26
|
Schotsch F, Zebergs I, Augustin S, Lindenblatt H, Hoibl L, Djendjur D, Schroeter CD, Pfeifer T, Moshammer R. TrapREMI: A reaction microscope inside an electrostatic ion beam trap. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:123201. [PMID: 34972421 DOI: 10.1063/5.0065454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
A new experimental setup has been developed to investigate the reactions of molecular ions and charged clusters with a variety of projectile beams. An Electrostatic Ion Beam Trap (EIBT) stores fast ions at keV energies in an oscillatory motion. By crossing it with a projectile beam, e.g., an IR laser, molecular reactions can be induced. We implemented a Reaction Microscope (REMI) in the field-free region of the EIBT to perform coincidence spectroscopy on the resulting reaction products. In contrast to prior experiments, this unique combination of techniques allows us to measure the 3D momentum-vectors of ions, electrons, and neutrals as reaction products in coincidence. At the same time, the EIBT allows for advanced target preparation techniques, e.g., relaxation of hot molecules during storage times of up to seconds, autoresonance cooling, and recycling of target species, which are difficult to prepare. Otherwise, the TrapREMI setup can be connected to a variety of projectile sources, e.g., atomic gas jets, large-scale radiation facilities, and ultrashort laser pulses, which enable even time-resolved studies. Here, we describe the setup and a first photodissociation experiment on H2 +, which demonstrates the ion-neutral coincidence detection in the TrapREMI.
Collapse
|
27
|
Kurz N, Fischer D, Pfeifer T, Dorn A. Reaction microscope for investigating ionization dynamics of weakly bound alkali dimers. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:123202. [PMID: 34972432 DOI: 10.1063/5.0069506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
We report on the implementation of a far-off-resonant, optical dipole force trap in a reaction microscope combined with a magneto-optical trap. Kinematically complete multi-photon ionization experiments were performed on optically trapped 6Li atoms and photo-associated 6Li2 molecules in their highest vibrational state. The apparatus allows us to distinguish different ionization mechanisms related to the presence of the IR field of the optical dipole trap that can occur during ionization of 6Li and 6Li2 in strong fields. In a series of proof-of-principle experiments, we detect weakly bound dimers via three-photon ionization with femtosecond pulses (τ = 30 fs) at a central wavelength of 780 nm and measure directly the momenta of the photoelectrons in coincidence with recoil ions.
Collapse
|
28
|
Stark J, Warnecke C, Bogen S, Chen S, Dijck EA, Kühn S, Rosner MK, Graf A, Nauta J, Oelmann JH, Schmöger L, Schwarz M, Liebert D, Spieß LJ, King SA, Leopold T, Micke P, Schmidt PO, Pfeifer T, Crespo López-Urrutia JR. An ultralow-noise superconducting radio-frequency ion trap for frequency metrology with highly charged ions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:083203. [PMID: 34470420 DOI: 10.1063/5.0046569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
We present a novel ultrastable superconducting radio-frequency (RF) ion trap realized as a combination of an RF cavity and a linear Paul trap. Its RF quadrupole mode at 34.52 MHz reaches a quality factor of Q ≈ 2.3 × 105 at a temperature of 4.1 K and is used to radially confine ions in an ultralow-noise pseudopotential. This concept is expected to strongly suppress motional heating rates and related frequency shifts that limit the ultimate accuracy achieved in advanced ion traps for frequency metrology. Running with its low-vibration cryogenic cooling system, electron-beam ion trap, and deceleration beamline supplying highly charged ions (HCIs), the superconducting trap offers ideal conditions for optical frequency metrology with ionic species. We report its proof-of-principle operation as a quadrupole-mass filter with HCIs and trapping of Doppler-cooled 9Be+ Coulomb crystals.
