26
|
Arnoldo A, Kittanakom S, Heisler LE, Mak AB, Shukalyuk AI, Torti D, Moffat J, Giaever G, Nislow C. A genome scale overexpression screen to reveal drug activity in human cells. Genome Med 2014; 6:32. [PMID: 24944581 PMCID: PMC4062067 DOI: 10.1186/gm549] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 04/22/2014] [Indexed: 02/08/2023] Open
Abstract
Target identification is a critical step in the lengthy and expensive process of drug development. Here, we describe a genome-wide screening platform that uses systematic overexpression of pooled human ORFs to understand drug mode-of-action and resistance mechanisms. We first calibrated our screen with the well-characterized drug methotrexate. We then identified new genes involved in the bioactivity of diverse drugs including antineoplastic agents and biologically active molecules. Finally, we focused on the transcription factor RHOXF2 whose overexpression conferred resistance to DNA damaging agents. This approach represents an orthogonal method for functional screening and, to our knowledge, has never been reported before.
Collapse
|
27
|
Lee AY, St Onge RP, Proctor MJ, Wallace IM, Nile AH, Spagnuolo PA, Jitkova Y, Gronda M, Wu Y, Kim MK, Cheung-Ong K, Torres NP, Spear ED, Han MKL, Schlecht U, Suresh S, Duby G, Heisler LE, Surendra A, Fung E, Urbanus ML, Gebbia M, Lissina E, Miranda M, Chiang JH, Aparicio AM, Zeghouf M, Davis RW, Cherfils J, Boutry M, Kaiser CA, Cummins CL, Trimble WS, Brown GW, Schimmer AD, Bankaitis VA, Nislow C, Bader GD, Giaever G. Mapping the cellular response to small molecules using chemogenomic fitness signatures. Science 2014; 344:208-11. [PMID: 24723613 DOI: 10.1126/science.1250217] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genome-wide characterization of the in vivo cellular response to perturbation is fundamental to understanding how cells survive stress. Identifying the proteins and pathways perturbed by small molecules affects biology and medicine by revealing the mechanisms of drug action. We used a yeast chemogenomics platform that quantifies the requirement for each gene for resistance to a compound in vivo to profile 3250 small molecules in a systematic and unbiased manner. We identified 317 compounds that specifically perturb the function of 121 genes and characterized the mechanism of specific compounds. Global analysis revealed that the cellular response to small molecules is limited and described by a network of 45 major chemogenomic signatures. Our results provide a resource for the discovery of functional interactions among genes, chemicals, and biological processes.
Collapse
|
28
|
Cokol M, Weinstein ZB, Yilancioglu K, Tasan M, Doak A, Cansever D, Mutlu B, Li S, Rodriguez-Esteban R, Akhmedov M, Guvenek A, Cokol M, Cetiner S, Giaever G, Iossifov I, Nislow C, Shoichet B, Roth FP. Large-scale identification and analysis of suppressive drug interactions. CHEMISTRY & BIOLOGY 2014; 21:541-551. [PMID: 24704506 PMCID: PMC4281482 DOI: 10.1016/j.chembiol.2014.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 01/26/2014] [Accepted: 02/07/2014] [Indexed: 11/29/2022]
Abstract
One drug may suppress the effects of another. Although knowledge of drug suppression is vital to avoid efficacy-reducing drug interactions or discover countermeasures for chemical toxins, drug-drug suppression relationships have not been systematically mapped. Here, we analyze the growth response of Saccharomyces cerevisiae to anti-fungal compound ("drug") pairs. Among 440 ordered drug pairs, we identified 94 suppressive drug interactions. Using only pairs not selected on the basis of their suppression behavior, we provide an estimate of the prevalence of suppressive interactions between anti-fungal compounds as 17%. Analysis of the drug suppression network suggested that Bromopyruvate is a frequently suppressive drug and Staurosporine is a frequently suppressed drug. We investigated potential explanations for suppressive drug interactions, including chemogenomic analysis, coaggregation, and pH effects, allowing us to explain the interaction tendencies of Bromopyruvate.
Collapse
|
29
|
Torres NP, Lee AY, Giaever G, Nislow C, Brown GW. A high-throughput yeast assay identifies synergistic drug combinations. Assay Drug Dev Technol 2014; 11:299-307. [PMID: 23772551 DOI: 10.1089/adt.2012.503] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Drug combinations are commonly used in the treatment of a range of diseases such as cancer, AIDS, and bacterial infections. Such combinations are less likely to be thwarted by resistance, and they have the desirable potential to be synergistic. Synergistic combinations can have decreased toxicity if lower doses of the constituent agents can be used. Conversely, antagonistic combinations can lead to lower efficacy of a treatment. Unfortunately, practical limitations, including the large number of possible combinations to be tested and the importance of optimizing concentrations and order of addition, discourage systematic studies of compound combinations. To address these limitations, we present a platform to screen drug combinations at multiple concentrations with varying orders of addition in Saccharomyces cerevisiae, at high throughput. In a proof of principle, we screened all possible pairwise combinations of 11 DNA damaging agents and found that of the 66 combinations tested, six were synergistic and three were antagonistic. The strength of two-thirds of these combinations was dependent on the order in which the drugs were added to the cells. We further tested the synergistic and antagonistic combinations in two cancer cell lines and found the combination of mitomycin C and irinotecan to be synergistic in both cell lines. This pilot study demonstrates the utility of using yeast for screening large matrices of drug combinations, and it provides a means to prioritize drug combination tests in human cells. Finally, we underscore the importance of testing the order of addition for assessing drug combinations.
