26
|
Terry-Allison T, Montgomery RI, Whitbeck JC, Xu R, Cohen GH, Eisenberg RJ, Spear PG. HveA (herpesvirus entry mediator A), a coreceptor for herpes simplex virus entry, also participates in virus-induced cell fusion. J Virol 1998; 72:5802-10. [PMID: 9621040 PMCID: PMC110382 DOI: 10.1128/jvi.72.7.5802-5810.1998] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/1997] [Accepted: 04/07/1998] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to determine whether a cell surface protein that can serve as coreceptor for herpes simplex virus type 1 (HSV-1) entry, herpesvirus entry mediator (previously designated HVEM but renamed HveA), also mediates HSV-1-induced cell-cell fusion. We found that transfection of DNA from KOS-804, a previously described HSV-1 syncytial (Syn) strain whose Syn mutation was mapped to an amino acid substitution in gK, induced numerous large syncytia on HveA-expressing Chinese hamster ovary cells (CHO-HVEM12) but not on control cells (CHO-C8). Antibodies specific for gD as well as for HveA were effective inhibitors of KOS-804-induced fusion, consistent with previously described direct interactions between gD and HveA. Since mutations in gD determine the ability of HSV-1 to utilize HveA for entry, we examined whether the form of virally expressed gD also influenced the ability of HveA to mediate fusion. We produced a recombinant virus carrying the KOS-804 Syn mutation and the KOS-Rid1 gD mutation, which significantly reduces viral entry via HveA, and designated it KOS-SR1. KOS-SR1 DNA had a markedly reduced ability to induce syncytia on CHO-HVEM12 cells and a somewhat enhanced ability to induce syncytia on CHO-C8 cells. These results support previous findings concerning the relative abilities of KOS and KOS-Rid1 to infect CHO-HVEM12 and CHO-C8 cells. Thus, HveA mediates cell-cell fusion as well as viral entry and both activities of HveA are contingent upon the form of gD expressed by the virus.
Collapse
|
27
|
Warner MS, Geraghty RJ, Martinez WM, Montgomery RI, Whitbeck JC, Xu R, Eisenberg RJ, Cohen GH, Spear PG. A cell surface protein with herpesvirus entry activity (HveB) confers susceptibility to infection by mutants of herpes simplex virus type 1, herpes simplex virus type 2, and pseudorabies virus. Virology 1998; 246:179-89. [PMID: 9657005 DOI: 10.1006/viro.1998.9218] [Citation(s) in RCA: 396] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Certain mutant strains of herpes simplex virus type 1 (HSV-1) are unable to infect cells in which entry is dependent on HVEM, the previously described herpesvirus entry mediator designated here as herpesvirus entry protein A (HveA). These mutant viruses can infect other cells where entry is apparently dependent on other co-receptors. The mutant virus HSV-1(KOS)Rid1 was used to screen a human cDNA expression library for ability of transfected plasmids to convert resistant Chinese hamster ovary cells to susceptibility to virus entry. A plasmid expressing the previously described poliovirus receptor-related protein 2 (Prr2) was isolated on the basis of this activity. This protein, designated here as HveB, was shown to mediate the entry of three mutant HSV-1 strains that cannot use HVEM as co-receptor, but not wild-type HSV-1 strains. HveB also mediated the entry of HSV-2 and pseudorabies virus but not bovine herpesvirus type 1. HveB was expressed in some human neuronal cell lines, fibroblastic cells, keratinocytes, and primary activated T lymphocytes. Antibodies specific for HveB blocked infection of HveB-expressing CHO cells and a human fibroblastic cell strain HEL299. Differences in ability of HSV-1 and HSV-2 strains to use HveB for entry should influence the types of cells that can be infected and thereby account in part for serotype and strain differences in tissue tropism and pathogenicity.
Collapse
|
28
|
Geraghty RJ, Krummenacher C, Cohen GH, Eisenberg RJ, Spear PG. Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 1998; 280:1618-20. [PMID: 9616127 DOI: 10.1126/science.280.5369.1618] [Citation(s) in RCA: 729] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A human member of the immunoglobulin superfamily was shown to mediate entry of several alphaherpesviruses, including herpes simplex viruses (HSV) 1 and 2, porcine pseudorabies virus (PRV), and bovine herpesvirus 1 (BHV-1). This membrane glycoprotein is poliovirus receptor-related protein 1 (Prr1), designated here as HveC. Incubation of HSV-1 with a secreted form of HveC inhibited subsequent infection of a variety of cell lines, suggesting that HveC interacts directly with the virus. Poliovirus receptor (Pvr) itself mediated entry of PRV and BHV-1 but not of the HSV strains tested. HveC was expressed in human cells of epithelial and neuronal origin; it is the prime candidate for the coreceptor that allows both HSV-1 and HSV-2 to infect epithelial cells on mucosal surfaces and spread to cells of the nervous system.