Collapse
|
29
|
Belsa B, Amini K, Liu X, Sanchez A, Steinle T, Steinmetzer J, Le AT, Moshammer R, Pfeifer T, Ullrich J, Moszynski R, Lin CD, Gräfe S, Biegert J. Erratum: Publisher's Note: "Laser-induced electron diffraction of the ultrafast umbrella motion in ammonia" [Struct. Dyn. 8, 014301 (2021)]. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:049901. [PMID: 34497865 PMCID: PMC8410134 DOI: 10.1063/4.0000117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 06/13/2023]
Abstract
[This corrects the article DOI: 10.1063/4.0000046.].
Collapse
|
30
|
Ding T, Rebholz M, Aufleger L, Hartmann M, Stooß V, Magunia A, Birk P, Borisova GD, da Costa Castanheira C, Rupprecht P, Mi Y, Gaumnitz T, Loh ZH, Roling S, Butz M, Zacharias H, Düsterer S, Treusch R, Ott C, Pfeifer T. XUV pump-XUV probe transient absorption spectroscopy at FELs. Faraday Discuss 2021; 228:519-536. [PMID: 33575691 DOI: 10.1039/d0fd00107d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The emergence of ultra-intense extreme-ultraviolet (XUV) and X-ray free-electron lasers (FELs) has opened the door for the experimental realization of non-linear XUV and X-ray spectroscopy techniques. Here we demonstrate an experimental setup for an all-XUV transient absorption spectroscopy method for gas-phase targets at the FEL. The setup combines a high spectral resolving power of E/ΔE ≈ 1500 with sub-femtosecond interferometric resolution, and covers a broad XUV photon-energy range between approximately 20 and 110 eV. We demonstrate the feasibility of this setup firstly on a neon target. Here, we intensity- and time-resolve key aspects of non-linear XUV-FEL light-matter interactions, namely the non-resonant ionization dynamics and resonant coupling dynamics of bound states, including XUV-induced Stark shifts of energy levels. Secondly, we show that this setup is capable of tracking the XUV-initiated dissociation dynamics of small molecular targets (oxygen and diiodomethane) with site-specific resolution, by measuring the XUV transient absorption spectrum. In general, benefitting from a single-shot detection capability, we show that the setup and method provides single-shot phase-locked XUV pulse pairs. This lays the foundation to perform, in the future, experiments as a function of the XUV interferometric time delay and the relative phase, which enables advanced coherent non-linear spectroscopy schemes in the XUV and X-ray spectral range.
Collapse
|
31
|
Allum F, Calegari F, Cavaletto SM, Centurion M, Dixit G, Fasshauer E, Fischer I, Forbes R, Grell G, Ivanov M, Kirrander A, Kornilov O, Küpper J, Kuttner C, Marangos J, Matsika S, Maxwell A, Minns RS, Moreno Carrascosa A, Natan A, Neumark D, Odate A, Oyarzún A, Palacios A, Pfeifer T, Röder A, Rost JM, Rouzée A, Stolow A, Titov E, Weber PM, Wolf T. Ultrafast X-ray science: general discussion. Faraday Discuss 2021; 228:597-621. [PMID: 33978014 DOI: 10.1039/d1fd90026a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Sanchez A, Amini K, Wang SJ, Steinle T, Belsa B, Danek J, Le AT, Liu X, Moshammer R, Pfeifer T, Richter M, Ullrich J, Gräfe S, Lin CD, Biegert J. Molecular structure retrieval directly from laboratory-frame photoelectron spectra in laser-induced electron diffraction. Nat Commun 2021; 12:1520. [PMID: 33750798 PMCID: PMC7943781 DOI: 10.1038/s41467-021-21855-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/17/2021] [Indexed: 01/31/2023] Open
Abstract
Ubiquitous to most molecular scattering methods is the challenge to retrieve bond distance and angle from the scattering signals since this requires convergence of pattern matching algorithms or fitting methods. This problem is typically exacerbated when imaging larger molecules or for dynamic systems with little a priori knowledge. Here, we employ laser-induced electron diffraction (LIED) which is a powerful means to determine the precise atomic configuration of an isolated gas-phase molecule with picometre spatial and attosecond temporal precision. We introduce a simple molecular retrieval method, which is based only on the identification of critical points in the oscillating molecular interference scattering signal that is extracted directly from the laboratory-frame photoelectron spectrum. The method is compared with a Fourier-based retrieval method, and we show that both methods correctly retrieve the asymmetrically stretched and bent field-dressed configuration of the asymmetric top molecule carbonyl sulfide (OCS), which is confirmed by our quantum-classical calculations.