Collapse
|
30
|
Nile AH, Tripathi A, Yuan P, Mousley CJ, Suresh S, Wallace IM, Shah SD, Pohlhaus DT, Temple B, Nislow C, Giaever G, Tropsha A, Davis RW, St Onge RP, Bankaitis VA. PITPs as targets for selectively interfering with phosphoinositide signaling in cells. Nat Chem Biol 2014; 10:76-84. [PMID: 24292071 PMCID: PMC4059020 DOI: 10.1038/nchembio.1389] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 10/02/2013] [Indexed: 01/26/2023]
Abstract
Sec14-like phosphatidylinositol transfer proteins (PITPs) integrate diverse territories of intracellular lipid metabolism with stimulated phosphatidylinositol-4-phosphate production and are discriminating portals for interrogating phosphoinositide signaling. Yet, neither Sec14-like PITPs nor PITPs in general have been exploited as targets for chemical inhibition for such purposes. Herein, we validate what is to our knowledge the first small-molecule inhibitors (SMIs) of the yeast PITP Sec14. These SMIs are nitrophenyl(4-(2-methoxyphenyl)piperazin-1-yl)methanones (NPPMs) and are effective inhibitors in vitro and in vivo. We further establish that Sec14 is the sole essential NPPM target in yeast and that NPPMs exhibit exquisite targeting specificities for Sec14 (relative to related Sec14-like PITPs), propose a mechanism for how NPPMs exert their inhibitory effects and demonstrate that NPPMs exhibit exquisite pathway selectivity in inhibiting phosphoinositide signaling in cells. These data deliver proof of concept that PITP-directed SMIs offer new and generally applicable avenues for intervening with phosphoinositide signaling pathways with selectivities superior to those afforded by contemporary lipid kinase-directed strategies.
Collapse
|
31
|
Lissina E, Weiss D, Young B, Rella A, Cheung-Ong K, Del Poeta M, Clarke SG, Giaever G, Nislow C. A novel small molecule methyltransferase is important for virulence in Candida albicans. ACS Chem Biol 2013; 8:2785-93. [PMID: 24083538 DOI: 10.1021/cb400607h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Candida albicans is an opportunistic pathogen capable of causing life-threatening infections in immunocompromised individuals. Despite its significant health impact, our understanding of C. albicans pathogenicity is limited, particularly at the molecular level. One of the largely understudied enzyme families in C. albicans are small molecule AdoMet-dependent methyltransferases (smMTases), which are important for maintenance of cellular homeostasis by clearing toxic chemicals, generating novel cellular intermediates, and regulating intra- and interspecies interactions. In this study, we demonstrated that C. albicans Crg1 (CaCrg1) is a bona fide smMTase that interacts with the toxin in vitro and in vivo. We report that CaCrg1 is important for virulence-related processes such as adhesion, hyphal elongation, and membrane trafficking. Biochemical and genetic analyses showed that CaCrg1 plays a role in the complex sphingolipid pathway: it binds to exogenous short-chain ceramides in vitro and interacts genetically with genes of glucosylceramide pathway, and the deletion of CaCRG1 leads to significant changes in the abundance of phytoceramides. Finally we found that this novel lipid-related smMTase is required for virulence in the waxmoth Galleria mellonella, a model of infection.
Collapse
|
32
|
Cheung-Ong K, Giaever G, Nislow C. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. ACTA ACUST UNITED AC 2013; 20:648-59. [PMID: 23706631 DOI: 10.1016/j.chembiol.2013.04.007] [Citation(s) in RCA: 409] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/02/2013] [Accepted: 04/08/2013] [Indexed: 12/13/2022]
Abstract
DNA-damaging agents have a long history of use in cancer chemotherapy. The full extent of their cellular mechanisms, which is essential to balance efficacy and toxicity, is often unclear. In addition, the use of many anticancer drugs is limited by dose-limiting toxicities as well as the development of drug resistance. Novel anticancer compounds are continually being developed in the hopes of addressing these limitations; however, it is essential to be able to evaluate these compounds for their mechanisms of action. This review covers the current DNA-damaging agents used in the clinic, discusses their limitations, and describes the use of chemical genomics to uncover new information about the DNA damage response network and to evaluate novel DNA-damaging compounds.