Collapse
|
29
|
Nicola AV, Ponce de Leon M, Xu R, Hou W, Whitbeck JC, Krummenacher C, Montgomery RI, Spear PG, Eisenberg RJ, Cohen GH. Monoclonal antibodies to distinct sites on herpes simplex virus (HSV) glycoprotein D block HSV binding to HVEM. J Virol 1998; 72:3595-601. [PMID: 9557640 PMCID: PMC109580 DOI: 10.1128/jvi.72.5.3595-3601.1998] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
HVEM (for herpesvirus entry mediator) is a member of the tumor necrosis factor receptor superfamily and mediates entry of many strains of herpes simplex virus (HSV) into normally nonpermissive Chinese hamster ovary (CHO) cells. We used sucrose density centrifugation to demonstrate that purified HSV-1 KOS virions bind directly to a soluble, truncated form of HVEM (HVEMt) in the absence of any other cell-associated components. Therefore, HVEM mediates HSV entry by serving as a receptor for the virus. We previously showed that soluble, truncated forms of HSV glycoprotein D (gDt) bind to HVEMt in vitro. Here we show that antibodies specific for gD, but not the other entry glycoproteins gB, gC, or the gH/gL complex, completely block HSV binding to HVEM. Thus, virion gD is the principal mediator of HSV binding to HVEM. To map sites on virion gD which are necessary for its interaction with HVEM, we preincubated virions with gD-specific monoclonal antibodies (MAbs). MAbs that recognize antigenic sites Ib and VII of gD were the only MAbs which blocked the HSV-HVEM interaction. MAbs from these two groups failed to coprecipitate HVEMt in the presence of soluble gDt, whereas the other anti-gD MAbs coprecipitated HVEMt and gDt. Previous mapping data indicated that site VII includes amino acids 11 to 19 and site Ib includes 222 to 252. The current experiments indicate that these sites contain residues important for HSV binding to HVEM. Group Ib and VII MAbs also blocked HSV entry into HVEM-expressing CHO cells. These results suggest that the mechanism of neutralization by these MAbs is via interference with the interaction between gD in the virus and HVEM on the cell. Group Ia and II MAbs failed to block HSV binding to HVEM yet still neutralized HVEM-mediated entry, suggesting that these MAbs block entry at a step other than HVEM binding.
Collapse
|
30
|
Anderson RA, Feathergill K, Kirkpatrick R, Zaneveld LJ, Coleman KT, Spear PG, Cooper MD, Waller DP, Thoene JG. Characterization of cysteamine as a potential contraceptive anti-HIV agent. JOURNAL OF ANDROLOGY 1998; 19:37-49. [PMID: 9537290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cysteamine (beta-mercaptoethylamine, or MEA) is a thiol-reducing agent and has anti-HIV activity. Because of these properties, cysteamine was evaluated as a vaginal contraceptive and tested for its effects on sperm function and on other sexually transmitted microbes. Cysteamine was contraceptive in the rabbit. Conception was inhibited completely when sperm were pretreated with 500 microg/ml cysteamine and was inhibited by more than 60% when 7.5 mg cysteamine was applied vaginally as a suspension in 50% K-Y Jelly. Cysteamine had multiple effects on spermatozoa. Both acrosin (EC 3.4.21.10) and hyaluronidase (EC 3.2.1.35) were reversibly inhibited by cysteamine. Calculated IC50 values were 370 microg/ml and 150 microg/ml for acrosin and hyaluronidase, respectively. Cysteamine behaved as a poor spermicide when activity was measured by the 30-second Sander-Cramer test. However, sperm motility was inhibited completely when cysteamine was preincubated for 10 minutes prior to motility evaluation, at concentrations as low as 50 microg/ml. The calcium ionophore A23187-induced human acrosome reaction was inhibited by cysteamine (IC50 = 0.5 microg/ml). Neither herpes simplex virus nor Neisseria gonorrhoeae was affected by cysteamine at concentrations as high as 500 microg/ml and 100 microg/ml, respectively. Cysteamine appears to have no effect on normal vaginal flora (i.e., lactobacillus). These results, together with published data, strongly support the further development of cysteamine as a topical contraceptive anti-HIV agent.