Collapse
|
33
|
Heeg KP, Kaldun A, Strohm C, Ott C, Subramanian R, Lentrodt D, Haber J, Wille HC, Goerttler S, Rüffer R, Keitel CH, Röhlsberger R, Pfeifer T, Evers J. Coherent X-ray-optical control of nuclear excitons. Nature 2021; 590:401-404. [PMID: 33597757 PMCID: PMC7889490 DOI: 10.1038/s41586-021-03276-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/02/2020] [Indexed: 12/02/2022]
Abstract
Coherent control of quantum dynamics is key to a multitude of fundamental studies and applications1. In the visible or longer-wavelength domains, near-resonant light fields have become the primary tool with which to control electron dynamics2. Recently, coherent control in the extreme-ultraviolet range was demonstrated3, with a few-attosecond temporal resolution of the phase control. At hard-X-ray energies (above 5-10 kiloelectronvolts), Mössbauer nuclei feature narrow nuclear resonances due to their recoilless absorption and emission of light, and spectroscopy of these resonances is widely used to study the magnetic, structural and dynamical properties of matter4,5. It has been shown that the power and scope of Mössbauer spectroscopy can be greatly improved using various control techniques6-16. However, coherent control of atomic nuclei using suitably shaped near-resonant X-ray fields remains an open challenge. Here we demonstrate such control, and use the tunable phase between two X-ray pulses to switch the nuclear exciton dynamics between coherent enhanced excitation and coherent enhanced emission. We present a method of shaping single pulses delivered by state-of-the-art X-ray facilities into tunable double pulses, and demonstrate a temporal stability of the phase control on the few-zeptosecond timescale. Our results unlock coherent optical control for nuclei, and pave the way for nuclear Ramsey spectroscopy17 and spin-echo-like techniques, which should not only advance nuclear quantum optics18, but also help to realize X-ray clocks and frequency standards19. In the long term, we envision time-resolved studies of nuclear out-of-equilibrium dynamics, which is a long-standing challenge in Mössbauer science20.
Collapse
|
34
|
Nauta J, Oelmann JH, Borodin A, Ackermann A, Knauer P, Muhammad IS, Pappenberger R, Pfeifer T, Crespo López-Urrutia JR. XUV frequency comb production with an astigmatism-compensated enhancement cavity. OPTICS EXPRESS 2021; 29:2624-2636. [PMID: 33726454 DOI: 10.1364/oe.414987] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
We have developed an extreme ultraviolet (XUV) frequency comb for performing ultra-high precision spectroscopy on the many XUV transitions found in highly charged ions (HCI). Femtosecond pulses from a 100 MHz phase-stabilized near-infrared frequency comb are amplified and then fed into a femtosecond enhancement cavity (fsEC) inside an ultra-high vacuum chamber. The low-dispersion fsEC coherently superposes several hundred incident pulses and, with a single cylindrical optical element, fully compensates astigmatism at the w0 = 15 µm waist cavity focus. With a gas jet installed there, intensities reaching ∼ 1014 W/cm2 generate coherent high harmonics with a comb spectrum at 100 MHz rate. We couple out of the fsEC harmonics from the 7th up to the 35th (42 eV; 30 nm) to be used in upcoming experiments on HCI frequency metrology.
