV. Centimeter-scale gas-sieving nanoporous single-layer graphene membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118745] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
He G, Li D, Jost D, Baum A, Shen PP, Dong XL, Zhao ZX, Hackl R. Raman Study of Cooper Pairing Instabilities in (Li_{1-x}Fe_{x})OHFeSe. PHYSICAL REVIEW LETTERS 2020; 125:217002. [PMID: 33274977 DOI: 10.1103/physrevlett.125.217002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
We studied the electronic Raman spectra of (Li_{1-x}Fe_{x})OHFeSe as a function of light polarization and temperature. In the B_{1g} spectra alone we observe the redistribution of spectral weight expected for a superconductor and two well-resolved peaks below T_{c}. The nearly resolution-limited peak at 110 cm^{-1} (13.6 meV) is identified as a collective mode. The peak at 190 cm^{-1} (23.6 meV) is presumably another collective mode since the line is symmetric and its energy is significantly below the gap energy observed by single-particle spectroscopies. Given the experimental band structure of (Li_{1-x}Fe_{x})OHFeSe, the most plausible explanations include conventional spin-fluctuation pairing between the electron bands and the incipient hole band and pairing between the hybridized electron bands. The absence of gap features in A_{1g} and B_{2g} symmetry favors the second case. Thus, in spite of various differences between the pnictides and chalcogenides, this Letter demonstrates the proximity of pairing states and the importance of band structure effects in the Fe-based compounds.
Collapse
|
36
|
He X, Yang Y, Wu H, He G, Xu Z, Kong Y, Cao L, Shi B, Zhang Z, Tongsh C, Jiao K, Zhu K, Jiang Z. De Novo Design of Covalent Organic Framework Membranes toward Ultrafast Anion Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001284. [PMID: 32715516 DOI: 10.1002/adma.202001284] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/10/2020] [Indexed: 06/11/2023]
Abstract
The emergence of all-organic frameworks is of fundamental significance, and designing such structures for anion conduction holds great promise in energy conversion and storage applications. Herein, inspired by the efficient anion transport within organisms, a de novo design of covalent organic frameworks (COFs) toward ultrafast anion transport is demonstrated. A phase-transfer polymerization process is developed to acquire dense and ordered alignment of quaternary ammonium-functionalized side chains along the channels within the frameworks. The resultant self-standing COFs membranes exhibit one of the highest hydroxide conductivities (212 mS cm-1 at 80 °C) among the reported anion exchange membranes. Meanwhile, it is found that shorter, more hydrophilic side chains are favorable for anion conduction. The present work highlights the prospects of all-organic framework materials as the platform building blocks in designing ion exchange membranes and ion sieving membranes.
Collapse
|
37
|
He G, Li Q, Li W, Ruan Y, Xiong X, Song X, Zeng F. Effect of ulinastatin on interleukins and pulmonary function in bypass patients: a meta-analysis of randomized controlled trials. Herz 2020; 45:335-346. [PMID: 30128908 DOI: 10.1007/s00059-018-4732-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/23/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Our aim was to evaluate the effect of urinary trypsin inhibitors (UTI) on interleukin, tumor necrosis factor-α (TNF-α), and polymorphonuclear neutrophil elastase (PMNE) levels as well as on pulmonary function in patients undergoing cardiopulmonary bypass. MATERIALS AND METHODS We searched the following databases for relevant studies: PubMed, Medline (Ovid SP), Cochrane Library, Wanfang Data, China Biology Medicine Database, Chinese Periodical Database, China Knowledge Resource Integrated Database, and Chinese Clinical Trial Registry. Two investigators independently collected the data and assessed the quality of each study. RevMan 5.3 was used for the meta-analysis. RESULTS In total, 15 randomized controlled trials (646 patients) met the inclusion criteria. There was a significant decrease in TNF-α, interleukin-6 (IL-6), IL-8, and PMNE levels at 6 h and 24 h after UTI treatment and an increase in IL-10 levels; additionally, there was a decrease in respiratory index and an improvement in the oxygenation index. Nevertheless, UTI treatment did not affect the length of intensive care unit stay, alveolar-arterial oxygen partial pressure difference, adverse lung events, or hospital mortality. Because of the high heterogeneity of the included trials, the results should be assessed carefully. CONCLUSION UTI treatment can suppress proinflammatory cytokine elevation and upregulate the release of anti-inflammatory mediators, thereby reducing pulmonary injury and improving pulmonary function after cardiopulmonary bypass.
