1
|
Abstract
Although a bewildering array of cell surface carbohydrate structures have been described, the physiological relevance of any of these complex molecules has often eluded biologists. A family of cell surface glycoproteins, the "selectins," has a characteristic ability to use some of these carbohydrate structures in adhesive mechanisms that help localize leukocytes to regions of inflammation. This article will review the biology of these carbohydrate-binding adhesive proteins and discuss the potential for developing anti-inflammatory antagonists that could inhibit binding events that are selectin-mediated.
Collapse
|
Review |
33 |
896 |
2
|
Lasky LA, Nakamura G, Smith DH, Fennie C, Shimasaki C, Patzer E, Berman P, Gregory T, Capon DJ. Delineation of a region of the human immunodeficiency virus type 1 gp120 glycoprotein critical for interaction with the CD4 receptor. Cell 1987; 50:975-85. [PMID: 2441877 DOI: 10.1016/0092-8674(87)90524-1] [Citation(s) in RCA: 716] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The primary event in the infection of cells by HIV is the interaction between the viral envelope glycoprotein, gp120, and its cellular receptor, CD4. A recombinant form of gp120 was found to bind to a recombinant CD4 antigen with high affinity. Two gp120-specific murine monoclonal antibodies were able to block the interaction between gp120 and CD4. The gp120 epitope of one of these antibodies was isolated by immunoaffinity chromatography of acid-cleaved gp120 and shown to be contained within amino acids 397-439. Using in vitro mutagenesis, we have found that deletion of 12 amino acids from this region of gp120 leads to a complete loss of binding. In addition, a single amino acid substitution in this region results in significantly decreased binding, suggesting that sequences within this region are directly involved in the binding of gp120 to the CD4 receptor.
Collapse
|
|
38 |
716 |
3
|
Willey RL, Smith DH, Lasky LA, Theodore TS, Earl PL, Moss B, Capon DJ, Martin MA. In vitro mutagenesis identifies a region within the envelope gene of the human immunodeficiency virus that is critical for infectivity. J Virol 1988; 62:139-47. [PMID: 3257102 PMCID: PMC250512 DOI: 10.1128/jvi.62.1.139-147.1988] [Citation(s) in RCA: 654] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Site-specific mutagenesis was used to introduce amino acid substitutions at the asparagine codons of four conserved potential N-linked glycosylation sites within the gp120 envelope protein of human immunodeficiency virus (HIV). One of these alterations resulted in the production of noninfectious virus particles. The amino acid substitution did not interfere with the synthesis, processing, and stability of the env gene polypeptides gp120 and gp41 or the binding of gp120 to its cellular receptor, the CD4 (T4) molecule. Vaccinia virus recombinants containing wild-type or mutant HIV env genes readily induced syncytia in CD4+ HeLa cells. These results suggest that alterations involving the second conserved domain of the HIV gp120 may interfere with an essential early step in the virus replication cycle other than binding to the CD4 receptor. In long-term cocultures of a T4+ lymphocyte cell line and colon carcinoma cells producing the mutant virus, revertant infectious virions were detected. Molecular characterization of two revertant proviral clones revealed the presence of the original mutation as well as a compensatory amino acid change in another region of HIV gp120.
Collapse
|
research-article |
37 |
654 |
4
|
Wood WI, Gitschier J, Lasky LA, Lawn RM. Base composition-independent hybridization in tetramethylammonium chloride: a method for oligonucleotide screening of highly complex gene libraries. Proc Natl Acad Sci U S A 1985; 82:1585-8. [PMID: 3856838 PMCID: PMC397316 DOI: 10.1073/pnas.82.6.1585] [Citation(s) in RCA: 633] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
An oligonucleotide hybridization procedure has been developed that eliminates the preferential melting of A X T versus G X C base pairs, allowing the stringency of the hybridization to be controlled as a function of probe length only. This technique, which uses tetramethylammonium chloride, is especially helpful whenever a highly complex library is screened with a pool of oligonucleotide probes, which usually vary widely in base composition. The procedure can also be applied advantageously whenever an exact match to an oligonucleotide probe is desired, such as in screening for clones having as little as a single-base alteration generated by in vitro mutagenesis.