Collapse
|
31
|
Mauri DN, Ebner R, Montgomery RI, Kochel KD, Cheung TC, Yu GL, Ruben S, Murphy M, Eisenberg RJ, Cohen GH, Spear PG, Ware CF. LIGHT, a new member of the TNF superfamily, and lymphotoxin alpha are ligands for herpesvirus entry mediator. Immunity 1998; 8:21-30. [PMID: 9462508 DOI: 10.1016/s1074-7613(00)80455-0] [Citation(s) in RCA: 607] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Herpes simplex virus (HSV) 1 and 2 infect activated T lymphocytes by attachment of the HSV envelope glycoprotein D (gD) to the cellular herpesvirus entry mediator (HVEM), an orphan member of the tumor necrosis factor receptor superfamily. Here, we demonstrate that HVEM binds two cellular ligands, secreted lymphotoxin alpha (LTalpha) and LIGHT, a new member of the TNF superfamily. LIGHT is a 29 kDa type II transmembrane protein produced by activated T cells that also engages the receptor for the LTalphabeta heterotrimer but does not form complexes with either LTalpha or LTbeta. HSV1 gD inhibits the interaction of HVEM with LIGHT, and LIGHT and gD interfere with HVEM-dependent cell entry by HSV1. This characterizes herpesvirus gD as a membrane-bound viokine and establishes LIGHT-HVEM as integral components of the lymphotoxin cytokine-receptor system.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/metabolism
- Herpesvirus 2, Human/immunology
- Herpesvirus 2, Human/metabolism
- Humans
- Ligands
- Lymphocyte Activation
- Lymphotoxin-alpha/genetics
- Lymphotoxin-alpha/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Molecular Sequence Data
- Receptors, Tumor Necrosis Factor
- Receptors, Tumor Necrosis Factor, Member 14
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Sensitivity and Specificity
- Sequence Homology, Amino Acid
- T-Lymphocytes/metabolism
- T-Lymphocytes/ultrastructure
- Tumor Necrosis Factor Ligand Superfamily Member 14
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Viral Envelope Proteins/metabolism
Collapse
|
32
|
Pertel PE, Spear PG. Partial resistance to gD-mediated interference conferred by mutations affecting herpes simplex virus type 1 gC and gK. J Virol 1997; 71:8024-8. [PMID: 9311899 PMCID: PMC192166 DOI: 10.1128/jvi.71.10.8024-8028.1997] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cells expressing herpes simplex virus (HSV) gD can be resistant to HSV entry as a result of gD-mediated interference. HSV strains differ in sensitivity to this interference, which blocks viral penetration but not binding. Previous studies have shown that mutations or variations in virion-associated gD can confer resistance to gD-mediated interference. Here we show that HSV-1 mutants selected for enhanced ability to bind and penetrate in the presence of inhibitory concentrations of heparin were partially resistant to gD-mediated interference. The resistance was largely due to the presence of two mutations: one in gC (the major heparin-binding glycoprotein) resulting in the absence of gC expression and the other in gK resulting in a syncytial phenotype. The results imply that heparin selected for mutants with altered postbinding requirements for entry. Resistance to gD-mediated interference conferred by mutations affecting gC and gK has not been previously described.