Collapse
|
35
|
Belsa B, Amini K, Liu X, Sanchez A, Steinle T, Steinmetzer J, Le AT, Moshammer R, Pfeifer T, Ullrich J, Moszynski R, Lin CD, Gräfe S, Biegert J. Laser-induced electron diffraction of the ultrafast umbrella motion in ammonia. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:014301. [PMID: 34026922 PMCID: PMC8121549 DOI: 10.1063/4.0000046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Visualizing molecular transformations in real-time requires a structural retrieval method with Ångström spatial and femtosecond temporal atomic resolution. Imaging of hydrogen-containing molecules additionally requires an imaging method sensitive to the atomic positions of hydrogen nuclei, with most methods possessing relatively low sensitivity to hydrogen scattering. Laser-induced electron diffraction (LIED) is a table-top technique that can image ultrafast structural changes of gas-phase polyatomic molecules with sub-Ångström and femtosecond spatiotemporal resolution together with relatively high sensitivity to hydrogen scattering. Here, we image the umbrella motion of an isolated ammonia molecule (NH3) following its strong-field ionization. Upon ionization of a neutral ammonia molecule, the ammonia cation (NH3 +) undergoes an ultrafast geometrical transformation from a pyramidal ( Φ HNH = 107 ° ) to planar ( Φ HNH = 120 ° ) structure in approximately 8 femtoseconds. Using LIED, we retrieve a near-planar ( Φ HNH = 117 ± 5 ° ) field-dressed NH3 + molecular structure 7.8 - 9.8 femtoseconds after ionization. Our measured field-dressed NH3 + structure is in excellent agreement with our calculated equilibrium field-dressed structure using quantum chemical ab initio calculations.
Collapse
|
36
|
Leutenegger MA, Kühn S, Micke P, Steinbrügge R, Stierhof J, Shah C, Hell N, Bissinger M, Hirsch M, Ballhausen R, Lang M, Gräfe C, Wipf S, Cumbee R, Betancourt-Martinez GL, Park S, Yerokhin VA, Surzhykov A, Stolte WC, Niskanen J, Chung M, Porter FS, Stöhlker T, Pfeifer T, Wilms J, Brown GV, Crespo López-Urrutia JR, Bernitt S. High-Precision Determination of Oxygen K_{α} Transition Energy Excludes Incongruent Motion of Interstellar Oxygen. PHYSICAL REVIEW LETTERS 2020; 125:243001. [PMID: 33412031 DOI: 10.1103/physrevlett.125.243001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/19/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
We demonstrate a widely applicable technique to absolutely calibrate the energy scale of x-ray spectra with experimentally well-known and accurately calculable transitions of highly charged ions, allowing us to measure the K-shell Rydberg spectrum of molecular O_{2} with 8 meV uncertainty. We reveal a systematic ∼450 meV shift from previous literature values, and settle an extraordinary discrepancy between astrophysical and laboratory measurements of neutral atomic oxygen, the latter being calibrated against the aforementioned O_{2} literature values. Because of the widespread use of such, now deprecated, references, our method impacts on many branches of x-ray absorption spectroscopy. Moreover, it potentially reduces absolute uncertainties there to below the meV level.
Collapse
|
37
|
Mi Y, Peng P, Camus N, Sun X, Fross P, Martinez D, Dube Z, Corkum PB, Villeneuve DM, Staudte A, Moshammer R, Pfeifer T. Clocking Enhanced Ionization of Hydrogen Molecules with Rotational Wave Packets. PHYSICAL REVIEW LETTERS 2020; 125:173201. [PMID: 33156666 DOI: 10.1103/physrevlett.125.173201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Laser-induced rotational wave packets of H_{2} and D_{2} molecules were experimentally measured in real time by using two sequential 25-fs laser pulses and a reaction microscope. By measuring the time-dependent yields of the above-threshold dissociation and the enhanced ionization of the molecule, we observed a few-femtosecond time delay between the two dissociation channels for both H_{2} and D_{2}. The delay was interpreted and reproduced by a classical model that considers enhanced ionization and thus additional interaction within the laser pulse. We demonstrate that by accurately measuring the phase of the rotational wave packet in hydrogen molecules we can resolve dissociation dynamics which is occurring within a fraction of a molecular rotation. Such a rotational clock is a general concept applicable to sequential fragmentation processes in other molecules.