Collapse
|
research-article |
40 |
633 |
5
|
Foxall C, Watson SR, Dowbenko D, Fennie C, Lasky LA, Kiso M, Hasegawa A, Asa D, Brandley BK. The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewis(x) oligosaccharide. J Cell Biol 1992; 117:895-902. [PMID: 1374413 PMCID: PMC2289454 DOI: 10.1083/jcb.117.4.895] [Citation(s) in RCA: 523] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The selectins (lectin-EGF-complement binding-cell adhesion molecules [LEC-CAMs]) are a family of mammalian receptors implicated in the initial interactions between leukocytes and vascular endothelia, leading to lymphocyte homing, platelet binding, and neutrophil extravasation. The three known selectins, L-selectin (leukocyte adhesion molecule-1 [LECAM-1]), E-selectin (endothelial-leukocyte adhesion molecule-1 [ELAM-1]), and P-selectin (GMP-140) share structural features that include a calcium-dependent lectin domain. The sialyl Lewis(x) carbohydrate epitope has been reported as a ligand for both E- and P-selectins. Although L-selectin has been demonstrated to bind to carbohydrates, structural features of potential mammalian carbohydrate ligand(s) have not been well defined. Using an ELISA developed with a sialyl Lewis(x)-containing glycolipid and an E-selectin-IgG chimera, we have demonstrated the direct binding of the L-selectin-IgG chimera to sialyl Lewis(x). This recognition was calcium dependent, and could be blocked by Mel-14 antibody but not by other antibodies. Recognition was confirmed by the ability of cells expressing the native L-selectin to adhere to immobilized sialyl Lewis(x). These data suggest that the sialyl Lewis(x) oligosaccharide may form the basis of a recognition domain common to all three selectins.
Collapse
|
research-article |
33 |
523 |
6
|
Lasky LA, Singer MS, Dowbenko D, Imai Y, Henzel WJ, Grimley C, Fennie C, Gillett N, Watson SR, Rosen SD. An endothelial ligand for L-selectin is a novel mucin-like molecule. Cell 1992; 69:927-38. [PMID: 1376638 DOI: 10.1016/0092-8674(92)90612-g] [Citation(s) in RCA: 510] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The adhesive interaction between circulating lymphocytes and the high endothelial venules (HEV) of lymph nodes (LN) is mediated by lymphocyte L-selectin, a member of the selectin family of cell adhesion proteins. Previous work has identified a sulfated 50 kd glycoprotein (Sgp50) as an HEV ligand for L-selectin. We now report the purification of this glycoprotein and the utilization of the derived N-terminal amino acid sequence to clone a cDNA. The predicted sequence reveals a novel, mucin-like molecule containing two serine/threonine-rich domains. The mRNA encoding this glycoprotein is preferentially expressed in LN. Antibodies against predicted peptides immunoprecipitate Sgp50 and stain the apical surface of LN HEV. These results thus define a tissue-specific mucin-like endothelial glycoprotein that appears to function as a scaffold that presents carbohydrates to the L-selectin lectin domain.
Collapse
|
|
33 |
510 |
7
|
Abstract
The orderly migration of various white blood cell types to inflammatory sites is a highly regulated process that involves a diversity of adhesion and signaling molecules. This cellular influx is initiated by relatively low affinity interactions that allow for leukocytes to roll along the vascular surface. This rolling phenomenon is mediated by adhesive interactions between lectin containing adhesion molecules, termed selectins, on both the vascular endothelium and leukocytes, and carbohydrate ligands immobilized on mucin-like scaffolds. This adhesion allows for a rapid recognition of various cell types under the conditions of vascular flow, with the result that inflammatory cells are specifically decelerated adjacent to sites of inflammation. This review focuses on the various biochemical aspects of the interactions between the selectins and their cognate carbohydrate ligands, with an emphasis on the importance of these adhesive events to the inflammatory response.
Collapse
|
Review |
30 |
445 |
8
|
Baumheter S, Singer MS, Henzel W, Hemmerich S, Renz M, Rosen SD, Lasky LA. Binding of L-selectin to the vascular sialomucin CD34. Science 1993; 262:436-8. [PMID: 7692600 DOI: 10.1126/science.7692600] [Citation(s) in RCA: 433] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The adhesive interactions between leukocyte L-selectin and the endothelium are involved in the migration of lymphocytes through peripheral lymph nodes and of neutrophils to sites of inflammation. A recombinant L-selectin stains high endothelial venules (HEVs) in lymph nodes and recognizes sulfated carbohydrates found on two endothelial glycoproteins, Sgp50 and Sgp90. Amino acid sequencing of purified Sgp90 revealed a protein core identical to that CD34, a sialomucin expressed on hematopoietic stem cells and endothelium. A polyclonal antiserum to recombinant murine CD34 stains peripheral lymph node endothelium and recognizes Sgp90 that is functionally bound by L-selectin. Thus, an HEV glycoform of CD34 can function as a ligand for L-selectin.