Collapse
|
33
|
Bernard D, Gebbia M, Prabha S, Gronda M, MacLean N, Wang X, Hurren R, Sukhai MA, Cho EE, Manolson MF, Datti A, Wrana J, Al-Awar R, Aman A, Nislow C, Giaever G, Schimmer AD. Abstract A299: Select microtubule inhibitors increase lysosome acidity and promote lysosomal disruption in acute myeloid leukemia (AML) cells. Mol Cancer Ther 2013. [DOI: 10.1158/1535-7163.targ-13-a299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
AML is a hematological malignancy for which the standard of care therapy has remained unchanged for almost 30 years. Novel therapeutic approaches are therefore urgently needed for the treatment of this heterogeneous disease. To identify new strategies for the treatment of AML, we screened a natural product library for compounds cytotoxic to AML cells and identified Deoxysappanone B 7,4’-dimethyl ether. Deoxysappanone B is a homoisoflavanoid compound extracted primarily from the dried heartwood of Caesalpinia sappan, a medicinal plant native to South-East Asia. However, anticancer activity of this compound has not been previously described and its molecular targets are largely unknown. In subsequent validation studies, Deoxysappanone B possessed anti-leukemic activity in 6 tested AML cell lines with nanomolar IC50s and was preferentially cytotoxic to primary AML cells and stem/progenitor cells over normal hematopoietic cells. To understand its mechanism of action, we performed chemo-genomic profiling of Deoxysappanone B in S. cerevisiae and identified enrichment of genes related to mitotic cell cycle as well as vacuolar acidification, therefore pointing to microtubules and lysosomes’ proton-pumping vacuolar (V)-ATPase as potential targets. We confirmed Deoxysappanone B's action as a microtubule inhibitor and localized its binding site near to that of colchicine via in-vitro tubulin polymerization and competitive binding assays. We also showed that Deoxysappanone B reversibly induces cell cycle arrest and cell death in a panel of AML cell lines as well as overcomes some mechanisms of resistance to vinca alkaloids. Validating the functional importance of tubulin as a target for Deoxysappanone B-mediated cell death, epidermoid carcinoma cells with a tubulin mutation were more resistant to Deoxysappanone B compared to their parental counterpart. In addition to inhibiting tubulin polymerization, Deoxysappanone B also increased lysosome acidity as measured by a V-ATPase enzymatic assay as well as staining with LysoSensor™ Yellow/Blue DND-160 and confocal microscopy. The sustained increase in lysosome acidity ultimately led to lysosomal disruption as evidenced by acridine orange staining. Supporting a tubulin-mediated effect on lysosomes, nocodazole, although not vinblastine, vincristine, paclitaxel or colchicine, produced a similar increase in lysosome acidity and lysosomal disruption. The effects on lysosomes were functionally relevant as pre-treatment with bafilomycin A1, a lysosomal V-ATPase inhibitor, partially abrogated the cytotoxic effect of Deoxysappanone B. Thus, our data provide insight into a novel mechanism of action of select microtubule inhibitors in the context of AML.
Citation Information: Mol Cancer Ther 2013;12(11 Suppl):A299.
Citation Format: Dannie Bernard, Marinella Gebbia, Swayam Prabha, Marcela Gronda, Neil MacLean, Xiaoming Wang, Rose Hurren, Mahadeo A. Sukhai, Eunice E. Cho, Morris F. Manolson, Alessandro Datti, Jeffrey Wrana, Rima Al-Awar, Ahmed Aman, Corey Nislow, Guri Giaever, Aaron D. Schimmer. Select microtubule inhibitors increase lysosome acidity and promote lysosomal disruption in acute myeloid leukemia (AML) cells. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2013 Oct 19-23; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013;12(11 Suppl):Abstract nr A299.
Collapse
|
34
|
Srikumar T, Lewicki MC, Costanzo M, Tkach JM, van Bakel H, Tsui K, Johnson ES, Brown GW, Andrews BJ, Boone C, Giaever G, Nislow C, Raught B. Global analysis of SUMO chain function reveals multiple roles in chromatin regulation. ACTA ACUST UNITED AC 2013; 201:145-63. [PMID: 23547032 PMCID: PMC3613684 DOI: 10.1083/jcb.201210019] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple large-scale analyses in yeast implicate SUMO chain function in the
maintenance of higher-order chromatin structure and transcriptional repression
of environmental stress response genes. Like ubiquitin, the small ubiquitin-related modifier (SUMO) proteins can form
oligomeric “chains,” but the biological functions of these
superstructures are not well understood. Here, we created mutant yeast strains
unable to synthesize SUMO chains (smt3allR) and
subjected them to high-content microscopic screening, synthetic genetic array
(SGA) analysis, and high-density transcript profiling to perform the first
global analysis of SUMO chain function. This comprehensive assessment identified
144 proteins with altered localization or intensity in
smt3allR cells, 149 synthetic genetic
interactions, and 225 mRNA transcripts (primarily consisting of stress- and
nutrient-response genes) that displayed a >1.5-fold increase in
expression levels. This information-rich resource strongly implicates SUMO
chains in the regulation of chromatin. Indeed, using several different
approaches, we demonstrate that SUMO chains are required for the maintenance of
normal higher-order chromatin structure and transcriptional repression of
environmental stress response genes in budding yeast.