Collapse
|
38
|
Pfeifer T. Intense x-rays can be (slightly) exciting. Science 2020; 369:1568-1569. [DOI: 10.1126/science.abd6168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Imaging of neutral “survivor” atoms excited by x-ray blasts fights radiation damage
Collapse
|
39
|
Dahiya S, Sidhu MS, Tyagi A, Mandal A, Nandy B, Rost JM, Pfeifer T, Singh KP. In-line ultra-thin attosecond delay line with direct absolute-zero delay reference and high stability. OPTICS LETTERS 2020; 45:5266-5269. [PMID: 32932507 DOI: 10.1364/ol.403842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
We introduce an ultra-thin attosecond optical delay line based on controlled wavefront division of a femtosecond infrared pulse after transmission through a pair of micrometer-thin glass plates with negligible dispersion effects. The time delay between the two pulses is controlled by rotating one of the glass plates from absolute zero to several optical cycles, with 2.5 as to tens of attosecond resolution with 2 as stability, as determined by interferometric self-calibration. The performance of the delay line is validated by observing attosecond-resolved oscillations in the yield of high harmonics induced by time delayed infrared pulses, in agreement with a numerical simulation for a simple model atom. This approach can be extended in the future for performing XUV-IR attosecond pump-probe experiments.
Collapse
|
40
|
Kühn S, Shah C, López-Urrutia JRC, Fujii K, Steinbrügge R, Stierhof J, Togawa M, Harman Z, Oreshkina NS, Cheung C, Kozlov MG, Porsev SG, Safronova MS, Berengut JC, Rosner M, Bissinger M, Ballhausen R, Hell N, Park S, Chung M, Hoesch M, Seltmann J, Surzhykov AS, Yerokhin VA, Wilms J, Porter FS, Stöhlker T, Keitel CH, Pfeifer T, Brown GV, Leutenegger MA, Bernitt S. High Resolution Photoexcitation Measurements Exacerbate the Long-Standing Fe XVII Oscillator Strength Problem. PHYSICAL REVIEW LETTERS 2020; 124:225001. [PMID: 32567918 DOI: 10.1103/physrevlett.124.225001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/14/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
For more than 40 years, most astrophysical observations and laboratory studies of two key soft x-ray diagnostic 2p-3d transitions, 3C and 3D, in Fe XVII ions found oscillator strength ratios f(3C)/f(3D) disagreeing with theory, but uncertainties had precluded definitive statements on this much studied conundrum. Here, we resonantly excite these lines using synchrotron radiation at PETRA III, and reach, at a millionfold lower photon intensities, a 10 times higher spectral resolution, and 3 times smaller uncertainty than earlier work. Our final result of f(3C)/f(3D)=3.09(8)(6) supports many of the earlier clean astrophysical and laboratory observations, while departing by five sigmas from our own newest large-scale ab initio calculations, and excluding all proposed explanations, including those invoking nonlinear effects and population transfers.
Collapse
|
41
|
Bilous PV, Bekker H, Berengut JC, Seiferle B, von der Wense L, Thirolf PG, Pfeifer T, López-Urrutia JRC, Pálffy A. Electronic Bridge Excitation in Highly Charged ^{229}Th Ions. PHYSICAL REVIEW LETTERS 2020; 124:192502. [PMID: 32469560 DOI: 10.1103/physrevlett.124.192502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/04/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
The excitation of the 8 eV ^{229m}Th isomer through the electronic bridge mechanism in highly charged ions is investigated theoretically. By exploiting the rich level scheme of open 4f orbitals and the robustness of highly charged ions against photoionization, a pulsed high-intensity optical laser can be used to efficiently drive the nuclear transition by coupling it to the electronic shell. We show how to implement a promising electronic bridge scheme in an electron beam ion trap starting from a metastable electronic state. This setup would avoid the need for a tunable vacuum ultraviolet laser. Based on our theoretical predictions, determining the isomer energy with an uncertainty of 10^{-5} eV could be achieved in one day of measurement time using realistic laser parameters.