Collapse
|
|
32 |
433 |
9
|
Lasky LA, Singer MS, Yednock TA, Dowbenko D, Fennie C, Rodriguez H, Nguyen T, Stachel S, Rosen SD. Cloning of a lymphocyte homing receptor reveals a lectin domain. Cell 1989; 56:1045-55. [PMID: 2647302 DOI: 10.1016/0092-8674(89)90637-5] [Citation(s) in RCA: 429] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lymphocytes express cell surface molecules, termed homing receptors, that mediate their selective attachment to specialized high endothelial venules found within secondary lymphoid organs. Previous work has demonstrated that the adhesive interaction between lymphocytes and the endothelium of peripheral lymph nodes appears to involve a lectin-like activity. Moreover, MEL-14, a monoclonal antibody that blocks lymphocyte-peripheral lymph node binding and presumably recognizes the homing receptor mediating this adhesive interaction, appeared to detect the lectin-like receptor. In this paper we describe the cloning of a murine cDNA that encodes the antigen recognized by the MEL-14 antibody. Characterization of the cDNA encoding the putative mouse peripheral lymph node-specific homing receptor shows that it contains a lectin domain that appears to be involved in the binding of lymphocytes to peripheral lymph node endothelium, thus defining a new type of cellular adhesion molecule. This result supports a novel mechanism for the distribution of lymphocyte populations to various lymphoid organs.
Collapse
|
|
36 |
429 |
10
|
Lasky LA, Groopman JE, Fennie CW, Benz PM, Capon DJ, Dowbenko DJ, Nakamura GR, Nunes WM, Renz ME, Berman PW. Neutralization of the AIDS retrovirus by antibodies to a recombinant envelope glycoprotein. Science 1986; 233:209-12. [PMID: 3014647 DOI: 10.1126/science.3014647] [Citation(s) in RCA: 278] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mammalian cell lines have been engineered to produce a secreted form of the AIDS retrovirus envelope glycoprotein. The recombinant protein has been isolated from growth-conditioned culture media and used to immunize animals. Antibodies directed against the recombinant molecule were found to react with the envelope glycoprotein produced in virus-infected cells. Furthermore, these antibodies were able to directly inactivate the AIDS retrovirus in a neutralization assay in vitro. The expression system reported here should provide sufficient quantities of the AIDS retrovirus envelope protein for biological and vaccination studies.
Collapse
|
|
39 |
278 |
11
|
Imai Y, Lasky LA, Rosen SD. Sulphation requirement for GlyCAM-1, an endothelial ligand for L-selectin. Nature 1993; 361:555-7. [PMID: 7679207 DOI: 10.1038/361555a0] [Citation(s) in RCA: 274] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
L-selectin participates in the initial attachment of leukocytes to the vascular endothelium. On lymphocytes, it mediates binding to high endothelial venules of lymph nodes. As a selectin it functions as a calcium-dependent lectin recognizing carbohydrate-bearing ligands on endothelial cells. Two lymph node ligands for L-selectin have been identified as sulphated glycoproteins of M(r) approximately 50K and approximately 90K, called Sgp50 and Sgp90 (ref. 10). The recently cloned Sgp50 (ref. 12), now designated GlyCAM-1, is a high endothelial venule-associated, mucin-like glycoprotein containing predominantly O-linked carbohydrate chains. Sialylation of GlyCAM-1 is necessary for its ligand activity and a role for fucosylation is suspected. We have used chlorate as a metabolic inhibitor of sulphation, and report here that GlyCAM-1 has an additional requirement for sulphate.