Collapse
|
35
|
Singh-Babak SD, Shekhar T, Smith AM, Giaever G, Nislow C, Cowen LE. A novel calcineurin-independent activity of cyclosporin A in Saccharomyces cerevisiae. MOLECULAR BIOSYSTEMS 2013; 8:2575-84. [PMID: 22751784 DOI: 10.1039/c2mb25107h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fungi rely on regulatory networks to coordinate sensing of environmental stress with initiation of responses crucial for survival. Antifungal drugs are a specific type of environmental stress with broad clinical relevance. Small molecules with antifungal activity are ubiquitous in the environment, and are produced by a myriad of microbes in competitive natural communities. The echinocandins are fungal fermentation products and the most recently developed class of antifungals, with those in clinical use being semisynthetic derivatives that target the fungal cell wall by inhibiting 1,3-β-D-glucan synthase. Recent studies implicate the protein phosphatase calcineurin as a key regulator of cellular stress responses required for fungal survival of echinocandin-induced cell wall stress. Pharmacological inhibition of calcineurin can be achieved using the natural product and immunosuppressive drug cyclosporin A, which inhibits calcineurin by binding to the immunophilin Cpr1. This drug-protein complex inhibits the interaction between the regulatory and catalytic subunits of calcineurin, an interaction necessary for calcineurin function. Here, we report on potent activity of cyclosporin A when combined with the echinocandin micafungin against the model yeast Saccharomyces cerevisiae that is independent of its known mechanism of action of calcineurin inhibition. This calcineurin-independent synergy does not involve any of the 12 immunophilins known in yeast, individually or in combination, and is not mediated by any of the multidrug transporters encoded or controlled by YOR1, SNQ2, PDR5, PDR10, PDR11, YCF1, PDR15, ADP1, VMR1, NFT1, BPT1, YBT1, YNR070w, YOL075c, AUS1, PDR12, PDR1 and/or PDR3. Genome-wide haploinsufficiency profiling (HIP) and homozygous deletion profiling (HOP) strongly implicate the cell wall biosynthesis and integrity pathways as being central to the calcineurin-independent activity of cyclosporin A. Thus, systems level chemical genomic approaches implicate key cellular pathways in a novel mechanism of antifungal drug synergy.
Collapse
|
36
|
Sukhai MA, Prabha S, Hurren R, Rutledge AC, Lee AY, Sriskanthadevan S, Sun H, Wang X, Skrtic M, Seneviratne A, Cusimano M, Jhas B, Gronda M, MacLean N, Cho EE, Spagnuolo PA, Sharmeen S, Gebbia M, Urbanus M, Eppert K, Dissanayake D, Jonet A, Dassonville-Klimpt A, Li X, Datti A, Ohashi PS, Wrana J, Rogers I, Sonnet P, Ellis WY, Corey SJ, Eaves C, Minden MD, Wang JC, Dick JE, Nislow C, Giaever G, Schimmer AD. Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors. J Clin Invest 2013; 123:315-28. [PMID: 23202731 PMCID: PMC3533286 DOI: 10.1172/jci64180] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 10/04/2012] [Indexed: 01/15/2023] Open
Abstract
Despite efforts to understand and treat acute myeloid leukemia (AML), there remains a need for more comprehensive therapies to prevent AML-associated relapses. To identify new therapeutic strategies for AML, we screened a library of on- and off-patent drugs and identified the antimalarial agent mefloquine as a compound that selectively kills AML cells and AML stem cells in a panel of leukemia cell lines and in mice. Using a yeast genome-wide functional screen for mefloquine sensitizers, we identified genes associated with the yeast vacuole, the homolog of the mammalian lysosome. Consistent with this, we determined that mefloquine disrupts lysosomes, directly permeabilizes the lysosome membrane, and releases cathepsins into the cytosol. Knockdown of the lysosomal membrane proteins LAMP1 and LAMP2 resulted in decreased cell viability, as did treatment of AML cells with known lysosome disrupters. Highlighting a potential therapeutic rationale for this strategy, leukemic cells had significantly larger lysosomes compared with normal cells, and leukemia-initiating cells overexpressed lysosomal biogenesis genes. These results demonstrate that lysosomal disruption preferentially targets AML cells and AML progenitor cells, providing a rationale for testing lysosomal disruption as a novel therapeutic strategy for AML.
Collapse
|
37
|
Ammar R, Torti D, Tsui K, Gebbia M, Durbic T, Bader GD, Giaever G, Nislow C. Chromatin is an ancient innovation conserved between Archaea and Eukarya. eLife 2012; 1:e00078. [PMID: 23240084 PMCID: PMC3510453 DOI: 10.7554/elife.00078] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/25/2012] [Indexed: 12/11/2022] Open
Abstract
The eukaryotic nucleosome is the fundamental unit of chromatin, comprising a protein octamer that wraps ∼147 bp of DNA and has essential roles in DNA compaction, replication and gene expression. Nucleosomes and chromatin have historically been considered to be unique to eukaryotes, yet studies of select archaea have identified homologs of histone proteins that assemble into tetrameric nucleosomes. Here we report the first archaeal genome-wide nucleosome occupancy map, as observed in the halophile Haloferax volcanii. Nucleosome occupancy was compared with gene expression by compiling a comprehensive transcriptome of Hfx. volcanii. We found that archaeal transcripts possess hallmarks of eukaryotic chromatin structure: nucleosome-depleted regions at transcriptional start sites and conserved -1 and +1 promoter nucleosomes. Our observations demonstrate that histones and chromatin architecture evolved before the divergence of Archaea and Eukarya, suggesting that the fundamental role of chromatin in the regulation of gene expression is ancient.DOI:http://dx.doi.org/10.7554/eLife.00078.001.
Collapse
|
38
|
Alfred SE, Surendra A, Le C, Lin K, Mok A, Wallace IM, Proctor M, Urbanus ML, Giaever G, Nislow C. A phenotypic screening platform to identify small molecule modulators of Chlamydomonas reinhardtii growth, motility and photosynthesis. Genome Biol 2012; 13:R105. [PMID: 23158586 PMCID: PMC3580497 DOI: 10.1186/gb-2012-13-11-r105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/18/2012] [Indexed: 12/12/2022] Open
Abstract
Chemical biology, the interfacial discipline of using small molecules as probes to investigate biology, is a powerful approach of developing specific, rapidly acting tools that can be applied across organisms. The single-celled alga Chlamydomonas reinhardtii is an excellent model system because of its photosynthetic ability, cilia-related motility and simple genetics. We report the results of an automated fitness screen of 5,445 small molecules and subsequent assays on motility/phototaxis and photosynthesis. Cheminformatic analysis revealed active core structures and was used to construct a naïve Bayes model that successfully predicts algal bioactive compounds.