Collapse
|
38
|
Somphonsane R, Ramamoorthy H, He G, Nathawat J, Yin S, Kwan CP, Arabchigavkani N, Barut B, Zhao M, Jin Z, Fransson J, Bird JP. Universal scaling of weak localization in graphene due to bias-induced dispersion decoherence. Sci Rep 2020; 10:5611. [PMID: 32221340 PMCID: PMC7101405 DOI: 10.1038/s41598-020-62313-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/11/2020] [Indexed: 11/29/2022] Open
Abstract
The differential conductance of graphene is shown to exhibit a zero-bias anomaly at low temperatures, arising from a suppression of the quantum corrections due to weak localization and electron interactions. A simple rescaling of these data, free of any adjustable parameters, shows that this anomaly exhibits a universal, temperature- (T) independent form. According to this, the differential conductance is approximately constant at small voltages (V < kBT/e), while at larger voltages it increases logarithmically with the applied bias. For theoretical insight into the origins of this behaviour, which is inconsistent with electron heating, we formulate a model for weak-localization in the presence of nonequilibrium transport. According to this model, the applied voltage causes unavoidable dispersion decoherence, which arises as diffusing electron partial waves, with a spread of energies defined by the value of the applied voltage, gradually decohere with one another as they diffuse through the system. The decoherence yields a universal scaling of the conductance as a function of eV/kBT, with a logarithmic variation for eV/kBT > 1, variations in accordance with the results of experiment. Our theoretical description of nonequilibrium transport in the presence of this source of decoherence exhibits strong similarities with the results of experiment, including the aforementioned rescaling of the conductance and its logarithmic variation as a function of the applied voltage.
Collapse
|
39
|
Huang T, He G, Xue J, Otoo O, He X, Jiang H, Zhang J, Yin Y, Jiang Z, Douglin JC, Dekel DR, Guiver MD. Self-crosslinked blend alkaline anion exchange membranes with bi-continuous phase separated morphology to enhance ion conductivity. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117769] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Wang CH, Hou R, Wang M, He G, Li BG, Pan RL. Effects of wet atmospheric nitrogen deposition on epiphytic lichens in the subtropical forests of Central China: Evaluation of the lichen food supply and quality of two endangered primates. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110128. [PMID: 31891838 DOI: 10.1016/j.ecoenv.2019.110128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Over the last few decades, the threat posed to biodiversity and ecosystem function by atmospheric nitrogen (N) deposition has been increasingly recognized. The disturbed nutrient balance and species composition of plants induced by higher N deposition can impact the biodiversity of the organisms that consume the plants. In this research, we implemented several experiments to estimate the effects of increased N deposition on the growth, survival, and nutrients of the dominant epiphytic lichens in the subtropical mountains in Central China to assess the lichen food amount and nutritional quality for two endangered primates endemic to China. Our results indicated that the thallus growth and propagule survival of the lichens were significantly decreased when nitrogen addition changed from 6.25 to 50.0 kg N·ha-1·y-1; it was also shown that lichen biomass could be decreased by 11.2%-70.2% when the deposition addition exceeded 6.25 kg N·ha-1·y-1. Further, our study revealed that increased nitrogen deposition also reduced the nutritional quality of the lichens via reducing the soluble protein and soluble sugar levels and increasing the fiber content, which would substantially affect the diet selection of the plants consumers in the region, particularly the populations of the two lichen-eating endangered primate species, Rhinopithecus roxellana and R. bieti. Our experimental study suggested that the nitrogen pollution derived from anthropogenic activities could cause cascading effects for the whole forest ecosystem of Central China; thus, more studies about nitrogen deposition in this region are required.