Collapse
|
|
32 |
274 |
12
|
Weiss RA, Clapham PR, Weber JN, Dalgleish AG, Lasky LA, Berman PW. Variable and conserved neutralization antigens of human immunodeficiency virus. Nature 1986; 324:572-5. [PMID: 2431324 DOI: 10.1038/324572a0] [Citation(s) in RCA: 242] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1, HTLV-III/LAV), the retrovirus responsible for acquired immune deficiency syndrome (AIDS), shows a high degree of genetic polymorphism, particularly in the env gene. We have examined sera from rabbits and guinea pigs immunized with gp130, a recombinant env glycoprotein, and sera from HIV-1-infected subjects, to test their capacity to neutralize a panel of genetically divergent HIV-1 isolates. The sera raised against recombinant antigen specifically neutralized the virus strain from which the env gene was cloned (HTLV-IIIB), but not an independent isolate (HTLV-IIIRF). One rabbit serum tested on seven isolates cross-neutralized two at lower titres. In contrast, human sera from Britain and Uganda, chosen for ability to neutralize HTLV-IIIRF, cross-neutralized six other HIV-1 isolates. When serum and isolate were derived from the same subject, the serum was in some cases effective at slightly lower concentrations (higher titres). Human complement did not affect neutralization titres. These findings indicate that genetically diverse HIV-1 isolates carry both variable and widely conserved antigenic epitopes for neutralizing antibodies. The identification of shared epitopes may help the development of protective vaccines.
Collapse
|
|
39 |
242 |
13
|
Imai Y, Singer MS, Fennie C, Lasky LA, Rosen SD. Identification of a carbohydrate-based endothelial ligand for a lymphocyte homing receptor. J Cell Biol 1991; 113:1213-21. [PMID: 2040648 PMCID: PMC2289002 DOI: 10.1083/jcb.113.5.1213] [Citation(s) in RCA: 242] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lymphocyte attachment to high endothelial venules within lymph nodes is mediated by the peripheral lymph node homing receptor (pnHR), originally defined on mouse lymphocytes by the MEL-14 mAb. The pnHR is a calcium-dependent lectin-like receptor, a member of the LEC-CAM family of adhesion proteins. Here, using a soluble recombinant form of the homing receptor, we have identified an endothelial ligand for the pnHR as an approximately 50-kD sulfated, fucosylated, and sialylated glycoprotein, which we designate Sgp50 (sulfated glycoprotein of 50 kD). Recombinant receptor binding to this lymph node-specific glycoprotein requires calcium and is inhibitable by specific carbohydrates and by MEL-14 mAb. Sialylation of the component is required for binding. Additionally, the glycoprotein is precipitated by MECA-79, an adhesion-blocking mAb reactive with lymph node HEV. A related glycoprotein of approximately 90 kD (designated as Sgp90) is also identified.
Collapse
|
research-article |
34 |
242 |
14
|
Angers-Loustau A, Côté JF, Charest A, Dowbenko D, Spencer S, Lasky LA, Tremblay ML. Protein tyrosine phosphatase-PEST regulates focal adhesion disassembly, migration, and cytokinesis in fibroblasts. J Cell Biol 1999; 144:1019-31. [PMID: 10085298 PMCID: PMC2148201 DOI: 10.1083/jcb.144.5.1019] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this article, we show that, in transfected COS-1 cells, protein tyrosine phosphatase (PTP)-PEST translocates to the membrane periphery following stimulation by the extracellular matrix protein fibronectin. When plated on fibronectin, PTP-PEST (-/-) fibroblasts display a strong defect in motility. 3 h after plating on fibronectin, the number and size of vinculin containing focal adhesions were greatly increased in the homozygous PTP-PEST mutant cells as compared with heterozygous cells. This phenomenon appears to be due in part to a constitutive increase in tyrosine phosphorylation of p130(CAS), a known PTP-PEST substrate, paxillin, which associates with PTP-PEST in vitro, and focal adhesion kinase (FAK). Another effect of this constitutive hyperphosphorylation, consistent with the focal adhesion regulation defect, is that (-/-) cells spread faster than the control cell line when plated on fibronectin. In the PTP-PEST (-/-) cells, an increase in affinity for the SH2 domains of Src and Crk towards p130(CAS) was also observed. In (-/-) cells, we found a significant increase in the level of tyrosine phosphorylation of PSTPIP, a cleavage furrow-associated protein that interacts physically with all PEST family members. An effect of PSTPIP hyperphosphorylation appears to be that some cells remain attached at the site of the cleavage furrow for an extended period of time. In conclusion, our data suggest PTP-PEST plays a dual role in cell cytoskeleton organization, by promoting the turnover of focal adhesions required for cell migration, and by directly or indirectly regulating the proline, serine, threonine phosphatase interacting protein (PSTPIP) tyrosine phosphorylation level which may be involved in regulating cleavage furrow formation or disassembly during normal cell division.