Collapse
|
39
|
Cheung-Ong K, Song KT, Ma Z, Shabtai D, Lee AY, Gallo D, Heisler LE, Brown GW, Bierbach U, Giaever G, Nislow C. Comparative chemogenomics to examine the mechanism of action of dna-targeted platinum-acridine anticancer agents. ACS Chem Biol 2012; 7:1892-901. [PMID: 22928710 DOI: 10.1021/cb300320d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Platinum-based drugs have been used to successfully treat diverse cancers for several decades. Cisplatin, the original compound of this class, cross-links DNA, resulting in cell cycle arrest and cell death via apoptosis. Cisplatin is effective against several tumor types, yet it exhibits toxic side effects and tumors often develop resistance. To mitigate these liabilities while maintaining potency, we generated a library of non-classical platinum-acridine hybrid agents and assessed their mechanisms of action using a validated genome-wide screening approach in Saccharomyces cerevisiae and in the distantly related yeast Schizosaccharomyces pombe. Chemogenomic profiles from both S. cerevisiae and S. pombe demonstrate that several of the platinum-acridines damage DNA differently than cisplatin based on their requirement for distinct modules of DNA repair.
Collapse
|
40
|
Shabtai D, Giaever G, Nislow C. An algorithm for chemical genomic profiling that minimizes batch effects: bucket evaluations. BMC Bioinformatics 2012; 13:245. [PMID: 23009392 PMCID: PMC3780717 DOI: 10.1186/1471-2105-13-245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 08/30/2012] [Indexed: 12/15/2022] Open
Abstract
Background Chemical genomics is an interdisciplinary field that combines small molecule perturbation with traditional genomics to understand gene function and to study the mode(s) of drug action. A benefit of chemical genomic screens is their breadth; each screen can capture the sensitivity of comprehensive collections of mutants or, in the case of mammalian cells, gene knock-downs, simultaneously. As with other large-scale experimental platforms, to compare and contrast such profiles, e.g. for clustering known compounds with uncharacterized compounds, a robust means to compare a large cohort of profiles is required. Existing methods for correlating different chemical profiles include diverse statistical discriminant analysis-based methods and specific gene filtering or normalization methods. Though powerful, none are ideal because they typically require one to define the disrupting effects, commonly known as batch effects, to detect true signal from experimental variation. These effects are not always known, and they can mask true biological differences. We present a method, Bucket Evaluations (BE) that surmounts many of these problems and is extensible to other datasets such as those obtained via gene expression profiling and which is platform independent. Results We designed an algorithm to analyse chemogenomic profiles to identify potential targets of known drugs and new chemical compounds. We used levelled rank comparisons to identify drugs/compounds with similar profiles that minimizes batch effects and avoids the requirement of pre-defining the disrupting effects. This algorithm was also tested on gene expression microarray data and high throughput sequencing chemogenomic screens and found the method is applicable to a variety of dataset types. Conclusions BE, along with various correlation methods on a collection of datasets proved to be highly accurate for locating similarity between experiments. BE is a non-parametric correlation approach, which is suitable for locating correlations in somewhat perturbed datasets such as chemical genomic profiles. We created software and a user interface for using BE, which is publically available.
Collapse
|
41
|
Ryan O, Shapiro RS, Kurat CF, Mayhew D, Baryshnikova A, Chin B, Lin ZY, Cox MJ, Vizeacoumar F, Cheung D, Bahr S, Tsui K, Tebbji F, Sellam A, Istel F, Schwarzmüller T, Reynolds TB, Kuchler K, Gifford DK, Whiteway M, Giaever G, Nislow C, Costanzo M, Gingras AC, Mitra RD, Andrews B, Fink GR, Cowen LE, Boone C. Global gene deletion analysis exploring yeast filamentous growth. Science 2012; 337:1353-6. [PMID: 22984072 DOI: 10.1126/science.1224339] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The dimorphic switch from a single-cell budding yeast to a filamentous form enables Saccharomyces cerevisiae to forage for nutrients and the opportunistic pathogen Candida albicans to invade human tissues and evade the immune system. We constructed a genome-wide set of targeted deletion alleles and introduced them into a filamentous S. cerevisiae strain, Σ1278b. We identified genes involved in morphologically distinct forms of filamentation: haploid invasive growth, biofilm formation, and diploid pseudohyphal growth. Unique genes appear to underlie each program, but we also found core genes with general roles in filamentous growth, including MFG1 (YDL233w), whose product binds two morphogenetic transcription factors, Flo8 and Mss11, and functions as a critical transcriptional regulator of filamentous growth in both S. cerevisiae and C. albicans.