Collapse
|
33
|
Whitbeck JC, Peng C, Lou H, Xu R, Willis SH, Ponce de Leon M, Peng T, Nicola AV, Montgomery RI, Warner MS, Soulika AM, Spruce LA, Moore WT, Lambris JD, Spear PG, Cohen GH, Eisenberg RJ. Glycoprotein D of herpes simplex virus (HSV) binds directly to HVEM, a member of the tumor necrosis factor receptor superfamily and a mediator of HSV entry. J Virol 1997; 71:6083-93. [PMID: 9223502 PMCID: PMC191868 DOI: 10.1128/jvi.71.8.6083-6093.1997] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glycoprotein D (gD) is a structural component of the herpes simplex virus (HSV) envelope which is essential for virus entry into host cells. Chinese hamster ovary (CHO-K1) cells are one of the few cell types which are nonpermissive for the entry of many HSV strains. However, when these cells are transformed with the gene for the herpesvirus entry mediator (HVEM), the resulting cells, CHO-HVEM12, are permissive for many HSV strains, such as HSV-1(KOS). By virtue of its four cysteine-rich pseudorepeats, HVEM is a member of the tumor necrosis factor receptor superfamily of proteins. Recombinant forms of gD and HVEM, gD-1(306t) and HVEM(200t), respectively, were used to demonstrate a specific physical interaction between these two proteins. This interaction was dependent on native gD conformation but independent of its N-linked oligosaccharides, as expected from previous structure-function studies. Recombinant forms of gD derived from HSV-1(KOS)rid1 and HSV-1(ANG) did not bind to HVEM(200t), explaining the inability of these viruses to infect CHO-HVEM12 cells. A variant gD protein, gD-1(delta290-299t), showed enhanced binding to HVEM(200t) relative to the binding of gD-1(306t). Competition studies showed that gD-1(delta290-299t) and gD-1(306t) bound to the same region of HVEM(200t), suggesting that the differences in binding to HVEM are due to differences in affinity. These differences were also reflected in the ability of gD-1(delta290-299t) but not gD-1(306t) to block HSV type 1 infection of CHO-HVEM12 cells. By gel filtration chromatography, the complex between gD-1(delta290-299t) and HVEM(200t) had a molecular mass of 113 kDa and a molar ratio of 1:2. We conclude that HVEM interacts directly with gD, suggesting that HVEM is a receptor for virion gD and that the interaction between these proteins is a step in HSV entry into HVEM-expressing cells.
Collapse
|
34
|
Pertel PE, Spear PG. Modified entry and syncytium formation by herpes simplex virus type 1 mutants selected for resistance to heparin inhibition. Virology 1996; 226:22-33. [PMID: 8941319 DOI: 10.1006/viro.1996.0624] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) mutants were selected by passage of HSV-1 (KOS) in HEp-2 cells such that binding and penetration occurred in the presence of heparin. Analysis of selected uncloned virus pools revealed that approximately 95% of virus formed syncytia and greater than 58% were gC-negative. Plaque-purified gC-negative syncytial mutants were more resistant than HSV-1 (KOS) to heparin inhibition, as was an engineered nonsyncytial recombinant deleted for gC, delta gC6. Thus, absence of gC was sufficient to explain the enrichment for gC-negative mutants. The syncytial phenotype of most mutants mapped to a mutation in gK. Transfer of this mutation to HSV-1 (KOS) resulted in a recombinant that induced fusion of Vero cells but not HEp-2 cells and was more sensitive to heparin inhibition of entry, revealing a previously undescribed phenotype of mutations in gK. Engineered gC-negative virus containing the gK syncytial mutation induced fusion of both cell lines and was as resistant to heparin inhibition as was delta gC6. Because deletion of gC reduces infectivity of HSV-1 in the absence of heparin, mutations in gC combined with the syncytial mutation could have provided a selective advantage. Thus, absence of gC reduced heparin inhibition of binding and penetration while the combination of the gC and gK mutations enhanced spread through the HEp-2 cell monolayer by cell fusion. Because extreme selective pressure was required to favor these mutations and such mutations are rare in clinical isolates, the wild-type forms of gC and gK must provide for optimal viral replication and propagation in cell culture as well as in vivo, despite the view that gC is dispensable in cultured cells.
Collapse
|
35
|
Montgomery RI, Warner MS, Lum BJ, Spear PG. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 1996; 87:427-36. [PMID: 8898196 DOI: 10.1016/s0092-8674(00)81363-x] [Citation(s) in RCA: 929] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We identified and cloned a cellular mediator of herpes simplex virus (HSV) entry. Hamster and swine cells resistant to viral entry became susceptible upon expression of a human cDNA encoding this protein, designated HVEM (for herpesvirus entry mediator). HVEM was shown to mediate the entry of several wild-type HSV strains of both serotypes. Anti-HVEM antibodies and a soluble hybrid protein containing the HVEM ectodomain inhibited HVEM-dependent infection but not virus binding to cells. Mutations in the HSV envelope glycoprotein gD significantly reduced HVEM-mediated entry. The contribution of HVEM to HSV entry into human cells was demonstrable in activated T cells. HVEM, the first identified mediator of HSV entry, is a new member of the TNF/NGF receptor family.