Collapse
|
|
26 |
241 |
15
|
Wu Y, Dowbenko D, Spencer S, Laura R, Lee J, Gu Q, Lasky LA. Interaction of the tumor suppressor PTEN/MMAC with a PDZ domain of MAGI3, a novel membrane-associated guanylate kinase. J Biol Chem 2000; 275:21477-85. [PMID: 10748157 DOI: 10.1074/jbc.m909741199] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PTEN/MMAC is a phosphatase that is mutated in multiple human tumors. PTEN/MMAC dephosphorylates 3-phosphorylated phosphatidylinositol phosphates that activate AKT/protein kinase B (PKB) kinase activity. AKT/PKB is implicated in the inhibition of apoptosis, and cell lines and tumors with mutated PTEN/MMAC show increased AKT/PKB kinase activity and resistance to apoptosis. PTEN/MMAC contains a PDZ domain-binding site, and we show here that the phosphatase binds to a PDZ domain of membrane-associated guanylate kinase with inverted orientation (MAGI) 3, a novel inverted membrane-associated guanylate kinase that localizes to epithelial cell tight junctions. Importantly, MAGI3 and PTEN/MMAC cooperate to modulate the kinase activity of AKT/PKB. These data suggest that MAGI3 allows for the juxtaposition of PTEN/MMAC to phospholipid signaling pathways involved with cell survival.
Collapse
|
|
25 |
199 |
16
|
Watson SR, Imai Y, Fennie C, Geoffroy JS, Rosen SD, Lasky LA. A homing receptor-IgG chimera as a probe for adhesive ligands of lymph node high endothelial venules. J Biophys Biochem Cytol 1990; 110:2221-9. [PMID: 2190992 PMCID: PMC2116131 DOI: 10.1083/jcb.110.6.2221] [Citation(s) in RCA: 136] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The binding of lymphocytes to high endothelial venules (HEV) within peripheral lymph nodes (pln) is thought to be mediated by a lectinlike adhesion molecule termed the pln homing receptor (pln HR). The cloning and sequencing of cDNAs encoding both murine and human pln HR revealed that these adhesion molecules contain protein motifs that are homologous to C-type or calcium dependent lectin domains as well as to epidermal growth factor (egf) and complement-regulatory protein domains. We have produced a novel, antibody-like form of the murine HR by joining the extracellular region of the receptor to a human IgG heavy chain. This antibody-like molecule is capable of recognizing carbohydrates, blocking the binding of lymphocytes to pln HEV, and serving as a histochemical reagent for the staining of pln HEV. This murine HR-IgG chimera should prove useful in analyzing the distribution of the HR ligand(s) in normal as well as in inflammatory states.
Collapse
|
research-article |
35 |
136 |
17
|
Eisenberg RJ, Long D, Ponce de Leon M, Matthews JT, Spear PG, Gibson MG, Lasky LA, Berman P, Golub E, Cohen GH. Localization of epitopes of herpes simplex virus type 1 glycoprotein D. J Virol 1985; 53:634-44. [PMID: 2578577 PMCID: PMC254679 DOI: 10.1128/jvi.53.2.634-644.1985] [Citation(s) in RCA: 136] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We previously defined eight groups of monoclonal antibodies which react with distinct epitopes of herpes simplex virus glycoprotein D (gD). One of these, group VII antibody, was shown to react with a type-common continuous epitope within residues 11 to 19 of the mature glycoprotein (residues 36 to 44 of the predicted sequence of gD). In the current investigation, we have localized the sites of binding of two additional antibody groups which recognize continuous epitopes of gD. The use of truncated forms of gD as well as computer predictions of secondary structure and hydrophilicity were instrumental in locating these epitopes and choosing synthetic peptides to mimic their reactivity. Group II antibodies, which are type common, react with an epitope within residues 268 to 287 of the mature glycoprotein (residues 293 to 312 of the predicted sequence). Group V antibodies, which are gD-1 specific, react with an epitope within residues 340 to 356 of the mature protein (residues 365 to 381 of the predicted sequence). Four additional groups of monoclonal antibodies appear to react with discontinuous epitopes of gD-1, since the reactivity of these antibodies was lost when the glycoprotein was denatured by reduction and alkylation. Truncated forms of gD were used to localize these four epitopes to the first 260 amino acids of the mature protein. Competition experiments were used to assess the relative positions of binding of various pairs of monoclonal antibodies. In several cases, when one antibody was bound, there was no interference with the binding of an antibody from another group, indicating that the epitopes were distinct. However, in other cases, there was competition, indicating that these epitopes might share some common amino acids.