Collapse
|
42
|
Orij R, Urbanus ML, Vizeacoumar FJ, Giaever G, Boone C, Nislow C, Brul S, Smits GJ. Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pH(c) in Saccharomyces cerevisiae. Genome Biol 2012; 13:R80. [PMID: 23021432 PMCID: PMC3506951 DOI: 10.1186/gb-2012-13-9-r80] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 09/10/2012] [Accepted: 09/26/2012] [Indexed: 01/20/2023] Open
Abstract
Background Because protonation affects the properties of almost all molecules in cells, cytosolic pH (pHc) is usually assumed to be constant. In the model organism yeast, however, pHc changes in response to the presence of nutrients and varies during growth. Since small changes in pHc can lead to major changes in metabolism, signal transduction, and phenotype, we decided to analyze pHc control. Results Introducing a pH-sensitive reporter protein into the yeast deletion collection allowed quantitative genome-wide analysis of pHc in live, growing yeast cultures. pHc is robust towards gene deletion; no single gene mutation led to a pHc of more than 0.3 units lower than that of wild type. Correct pHc control required not only vacuolar proton pumps, but also strongly relied on mitochondrial function. Additionally, we identified a striking relationship between pHc and growth rate. Careful dissection of cause and consequence revealed that pHc quantitatively controls growth rate. Detailed analysis of the genetic basis of this control revealed that the adequate signaling of pHc depended on inositol polyphosphates, a set of relatively unknown signaling molecules with exquisitely pH sensitive properties. Conclusions While pHc is a very dynamic parameter in the normal life of yeast, genetically it is a tightly controlled cellular parameter. The coupling of pHc to growth rate is even more robust to genetic alteration. Changes in pHc control cell division rate in yeast, possibly as a signal. Such a signaling role of pHc is probable, and may be central in development and tumorigenesis.
Collapse
|
43
|
Jaime MDLA, Lopez-Llorca LV, Conesa A, Lee AY, Proctor M, Heisler LE, Gebbia M, Giaever G, Westwood JT, Nislow C. Identification of yeast genes that confer resistance to chitosan oligosaccharide (COS) using chemogenomics. BMC Genomics 2012; 13:267. [PMID: 22727066 PMCID: PMC3505485 DOI: 10.1186/1471-2164-13-267] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/25/2012] [Indexed: 12/30/2022] Open
Abstract
Background Chitosan oligosaccharide (COS), a deacetylated derivative of chitin, is an abundant, and renewable natural polymer. COS has higher antimicrobial properties than chitosan and is presumed to act by disrupting/permeabilizing the cell membranes of bacteria, yeast and fungi. COS is relatively non-toxic to mammals. By identifying the molecular and genetic targets of COS, we hope to gain a better understanding of the antifungal mode of action of COS. Results Three different chemogenomic fitness assays, haploinsufficiency (HIP), homozygous deletion (HOP), and multicopy suppression (MSP) profiling were combined with a transcriptomic analysis to gain insight in to the mode of action and mechanisms of resistance to chitosan oligosaccharides. The fitness assays identified 39 yeast deletion strains sensitive to COS and 21 suppressors of COS sensitivity. The genes identified are involved in processes such as RNA biology (transcription, translation and regulatory mechanisms), membrane functions (e.g. signalling, transport and targeting), membrane structural components, cell division, and proteasome processes. The transcriptomes of control wild type and 5 suppressor strains overexpressing ARL1, BCK2, ERG24, MSG5, or RBA50, were analyzed in the presence and absence of COS. Some of the up-regulated transcripts in the suppressor overexpressing strains exposed to COS included genes involved in transcription, cell cycle, stress response and the Ras signal transduction pathway. Down-regulated transcripts included those encoding protein folding components and respiratory chain proteins. The COS-induced transcriptional response is distinct from previously described environmental stress responses (i.e. thermal, salt, osmotic and oxidative stress) and pre-treatment with these well characterized environmental stressors provided little or any resistance to COS. Conclusions Overexpression of the ARL1 gene, a member of the Ras superfamily that regulates membrane trafficking, provides protection against COS-induced cell membrane permeability and damage. We found that the ARL1 COS-resistant over-expression strain was as sensitive to Amphotericin B, Fluconazole and Terbinafine as the wild type cells and that when COS and Fluconazole are used in combination they act in a synergistic fashion. The gene targets of COS identified in this study indicate that COS’s mechanism of action is different from other commonly studied fungicides that target membranes, suggesting that COS may be an effective fungicide for drug-resistant fungal pathogens.
Collapse
|
44
|
Wallace IM, Urbanus ML, Luciani GM, Burns AR, Han MKL, Wang H, Arora K, Heisler LE, Proctor M, St Onge RP, Roemer T, Roy PJ, Cummins CL, Bader GD, Nislow C, Giaever G. Compound prioritization methods increase rates of chemical probe discovery in model organisms. ACTA ACUST UNITED AC 2012; 18:1273-83. [PMID: 22035796 DOI: 10.1016/j.chembiol.2011.07.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 06/29/2011] [Accepted: 07/15/2011] [Indexed: 11/30/2022]
Abstract
Preselection of compounds that are more likely to induce a phenotype can increase the efficiency and reduce the costs for model organism screening. To identify such molecules, we screened ~81,000 compounds in Saccharomyces cerevisiae and identified ~7500 that inhibit cell growth. Screening these growth-inhibitory molecules across a diverse panel of model organisms resulted in an increased phenotypic hit-rate. These data were used to build a model to predict compounds that inhibit yeast growth. Empirical and in silico application of the model enriched the discovery of bioactive compounds in diverse model organisms. To demonstrate the potential of these molecules as lead chemical probes, we used chemogenomic profiling in yeast and identified specific inhibitors of lanosterol synthase and of stearoyl-CoA 9-desaturase. As community resources, the ~7500 growth-inhibitory molecules have been made commercially available and the computational model and filter used are provided.