Collapse
|
41
|
Li X, He G, Su F, Chu Z, Xu L, Zhang Y, Zhou J, Ding Y. Regorafenib-loaded poly (lactide-co-glycolide) microspheres designed to improve transarterial chemoembolization therapy for hepatocellular carcinoma. Asian J Pharm Sci 2020; 15:739-751. [PMID: 33363629 PMCID: PMC7750808 DOI: 10.1016/j.ajps.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/28/2019] [Accepted: 01/18/2020] [Indexed: 02/06/2023] Open
Abstract
Transarterial chemoembolization (TACE) has been widely introduced to treat hepatocellular carcinoma (HCC) especially for unresectable patients for decades. However, TACE evokes an angiogenic response due to the secretion of vascular endothelial growth factor (VEGF), resulting in the formation of new blood vessels and eventually tumor recurrence. Thus, we aimed to develop regorafenib (REGO)-loaded poly (lactide-co-glycolide) (PLGA) microspheres that enabled localized and sustained drug delivery to limit proangiogenic responses following TACE in HCC treatment. REGO-loaded PLGA microspheres were prepared using the emulsion-solvent evaporation/extraction method, in which DMF was selected as an organic phase co-solvent. Accordingly, we optimized the proportion of DMF, which the optimal ratio to DCM was 1:9 (v/v). After preparation, the microspheres provided high drug loading capacity of 28.6%, high loading efficiency of 91.5%, and the average particle size of 149 µm for TACE. IR spectra and XRD were applied to confirming sufficient REGO entrapment. The in vitro release profiles demonstrated sustained drug release of microspheres for more than 30 d To confirm the role of REGO-loaded microspheres in TACE, the cell cytotoxic activity on HepG2 cells and anti-angiogenic effects in HUVECs Tube-formation assay were studied in combination with miriplatin. Moreover, the microspheres indicated the potential of antagonizing miriplatin resistance of HepG2 cells in vitro. Pharmacokinetics preliminary studies exhibited that REGO could be sustainably released from microspheres for more than 30 d after TACE in vivo. In vivo anti-tumor efficacy was further determined in HepG2 xenograft tumor mouse model, demonstrating that REGO microspheres could improve the antitumor efficacy of miriplatin remarkably compared with miriplatin monotherapy. In conclusion, the obtained REGO microspheres demonstrated promising therapeutic effects against HCC when combined with TACE.
Collapse
|
42
|
Wang S, Yang L, He G, Shi B, Li Y, Wu H, Zhang R, Nunes S, Jiang Z. Two-dimensional nanochannel membranes for molecular and ionic separations. Chem Soc Rev 2020; 49:1071-1089. [DOI: 10.1039/c9cs00751b] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the construction and regulation of two-dimensional nanochannel membranes (2DNCMs) as well as their applications in molecular and ionic separations.
Collapse
|
43
|
Li F, Xu Q, Zhu Q, Chu Z, Lin G, Mo J, Zhao Y, Li J, He G, Xu Y. Design, synthesis and biological evaluation of novel desloratadine derivatives with anti-inflammatory and H 1 antagonize activities. Bioorg Med Chem Lett 2019; 29:126712. [PMID: 31679973 DOI: 10.1016/j.bmcl.2019.126712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/07/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022]
Abstract
To improve the anti-inflammatory activity of desloratadine, we designed and synthesized a series of novel desloratadine derivatives. All compounds were evaluated for their anti-inflammatory and H1 antagonistic activities. Among them, compound 2c showed the strongest H1 antagonistic and anti-inflammatory activity. It also exhibited promising pharmacokinetic profiles and low toxicity. All these results suggest that compound 2c as a novel anti-allergic agent is worthy of further investigation.