Collapse
|
research-article |
40 |
136 |
18
|
Spencer S, Dowbenko D, Cheng J, Li W, Brush J, Utzig S, Simanis V, Lasky LA. PSTPIP: a tyrosine phosphorylated cleavage furrow-associated protein that is a substrate for a PEST tyrosine phosphatase. J Cell Biol 1997; 138:845-60. [PMID: 9265651 PMCID: PMC2138048 DOI: 10.1083/jcb.138.4.845] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/1997] [Revised: 06/06/1997] [Indexed: 02/05/2023] Open
Abstract
We have investigated proteins which interact with the PEST-type protein tyrosine phosphatase, PTP hematopoietic stem cell fraction (HSCF), using the yeast two-hybrid system. This resulted in the identification of proline, serine, threonine phosphatase interacting protein (PSTPIP), a novel member of the actin- associated protein family that is homologous to Schizosaccharomyces pombe CDC15p, a phosphorylated protein involved with the assembly of the actin ring in the cytokinetic cleavage furrow. The binding of PTP HSCF to PSTPIP was induced by a novel interaction between the putative coiled-coil region of PSTPIP and the COOH-terminal, proline-rich region of the phosphatase. PSTPIP is tyrosine phosphorylated both endogenously and in v-Src transfected COS cells, and cotransfection of dominant-negative PTP HSCF results in hyperphosphorylation of PSTPIP. This dominant-negative effect is dependent upon the inclusion of the COOH-terminal, proline-rich PSTPIP-binding region of the phosphatase. Confocal microscopy analysis of endogenous PSTPIP revealed colocalization with the cortical actin cytoskeleton, lamellipodia, and actin-rich cytokinetic cleavage furrow. Overexpression of PSTPIP in 3T3 cells resulted in the formation of extended filopodia, consistent with a role for this protein in actin reorganization. Finally, overexpression of mammalian PSTPIP in exponentially growing S. pombe results in a dominant-negative inhibition of cytokinesis. PSTPIP is therefore a novel actin-associated protein, potentially involved with cytokinesis, whose tyrosine phosphorylation is regulated by PTP HSCF.
Collapse
|
research-article |
28 |
133 |
19
|
Fuh G, Pisabarro MT, Li Y, Quan C, Lasky LA, Sidhu SS. Analysis of PDZ domain-ligand interactions using carboxyl-terminal phage display. J Biol Chem 2000; 275:21486-91. [PMID: 10887205 DOI: 10.1074/jbc.275.28.21486] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PDZ domains mediate protein-protein interactions at specialized subcellular sites, such as epithelial cell tight junctions and neuronal post-synaptic densities. Because most PDZ domains bind extreme carboxyl-terminal sequences, the phage display method has not been amenable to the study of PDZ domain binding specificities. For the first time, we demonstrate the functional display of a peptide library fused to the carboxyl terminus of the M13 major coat protein. We used this library to analyze carboxyl-terminal peptide recognition by two PDZ domains. For each PDZ domain, the library provided specific ligands with sub-micromolar binding affinities. Synthetic peptides and homology modeling were used to dissect and rationalize the binding interactions. Our results establish carboxyl-terminal phage display as a powerful new method for mapping PDZ domain binding specificity.