Collapse
|
45
|
Blackman RK, Cheung-Ong K, Gebbia M, Proia DA, He S, Kepros J, Jonneaux A, Marchetti P, Kluza J, Rao PE, Wada Y, Giaever G, Nislow C. Mitochondrial electron transport is the cellular target of the oncology drug elesclomol. PLoS One 2012; 7:e29798. [PMID: 22253786 PMCID: PMC3256171 DOI: 10.1371/journal.pone.0029798] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 12/04/2011] [Indexed: 12/03/2022] Open
Abstract
Elesclomol is a first-in-class investigational drug currently undergoing clinical evaluation as a novel cancer therapeutic. The potent antitumor activity of the compound results from the elevation of reactive oxygen species (ROS) and oxidative stress to levels incompatible with cellular survival. However, the molecular target(s) and mechanism by which elesclomol generates ROS and subsequent cell death were previously undefined. The cellular cytotoxicity of elesclomol in the yeast S. cerevisiae appears to occur by a mechanism similar, if not identical, to that in cancer cells. Accordingly, here we used a powerful and validated technology only available in yeast that provides critical insights into the mechanism of action, targets and processes that are disrupted by drug treatment. Using this approach we show that elesclomol does not work through a specific cellular protein target. Instead, it targets a biologically coherent set of processes occurring in the mitochondrion. Specifically, the results indicate that elesclomol, driven by its redox chemistry, interacts with the electron transport chain (ETC) to generate high levels of ROS within the organelle and consequently cell death. Additional experiments in melanoma cells involving drug treatments or cells lacking ETC function confirm that the drug works similarly in human cancer cells. This deeper understanding of elesclomol's mode of action has important implications for the therapeutic application of the drug, including providing a rationale for biomarker-based stratification of patients likely to respond in the clinical setting.
Collapse
|
46
|
Smith AM, Durbic T, Kittanakom S, Giaever G, Nislow C. Barcode sequencing for understanding drug-gene interactions. Methods Mol Biol 2012; 910:55-69. [PMID: 22821592 DOI: 10.1007/978-1-61779-965-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
With the advent of next-generation sequencing (NGS) technology, methods previously developed for microarrays have been adapted for use by NGS. Here we describe in detail a protocol for Barcode analysis by sequencing (Bar-seq) to assess pooled competitive growth of individually barcoded yeast deletion mutants. This protocol has been optimized on two sequencing platforms: Illumina's Genome Analyzer IIx/HiSeq2000 and Life Technologies SOLiD3/5500. In addition, we provide guidelines for assessment of human knockdown cells using short-hairpin RNAs (shRNA) and an Illumina sequencing readout.
Collapse
|
47
|
Škrtić M, Sriskanthadevan S, Jhas B, Gebbia M, Wang X, Wang Z, Hurren R, Jitkova Y, Gronda M, Maclean N, Lai CK, Eberhard Y, Bartoszko J, Spagnuolo P, Rutledge AC, Datti A, Ketela T, Moffat J, Robinson BH, Cameron JH, Wrana J, Eaves CJ, Minden MD, Wang JC, Dick JE, Humphries K, Nislow C, Giaever G, Schimmer AD. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 2011; 20:674-88. [PMID: 22094260 PMCID: PMC3221282 DOI: 10.1016/j.ccr.2011.10.015] [Citation(s) in RCA: 483] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/05/2011] [Accepted: 10/14/2011] [Indexed: 12/17/2022]
Abstract
To identify FDA-approved agents targeting leukemic cells, we performed a chemical screen on two human leukemic cell lines and identified the antimicrobial tigecycline. A genome-wide screen in yeast identified mitochondrial translation inhibition as the mechanism of tigecycline-mediated lethality. Tigecycline selectively killed leukemia stem and progenitor cells compared to their normal counterparts and also showed antileukemic activity in mouse models of human leukemia. ShRNA-mediated knockdown of EF-Tu mitochondrial translation factor in leukemic cells reproduced the antileukemia activity of tigecycline. These effects were derivative of mitochondrial biogenesis that, together with an increased basal oxygen consumption, proved to be enhanced in AML versus normal hematopoietic cells and were also important for their difference in tigecycline sensitivity.