Collapse
|
36
|
Novotny MJ, Parish ML, Spear PG. Variability of herpes simplex virus 1 gL and anti-gL antibodies that inhibit cell fusion but not viral infectivity. Virology 1996; 221:1-13. [PMID: 8661409 DOI: 10.1006/viro.1996.0347] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Herpes simplex virus type 1 gL lacks a transmembrane domain but stably associates with membranes through its oligomerization with the integral membrane glycoprotein designated gH. The gH-gL oligomers are essential for virion infectivity and virus-induced cell fusion. Monoclonal and polyclonal antibodies were raised against HSV-1(KOS) gL as probes for antigenic structure and functional protein domains. Antigenic determinants recognized by these antibodies were found to be present on gL expressed by many, but not all, strains of HSV-1 and were not detected on gL expressed by HSV-2 strains. These antigenic determinants were localized to the C-terminal region of HSV-1 gL, where amino acid substitutions define at least two classes of HSV-1 gL and where the sequences of HSV-1 and HSV-2 gL diverge considerably. The antibodies were extremely effective at inhibiting virus-induced cell fusion, provided the virus strain expressed the relevant antigenic determinants, but failed to neutralize viral infectivity despite demonstrable binding to virions. These results define strain-dependent differences in the structure and antigenic conformation of HSV-1 forms of gL and suggest that the roles of gL in cell fusion and viral entry are different.
Collapse
|
37
|
Dean HJ, Warner MS, Terhune SS, Johnson RM, Spear PG. Viral determinants of the variable sensitivity of herpes simplex virus strains to gD-mediated interference. J Virol 1995; 69:5171-6. [PMID: 7609090 PMCID: PMC189341 DOI: 10.1128/jvi.69.8.5171-5176.1995] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cells that express glycoprotein D (gD) of herpes simplex virus type 1 (HSV-1) resist infection by HSV-1 and HSV-2 because of interference with viral penetration. The results presented here show that both HSV-1 and HSV-2 gD can mediate interference and that various HSV-1 and HSV-2 strains differ in sensitivity to this interference. The relative degree of sensitivity was not necessarily dependent on whether the cell expressed the heterologous or homologous form of gD but rather on the properties of the virus. Marker transfer experiments revealed that the allele of gD expressed by the virus was a major determinant of sensitivity to interference. Amino acid substitutions in the most distal part of the gD ectodomain had a major effect, but substitutions solely in the cytoplasmic domain also influenced sensitivity to interference. In addition, evidence was obtained that another viral gene(s) in addition to the one encoding gD can influence sensitivity to interference. The results indicate that HSV-1 and HSV-2 gD share determinants required to mediate interference with infection by HSV of either serotype and that the pathway of HSV entry that is blocked by expression of cell-associated gD can be cleared or bypassed through subtle alterations in virion-associated proteins, particularly gD.
Collapse
|
38
|
Ceisel RJ, Osetek EM, Turner DW, Spear PG. Evaluating chemical inactivation of viral agents in handpiece splatter. J Am Dent Assoc 1995; 126:197-202. [PMID: 7860888 DOI: 10.14219/jada.archive.1995.0145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The water spray used with a modern high-speed dental drill is a significant vehicle for dispersion of infectious agents into the environment, putting patients and the dental staff at risk of infection. This study examines whether disinfectants added to the handpiece water supply could inactivate viral contaminants in splatter. Results supporting use of ethanol or sodium hypochlorite are presented.
Collapse
|
39
|
Herold BC, Spear PG. Neomycin inhibits glycoprotein C (gC)-dependent binding of herpes simplex virus type 1 to cells and also inhibits postbinding events in entry. Virology 1994; 203:166-71. [PMID: 8030274 DOI: 10.1006/viro.1994.1469] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Previous studies have identified requirements for the binding of herpes simplex virus type 1 (HSV-1) to cells, including the presence of particular glycoproteins in the virion envelope (gC or gB) and the presence of particular glycosaminoglycan chains (principally heparan sulfate) on cell surface proteoglycans. We show here that neomycin, a known inhibitor of HSV infection, blocked early events in HSV infection by two mechanisms: partial inhibition of the gC-dependent binding of virions, but not the gB-dependent binding, and inhibition of events that occurred after the binding of virus to cells. Near-maximal (but incomplete) inhibition of virus binding occurred at low concentrations of neomycin (1 mM) for wild-type and gB-negative virions only. Neomycin also inhibited the binding of isolated gC to cells at a similar concentration. Concentrations of neomycin as high as 50 mM had little or no effect on the binding of gC-negative virions to cells. Nevertheless, neomycin significantly inhibited infection by both wild-type and gC-negative virions, at concentrations greater than 10 mM, indicating that the inhibition at higher doses was not due to effects on virus binding. The effects of neomycin on virus binding suggest that gC (but not gB) and neomycin compete for binding to similar structural features of cell surface heparan sulfate.