Collapse
|
|
25 |
128 |
20
|
Berman PW, Gregory T, Crase D, Lasky LA. Protection from genital herpes simplex virus type 2 infection by vaccination with cloned type 1 glycoprotein D. Science 1985; 227:1490-2. [PMID: 2983428 DOI: 10.1126/science.2983428] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Guinea pigs were vaccinated with truncated herpes simplex virus type-1 (HSV-1) glycoprotein D produced in the genetically engineered mammalian cell line gD10.2. Vaccinated animals formed antibodies that neutralized both HSV-1 and herpes simplex virus type 2 (HSV-2) in an in vitro neutralization assay. Vaccinated animals were challenged with HSV-2 by intravaginal infection. Animals that received the immunogen in Freund's complete adjuvant were completely protected from the clinical manifestations of genital HSV-2 infection. Animals that received the immunogen incorporated in alum adjuvants were partly protected from clinical disease; the infections that did develop were significantly less severe than those that occurred in control animals injected with adjuvant alone. The results demonstrate that immunization with a purified viral protein can provide significant protection against primary genital infection by HSV-2 in guinea pigs.
Collapse
|
|
40 |
119 |
21
|
Wu Y, Spencer SD, Lasky LA. Tyrosine phosphorylation regulates the SH3-mediated binding of the Wiskott-Aldrich syndrome protein to PSTPIP, a cytoskeletal-associated protein. J Biol Chem 1998; 273:5765-70. [PMID: 9488710 DOI: 10.1074/jbc.273.10.5765] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wiskott-Aldrich syndrome is an X-linked hematopoietic disease that manifests itself in platelet deficiency and a compromised immune system. Analysis of hematopoietic cells from affected individuals reveals that mutations in the Wiskott-Aldrich syndrome protein (WASP) result in structural and functional abnormalities in the cell cortex, consistent with the suggestion that WASP is involved with regulation of the actin-rich cortical cytoskeleton. Here we report that WASP interacts with a recently described cytoskeletal-associated protein, PSTPIP, a molecule that is related to the Schizosaccharomyces pombe cleavage furrow regulatory protein, CDC15p. This association is mediated by an interaction between the PSTPIP SH3 domain and two polyproline-rich regions in WASP. Co-expression of PSTPIP with WASP in vivo results in a loss of WASP-induced actin bundling activity and co-localization of the two proteins, which requires the PSTPIP SH3 domain. Analysis of tyrosine phosphorylation of PSTPIP reveals that two sites are modified in response to v-Src co-transfection or pervanadate incubation. One of these tyrosines is found in the SH3 domain poly-proline recognition site, and mutation of this tyrosine to aspartate or glutamate to mimic this phosphorylation state results in a loss of WASP binding in vitro and a dissolution of co-localization in vivo. In addition, PSTPIP that is tyrosine phosphorylated in the SH3 domain interacts poorly with WASP in vitro. These data suggest that the PSTPIP and WASP interaction is regulated by tyrosine phosphorylation of the PSTPIP SH3 domain, and this binding event may control aspects of the actin cytoskeleton.
Collapse
|
|
27 |
110 |
22
|
Ohneda O, Ohneda K, Arai F, Lee J, Miyamoto T, Fukushima Y, Dowbenko D, Lasky LA, Suda T. ALCAM (CD166): its role in hematopoietic and endothelial development. Blood 2001; 98:2134-42. [PMID: 11568000 DOI: 10.1182/blood.v98.7.2134] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A critical role for the endothelium of yolk sac and dorsal aorta has been shown in embryonic hematopoiesis. A stromal cell line derived from yolk sac, YSCL-72, has been chosen to search for a novel molecule associated with embryonic hematopoiesis. Analysis between YSCL-72 and an adult aorta-derived endothelial cell line, EOMA, demonstrated that activated leukocyte cell adhesion molecule (ALCAM, or CD166) was specifically expressed in YSCL-72 but not in EOMA. Immunohistochemical study showed that ALCAM was expressed in the endothelium of yolk sac and dorsal aorta but not in adult aorta. ALCAM-transfected EOMA cells supported development of hematopoietic progenitor cells compared with vector-transfected EOMA cells, suggesting that ALCAM appeared to be crucial for hematopoiesis. In addition, ALCAM was found to be involved in capillary tube formation and hemangioblast differentiation. Taken together with these findings, ALCAM is highly associated not only with embryonic hematopoiesis but also vasculoangiogenesis.