Collapse
|
48
|
Berry DB, Guan Q, Hose J, Haroon S, Gebbia M, Heisler LE, Nislow C, Giaever G, Gasch AP. Multiple means to the same end: the genetic basis of acquired stress resistance in yeast. PLoS Genet 2011; 7:e1002353. [PMID: 22102822 PMCID: PMC3213159 DOI: 10.1371/journal.pgen.1002353] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 09/07/2011] [Indexed: 12/30/2022] Open
Abstract
In nature, stressful environments often occur in combination or close succession, and thus the ability to prepare for impending stress likely provides a significant fitness advantage. Organisms exposed to a mild dose of stress can become tolerant to what would otherwise be a lethal dose of subsequent stress; however, the mechanism of this acquired stress tolerance is poorly understood. To explore this, we exposed the yeast gene-deletion libraries, which interrogate all essential and non-essential genes, to successive stress treatments and identified genes necessary for acquiring subsequent stress resistance. Cells were exposed to one of three different mild stress pretreatments (salt, DTT, or heat shock) and then challenged with a severe dose of hydrogen peroxide (H2O2). Surprisingly, there was little overlap in the genes required for acquisition of H2O2 tolerance after different mild-stress pretreatments, revealing distinct mechanisms of surviving H2O2 in each case. Integrative network analysis of these results with respect to protein–protein interactions, synthetic–genetic interactions, and functional annotations identified many processes not previously linked to H2O2 tolerance. We tested and present several models that explain the lack of overlap in genes required for H2O2 tolerance after each of the three pretreatments. Together, this work shows that acquired tolerance to the same severe stress occurs by different mechanisms depending on prior cellular experiences, underscoring the context-dependent nature of stress tolerance. Cells experience stressful conditions in the real world that can threaten physiology. Therefore, organisms have evolved intricate defense systems to protect themselves against environmental stress. Many organisms can increase their stress tolerance at the first sign of a problem through a phenomenon called acquired stress resistance: when pre-exposed to a mild dose of one stress, cells can become super-tolerant to subsequent stresses that would kill unprepared cells. This response is observed in many organisms, from bacteria to plants to humans, and has application in human health and disease treatment; however, its mechanism remains poorly understood. We used yeast as a model to identify genes important for acquired resistance to severe oxidative stress after pretreatment with three different mild stresses (osmotic, heat, or reductive shock). Surprisingly, there was little overlap in the genes required to survive the same severe stress after each pretreatment. This reveals that the mechanism of acquiring tolerance to the same severe stress occurs through different routes depending on the mild stressor. We leveraged available datasets of physical and genetic interaction networks to address the mechanism and regulation of stress tolerance. We find that acquired stress resistance is a unique phenotype that can uncover new insights into stress biology.
Collapse
|
49
|
Cokol M, Chua HN, Tasan M, Mutlu B, Weinstein ZB, Suzuki Y, Nergiz ME, Costanzo M, Baryshnikova A, Giaever G, Nislow C, Myers CL, Andrews BJ, Boone C, Roth FP. Systematic exploration of synergistic drug pairs. Mol Syst Biol 2011; 7:544. [PMID: 22068327 PMCID: PMC3261710 DOI: 10.1038/msb.2011.71] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/11/2011] [Indexed: 01/20/2023] Open
Abstract
Drug synergy allows a therapeutic effect to be achieved with lower doses of component drugs. Drug synergy can result when drugs target the products of genes that act in parallel pathways ('specific synergy'). Such cases of drug synergy should tend to correspond to synergistic genetic interaction between the corresponding target genes. Alternatively, 'promiscuous synergy' can arise when one drug non-specifically increases the effects of many other drugs, for example, by increased bioavailability. To assess the relative abundance of these drug synergy types, we examined 200 pairs of antifungal drugs in S. cerevisiae. We found 38 antifungal synergies, 37 of which were novel. While 14 cases of drug synergy corresponded to genetic interaction, 92% of the synergies we discovered involved only six frequently synergistic drugs. Although promiscuity of four drugs can be explained under the bioavailability model, the promiscuity of Tacrolimus and Pentamidine was completely unexpected. While many drug synergies correspond to genetic interactions, the majority of drug synergies appear to result from non-specific promiscuous synergy.
Collapse
|
50
|
Lissina E, Young B, Urbanus ML, Guan XL, Lowenson J, Hoon S, Baryshnikova A, Riezman I, Michaut M, Riezman H, Cowen LE, Wenk MR, Clarke SG, Giaever G, Nislow C. A systems biology approach reveals the role of a novel methyltransferase in response to chemical stress and lipid homeostasis. PLoS Genet 2011; 7:e1002332. [PMID: 22028670 PMCID: PMC3197675 DOI: 10.1371/journal.pgen.1002332] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 08/19/2011] [Indexed: 11/24/2022] Open
Abstract
Using small molecule probes to understand gene function is an attractive approach that allows functional characterization of genes that are dispensable in standard laboratory conditions and provides insight into the mode of action of these compounds. Using chemogenomic assays we previously identified yeast Crg1, an uncharacterized SAM-dependent methyltransferase, as a novel interactor of the protein phosphatase inhibitor cantharidin. In this study we used a combinatorial approach that exploits contemporary high-throughput techniques available in Saccharomyces cerevisiae combined with rigorous biological follow-up to characterize the interaction of Crg1 with cantharidin. Biochemical analysis of this enzyme followed by a systematic analysis of the interactome and lipidome of CRG1 mutants revealed that Crg1, a stress-responsive SAM-dependent methyltransferase, methylates cantharidin in vitro. Chemogenomic assays uncovered that lipid-related processes are essential for cantharidin resistance in cells sensitized by deletion of the CRG1 gene. Lipidome-wide analysis of mutants further showed that cantharidin induces alterations in glycerophospholipid and sphingolipid abundance in a Crg1-dependent manner. We propose that Crg1 is a small molecule methyltransferase important for maintaining lipid homeostasis in response to drug perturbation. This approach demonstrates the value of combining chemical genomics with other systems-based methods for characterizing proteins and elucidating previously unknown mechanisms of action of small molecule inhibitors.
Collapse
|