Collapse
|
40
|
Herold BC, Visalli RJ, Susmarski N, Brandt CR, Spear PG. Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulphate and glycoprotein B. J Gen Virol 1994; 75 ( Pt 6):1211-22. [PMID: 8207388 DOI: 10.1099/0022-1317-75-6-1211] [Citation(s) in RCA: 258] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Previous studies have shown that the initial interaction of herpes simplex virus (HSV) with cells is binding to heparan sulphate and that HSV-1 glycoprotein C (gC) is principally responsible for this binding. Although gC-negative viral mutants are impaired for binding and entry, they retain significant infectivity. The purpose of the studies reported here was to explore the requirements for infectivity of gC-negative HSV-1 mutants. We found that absence or alteration of cell surface heparan sulphate significantly reduced the binding of gC-negative mutant virus and rendered cells resistant to infection, as shown previously for the wild-type virus. We isolated a recombinant double-mutated HSV strain that produces virions devoid of both of the known heparin-binding glycoproteins, gB and gC. The drastically impaired binding of these mutant virions to cells, relative to gC-negative and wild-type virions, indicates that gB mediates the binding of gC-negative virions to cells. Thus at least two HSV glycoproteins can independently mediate the binding of HSV to cell surface heparan sulphate to start the process of viral entry into cells.
Collapse
|
41
|
Sciammas R, Johnson RM, Sperling AI, Brady W, Linsley PS, Spear PG, Fitch FW, Bluestone JA. Unique antigen recognition by a herpesvirus-specific TCR-gamma delta cell. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 1994; 152:5392-7. [PMID: 8189058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
TCR-gamma delta cells, a T cell subset present in the epithelial and lymphoid tissues, have been implicated in viral and bacterial infections. We have identified a TCR-gamma delta clone (TgI4.4) that, unlike TCR-alpha beta cells, recognizes a herpes simplex virus type 1 transmembrane glycoprotein, gI, in an MHC class I- and class II-independent fashion. The TCR of TgI4.4 is composed of rearranged V delta 8 (a V alpha 2 family member) and V gamma 1.2 variable genes, a heterodimeric pair not previously described. Furthermore, anti-V alpha 2 mAbs are sufficient to block recognition of the gI ligand. Strikingly, anti-gI Abs also are capable of blocking recognition, a phenomena that is very rare in TCR-alpha beta Ag recognition. Therefore, to dissect the mechanism involved in this unique form of Ag recognition, we constructed a mutant of gI, gIt, that lacks cell surface expression upon transfection into APCs. This form of gI was not sufficient for Ag presentation. In contrast, wild-type gI expressed in the Ag-processing mutant cell, RMA-S, is recognized by TgI4.4, suggesting that gI presentation occurs independently of classical Ag-processing pathways. In fact, through the use of a soluble recombinant gI molecule, gI-Ig, we show that TgI4.4 can recognize whole, unprocessed gI protein in the absence of any APCs. These results suggest that there exist alternate and novel forms of TCR Ag recognition, and that the TCR-gamma delta clone, TgI4.4, may represent a novel T cell subset that, during pathogenic challenge, may respond directly to Ags on the surfaces of bacteria and viruses.
Collapse
|
42
|
Sciammas R, Johnson RM, Sperling AI, Brady W, Linsley PS, Spear PG, Fitch FW, Bluestone JA. Unique antigen recognition by a herpesvirus-specific TCR-gamma delta cell. THE JOURNAL OF IMMUNOLOGY 1994. [DOI: 10.4049/jimmunol.152.11.5392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
TCR-gamma delta cells, a T cell subset present in the epithelial and lymphoid tissues, have been implicated in viral and bacterial infections. We have identified a TCR-gamma delta clone (TgI4.4) that, unlike TCR-alpha beta cells, recognizes a herpes simplex virus type 1 transmembrane glycoprotein, gI, in an MHC class I- and class II-independent fashion. The TCR of TgI4.4 is composed of rearranged V delta 8 (a V alpha 2 family member) and V gamma 1.2 variable genes, a heterodimeric pair not previously described. Furthermore, anti-V alpha 2 mAbs are sufficient to block recognition of the gI ligand. Strikingly, anti-gI Abs also are capable of blocking recognition, a phenomena that is very rare in TCR-alpha beta Ag recognition. Therefore, to dissect the mechanism involved in this unique form of Ag recognition, we constructed a mutant of gI, gIt, that lacks cell surface expression upon transfection into APCs. This form of gI was not sufficient for Ag presentation. In contrast, wild-type gI expressed in the Ag-processing mutant cell, RMA-S, is recognized by TgI4.4, suggesting that gI presentation occurs independently of classical Ag-processing pathways. In fact, through the use of a soluble recombinant gI molecule, gI-Ig, we show that TgI4.4 can recognize whole, unprocessed gI protein in the absence of any APCs. These results suggest that there exist alternate and novel forms of TCR Ag recognition, and that the TCR-gamma delta clone, TgI4.4, may represent a novel T cell subset that, during pathogenic challenge, may respond directly to Ags on the surfaces of bacteria and viruses.