Collapse
|
44
|
Wu X, Ren Y, Sui G, Wang G, Xu G, Yang L, Wu Y, He G, Nasir N, Wu H, Jiang Z. Accelerating CO
2
capture of highly permeable polymer through incorporating highly selective hollow zeolite imidazolate framework. AIChE J 2019. [DOI: 10.1002/aic.16800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Xu J, Liu T, Tang W, Chang W, Feng Q, Wei Y, Ren L, Ye Q, Cui Y, He G, Liu T, Zhu D, Ji M. Bevacizumab plus chemotherapy versus chemotherapy alone as first-line treatment for patients with RAS mutant unresectable colorectal liver-limited metastases: A single center randomized control trial. Ann Oncol 2019. [DOI: 10.1093/annonc/mdz394.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Chang W, Liu T, Ye W, Ren L, He G, Xu J. Detection of 5-hydroxymethylcytosine in circulating-free DNA for prediction of the efficacy of conversion therapy for colorectal cancer liver metastases. Ann Oncol 2019. [DOI: 10.1093/annonc/mdz246.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Liu T, Chang W, Ye W, He G, Ren L, Tang W, Chen J, Xu J. Detection of 5-hydroxymethylcytosine in circulating-free DNA for early diagnosis of colorectal cancer. Ann Oncol 2019. [DOI: 10.1093/annonc/mdz246.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
Li Q, Luo H, Peng H, Zhong M, Liu X, Qiu D, Yang H, He Y, Li C, Yin L, Huang X, Tian X, He G, Wang Y, Jin F. Plan Quality Evaluation and Preliminary Application of a Novel Plan Difficulty Index in Radiotherapy of Lung Cancer. Int J Radiat Oncol Biol Phys 2019. [DOI: 10.1016/j.ijrobp.2019.06.850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Tang W, Li X, Hu CH, Zhu C, Li Z, Wu D, Wang T, He G. Isolation of H8N4 avian influenza virus from wild birds in Shanghai, China. Acta Virol 2019; 63:121-125. [PMID: 30879322 DOI: 10.4149/av_2019_116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The H8 subtype viruses are rarely isolated from wild ducks. Shanghai is one of the important wintering or stopover sites on the East Asia-Australia Migration Flyway. An influenza virus, subtype H8N4, was firstly isolated from a common teal (Anas crecca) in Shanghai during 2017-2018 in this study. To clarify the genetic characteristics of the H8N4 virus, the whole genome sequences were analyzed. Phylogenetic analysis of the hemagglutinin and neuraminidase genes showed that they shared highest nucleotide identity (99.19%-99.64%) with the Japan duck-origin H8N4 virus collected in 2016 (A/duck/Aichi/231003/2016) and belonged to the Eurasian-like avian lineage. Six other genes of the H8N4 isolated virus were all highly similar to the corresponding genes of a wide range of AIV subtypes including H9N2, H5N7, H3N8, H1N2, H4N6 and H1N1. The results indicated that the H8N4 virus was a multiple reassortant virus. The study emphasized that the continuous surveillance of influenza virus in wild birds should be strengthened. Keywords: avian influenza virus; H8N4; phylogenetic analysis; Shanghai.
Collapse
|
50
|
Babu DJ, He G, Hao J, Vahdat MT, Schouwink PA, Mensi M, Agrawal KV. Restricting Lattice Flexibility in Polycrystalline Metal-Organic Framework Membranes for Carbon Capture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900855. [PMID: 31087696 DOI: 10.1002/adma.201900855] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Although polycrystalline metal-organic framework (MOF) membranes offer several advantages over other nanoporous membranes, thus far they have not yielded good CO2 separation performance, crucial for energy-efficient carbon capture. ZIF-8, one of the most popular MOFs, has a crystallographically determined pore aperture of 0.34 nm, ideal for CO2 /N2 and CO2 /CH4 separation; however, its flexible lattice restricts the corresponding separation selectivities to below 5. A novel postsynthetic rapid heat treatment (RHT), implemented in a few seconds at 360 °C, which drastically improves the carbon capture performance of the ZIF-8 membranes, is reported. Lattice stiffening is confirmed by the appearance of a temperature-activated transport, attributed to a stronger interaction of gas molecules with the pore aperture, with activation energy increasing with the molecular size (CH4 > CO2 > H2 ). Unprecedented CO2 /CH4 , CO2 /N2 , and H2 /CH4 selectivities exceeding 30, 30, and 175, respectively, and complete blockage of C3 H6 , are achieved. Spectroscopic and X-ray diffraction studies confirm that while the coordination environment and crystallinity are unaffected, lattice distortion and strain are incorporated in the ZIF-8 lattice, increasing the lattice stiffness. Overall, RHT treatment is a facile and versatile technique that can vastly improve the gas-separation performance of the MOF membranes.
Collapse
|