Collapse
|
|
24 |
106 |
23
|
Cong F, Spencer S, Côté JF, Wu Y, Tremblay ML, Lasky LA, Goff SP. Cytoskeletal protein PSTPIP1 directs the PEST-type protein tyrosine phosphatase to the c-Abl kinase to mediate Abl dephosphorylation. Mol Cell 2000; 6:1413-23. [PMID: 11163214 DOI: 10.1016/s1097-2765(00)00138-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A search for c-Abl interacting proteins resulted in the recovery of PSTPIP1, originally identified as a binding protein of the PEST-type protein tyrosine phosphatases (PTP). PSTPIP1 was phosphorylated by c-Abl, and growth factor-induced PSTPIP1 phosphorylation was diminished in Abl null fibroblasts. PSTPIP1 was able to bridge c-Abl to the PEST-type PTPs. Several experiments suggest that the PEST-type PTPs negatively regulate c-Abl activity: c-Abl was hyperphosphorylated in PTP-PEST-deficient cells; disruption of the c-Abl-PSTPIP1-PEST-type PTP ternary complex by overexpression of PSTPIP1 mutants increased c-Abl phosphotyrosine content; and PDGF-induced c-Abl kinase activation was prolonged in PTP-PEST-deficient cells. Dephosphorylation of c-Abl by PEST-type PTP represents a novel mechanism by which c-Abl activity is regulated.
Collapse
|
|
25 |
106 |
24
|
Berman PW, Groopman JE, Gregory T, Clapham PR, Weiss RA, Ferriani R, Riddle L, Shimasaki C, Lucas C, Lasky LA. Human immunodeficiency virus type 1 challenge of chimpanzees immunized with recombinant envelope glycoprotein gp120. Proc Natl Acad Sci U S A 1988; 85:5200-4. [PMID: 2455898 PMCID: PMC281716 DOI: 10.1073/pnas.85.14.5200] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The major envelope glycoprotein, gp120, of human immunodeficiency virus type 1 (HIV-1) was purified from a Chinese hamster ovary cell line transfected with a truncated form of the HIV-1 env gene. The recombinant glycoprotein (rgp120) was formulated with aluminum hydroxide adjuvant and was used to immunize chimpanzees. The recombinant preparation was effective in eliciting cellular and humoral immunity as well as immunologic memory. Anti-rgp 120 antibodies reacted with authentic viral gp120 in immunological blot assays and were able to neutralize HIV-1 infectivity in vitro. Sera from the rgp120-immunized animals were able to neutralize HIV-1 pseudotypes of vesicular stomatitis virus prepared from the IIIB isolate, from which the gene encoding rgp120 was derived, as well as two heterologous isolates, ARV-2 and RF. The immune response elicited against the rgp120 was not effective in preventing viral infection after intravenous challenge with HIV-1. The implications of these results on HIV-1 vaccine development are discussed.
Collapse
|
research-article |
37 |
104 |
25
|
Erbe DV, Watson SR, Presta LG, Wolitzky BA, Foxall C, Brandley BK, Lasky LA. P- and E-selectin use common sites for carbohydrate ligand recognition and cell adhesion. J Cell Biol 1993; 120:1227-35. [PMID: 7679675 PMCID: PMC2119728 DOI: 10.1083/jcb.120.5.1227] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The selectins are a family of three calcium-dependent lectins that mediate adhesive interactions between leukocytes and the endothelium during normal and abnormal inflammatory episodes. Previous work has implicated the carbohydrate sialyl Lewis(x) (sLe(x); sialic acid alpha 2-3 galactose beta 1-4 [Fucose alpha 1-3] N-acetyl glucosamine) as a component of the ligand recognized by E- and P-selectin. In the case of P-selectin, other components of the cell surface, including 2'6-linked sialic acid and sulfatide (galactose-4-sulfate ceramide), have also been proposed for adhesion mediated by this selectin. We have recently defined a region of the E-selectin lectin domain that appears to be directly involved with carbohydrate recognition and cell adhesion (Erbe, D. V., B. A. Wolitzky, L. G. Presta, C. R. Norton, R. J. Ramos, D. K. Burns, R. M. Rumberger, B. N. N. Rao, C. Foxall, B. K. Brandley, and L. A. Lasky. 1992. J. Cell Biol. 119:215-227). Here we describe a similar analysis of the P-selectin lectin domain which demonstrates that a homologous region of this glycoprotein's lectin motif is involved with carbohydrate recognition and cell binding. In addition, we present evidence that is inconsistent with a biological role for either 2'6-linked sialic acid or sulfatide in P-selectin-mediated adhesion. These results suggest that a common region of the E- and P-selectin lectin domains appears to mediate carbohydrate recognition and cell adhesion.
Collapse
|
research-article |
32 |
104 |