Collapse
|
43
|
Roizman B, Spear PG. Current frontiers in virology. INFECTIOUS AGENTS AND DISEASE 1994; 3:53. [PMID: 7812654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
44
|
Dean HJ, Terhune SS, Shieh MT, Susmarski N, Spear PG. Single amino acid substitutions in gD of herpes simplex virus 1 confer resistance to gD-mediated interference and cause cell-type-dependent alterations in infectivity. Virology 1994; 199:67-80. [PMID: 8116256 DOI: 10.1006/viro.1994.1098] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Previous studies have shown that cell-associated herpes simplex virus (HSV) glycoprotein gD can interfere with infection of the cells by HSV and other alphaherpesviruses and that HSV mutants resistant to this gD-mediated interference can be isolated. Here we report that HSV mutants selected for resistance to gD-mediated interference are altered in specific infectivity for cells that do not express gD. Two independently derived mutants were shown to be impaired in ability to infect HEp-2 cells and enhanced in ability to infect Chinese hamster ovary cells, compared with the wild-type parental strain. The mutants were not significantly different from the parental strain in ability to bind to cells but differed in a postbinding step required for infectivity, probably penetration. The two mutants were shown to have different amino acid substitutions (Q27P and Q27R) in gD. Marker transfer experiments demonstrated that the resistance to gD-mediated interference as well as the altered infectivities resulted from these amino acid substitutions. Thus, small changes in gD structure can not only confer resistance to gD-mediated interference but also alter the relative efficiencies with which HSV penetrates into different cell types.
Collapse
|
45
|
Shieh MT, Spear PG. Herpesvirus-induced cell fusion that is dependent on cell surface heparan sulfate or soluble heparin. J Virol 1994; 68:1224-8. [PMID: 8289356 PMCID: PMC236566 DOI: 10.1128/jvi.68.2.1224-1228.1994] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The entry of enveloped viruses into animal cells and the cell-to-cell spread of infection via cell fusion require the membrane-fusing activity of viral glycoproteins. This activity can be dependent on variable cell factors or triggered by environmental factors. Here we show that cell fusion induced by herpes simplex virus glycoproteins is dependent on the presence of cell surface glycosaminoglycans, principally heparan sulfate, or on the addition of heparin to the medium. The role of the glycosaminoglycan is probably to alter the conformation of a viral heparin-binding glycoprotein required for the fusion.
Collapse
|
46
|
Mettenleiter TC, Spear PG. Glycoprotein gB (gII) of pseudorabies virus can functionally substitute for glycoprotein gB in herpes simplex virus type 1. J Virol 1994; 68:500-4. [PMID: 8254761 PMCID: PMC236311 DOI: 10.1128/jvi.68.1.500-504.1994] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Glycoproteins homologous to gB of herpes simplex virus (HSV) constitute the most highly conserved family of herpesvirus glycoproteins. All gB homologs analyzed so far have been shown to play essential roles in penetration and direct viral cell-to-cell spread. In studies aimed at assessing whether the high sequence homology is also indicative of functional homology, we analyzed the ability of the gB-homologous glycoprotein (former designation gII) of pseudorabies virus (PrV) to complement a gB- HSV type 1 (HSV-1) mutant and vice versa. The results show that a PrV gB-expressing cell line phenotypically complemented the lethal defect in gB- HSV-1 whereas reciprocal complementation of a gB- PrV mutant by HSV-1 gB was not observed.
Collapse
|
47
|
Shieh MT, WuDunn D, Montgomery RI, Esko JD, Spear PG. Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J Biophys Biochem Cytol 1992; 116:1273-81. [PMID: 1310996 PMCID: PMC2289355 DOI: 10.1083/jcb.116.5.1273] [Citation(s) in RCA: 415] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The role of cell surface heparan sulfate in herpes simplex virus (HSV) infection was investigated using CHO cell mutants defective in various aspects of glycosaminoglycan synthesis. Binding of radiolabeled virus to the cells and infection were assessed in mutant and wild-type cells. Virus bound efficiently to wild-type cells and initiated an abortive infection in which immediate-early or alpha viral genes were expressed, despite limited production of late viral proteins and progeny virus. Binding of virus to heparan sulfate-deficient mutant cells was severely impaired and mutant cells were resistant to HSV infection. Intermediate levels of binding and infection were observed for a CHO cell mutant that produced undersulfated heparan sulfate. These results show that heparan sulfate moieties of cell surface proteoglycans serve as receptors for HSV.
Collapse
|
48
|
Johnson RM, Lancki DW, Sperling AI, Dick RF, Spear PG, Fitch FW, Bluestone JA. A murine CD4-, CD8- T cell receptor-gamma delta T lymphocyte clone specific for herpes simplex virus glycoprotein I. THE JOURNAL OF IMMUNOLOGY 1992. [DOI: 10.4049/jimmunol.148.4.983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The role of TCR-gamma delta T lymphocytes in immune responses is currently not well understood. TCR-gamma delta cells have a limited repertoire suggesting that TCR-gamma delta T a limited number of evolutionarily conserved Ag such as nonpolymorphic MHC and heat shock proteins. TCR-gamma delta T lymphocytes appear in enhanced numbers in skin lesions produced by Mycobacterium leprae and in the synovial fluid of joints affected by rheumatoid arthritis, raising the possibility that this subset of T lymphocytes may play a role in control of infectious processes and in autoimmune diseases. We report the identification of a TCR-gamma delta T cell clone isolated from a HSV-infected mouse that recognizes glycoprotein I of HSV type 1. Clone recognition of glycoprotein I does not appear to require the expression of MHC class I or class II gene products. These data suggest that TCR-gamma delta lymphocytes may play an important role in the immune response to viral infections.
Collapse
|
49
|
Johnson RM, Lancki DW, Sperling AI, Dick RF, Spear PG, Fitch FW, Bluestone JA. A murine CD4-, CD8- T cell receptor-gamma delta T lymphocyte clone specific for herpes simplex virus glycoprotein I. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 1992; 148:983-8. [PMID: 1310711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The role of TCR-gamma delta T lymphocytes in immune responses is currently not well understood. TCR-gamma delta cells have a limited repertoire suggesting that TCR-gamma delta T a limited number of evolutionarily conserved Ag such as nonpolymorphic MHC and heat shock proteins. TCR-gamma delta T lymphocytes appear in enhanced numbers in skin lesions produced by Mycobacterium leprae and in the synovial fluid of joints affected by rheumatoid arthritis, raising the possibility that this subset of T lymphocytes may play a role in control of infectious processes and in autoimmune diseases. We report the identification of a TCR-gamma delta T cell clone isolated from a HSV-infected mouse that recognizes glycoprotein I of HSV type 1. Clone recognition of glycoprotein I does not appear to require the expression of MHC class I or class II gene products. These data suggest that TCR-gamma delta lymphocytes may play an important role in the immune response to viral infections.
Collapse
|
50
|
Spear PG, Shieh MT, Herold BC, WuDunn D, Koshy TI. Heparan sulfate glycosaminoglycans as primary cell surface receptors for herpes simplex virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1992; 313:341-53. [PMID: 1332443 DOI: 10.1007/978-1-4899-2444-5_33] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Our current incomplete picture of the earliest events in HSV infection may be summarized as follows. The initial interaction of virus with cells is the binding of virion gC to heparan sulfate moieties of cell surface proteoglycans. Stable binding of virus to cells may require the interaction of other virion glycoproteins with other cell surface receptors as well (including the interaction of gB with heparan sulfate). Penetration of virus into the cell is mediated by fusion of the virion envelope with the cell plasma membrane. Events leading up to this fusion require the action of at least three viral glycoproteins (gB, gD and gH), one or more of which may interact with specific cell surface components. It seems likely that binding of gB to cell surface heparan sulfate may occur and may be important in the activation of some event required for virus penetration. Heparan sulfate is present not only as a constituent of cell surface proteoglycans but also as a component of the extracellular matrix and basement membranes in organized tissues. In addition, body fluids contain both heparin and heparin-binding proteins, either of which can prevent the binding of HSV to cells (WuDunn and Spear, 1989). As a consequence, the spread of HSV infection is probably influenced, not only by immune responses to the virus, but also by the probability that virus will be entrapped or inhibited from binding to cells by extracellular forms of heparin or heparan sulfate.
Collapse
|