Collapse
|
42
|
Nauta J, Oelmann JH, Ackermann A, Knauer P, Pappenberger R, Borodin A, Muhammad IS, Ledwa H, Pfeifer T, Crespo López-Urrutia JR. 100 MHz frequency comb for low-intensity multi-photon studies: intra-cavity velocity-map imaging of xenon. OPTICS LETTERS 2020; 45:2156-2159. [PMID: 32287180 DOI: 10.1364/ol.389327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
We raise the power from a commercial 10 W frequency comb inside an enhancement cavity and perform multi-photon ionization of gas-phase atoms at 100 MHz for the first time, to the best of our knowledge. An intra-cavity velocity-map-imaging setup collects electron-energy spectra of xenon at rates several orders of magnitude higher than those of conventional laser systems. Consequently, we can use much lower intensities ${\sim}{{10}^{12}} \;{\rm W}/{{\rm cm}^2} $∼1012W/cm2 without increasing acquisition times above just a few seconds. The high rate and coherence of the stabilized femtosecond pulses are known to be transferred to the actively stabilized cavity and will allow studying purely perturbative multi-photon effects, paving the road towards a new field of precision tests in nonlinear physics.
Collapse
|
43
|
Wang E, Shan X, Chen L, Pfeifer T, Chen X, Ren X, Dorn A. Ultrafast Proton Transfer Dynamics on the Repulsive Potential of the Ethanol Dication: Roaming-Mediated Isomerization versus Coulomb Explosion. J Phys Chem A 2020; 124:2785-2791. [PMID: 32159968 PMCID: PMC7307916 DOI: 10.1021/acs.jpca.0c02074] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
If
a molecular dication is produced on a repulsive potential energy
surface (PES), it normally dissociates. Before that, however, ultrafast
nuclear dynamics can change the PES and significantly influence the
fragmentation pathway. Here, we investigate the electron-impact-induced
double ionization and subsequent fragmentation processes of the ethanol
molecule using multiparticle coincident momentum spectroscopy and
ab initio dynamical simulations. For the electronic ground state of
the ethanol dication, we observe several fragmentation channels that
cannot be reached by direct Coulomb explosion (CE) but require preceding
isomerization. Our simulations show that ultrafast hydrogen or proton
transfer (PT) can stabilize the repulsive PES of the dication before
the direct CE and form intermediate H2 or H2O. These neutrals stay in the vicinity of the precursor, and roaming
mechanisms lead to isomerization and finally PT resulting in emission
of H3+ or H3O+. The present
findings can help to understand the complex fragmentation dynamics
of molecular cations.
Collapse
|
44
|
Hu S, Hartmann M, Harth A, Ott C, Pfeifer T. Noise effects and the impact of detector responses on the characterization of extreme ultraviolet attosecond pulses. APPLIED OPTICS 2020; 59:2121-2127. [PMID: 32225737 DOI: 10.1364/ao.379562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
We employ numerical simulations to study the effects of noise on the reconstruction of the duration and satellite intensity ratio for transform-limited single and double pulses of 200 as duration. The forms of noise we implement are delay jitters between the attosecond pulse and the near-IR laser field, energy resolution of the photoelectron detector, and Poisson noise in streaking spectrograms with different count levels. We use the streaking method to characterize the pulse and the extended ptychographic iterative engine retrieval algorithm to reconstruct the pulse from the simulated streaking spectrogram. We found that, for practical purposes, when implementing a combination of all three mentioned noise contributions, the attosecond pulse duration will be overestimated when the photoelectron count level is low. Furthermore, the satellite pulse amplitude of the attosecond double pulse can be retrieved within 10% accuracy.
Collapse
|
45
|
Ben Ltaief L, Shcherbinin M, Mandal S, Krishnan SR, Richter R, Pfeifer T, Bauer M, Ghosh A, Mudrich M, Gokhberg K, LaForge AC. Electron transfer mediated decay of alkali dimers attached to He nanodroplets. Phys Chem Chem Phys 2020; 22:8557-8564. [DOI: 10.1039/d0cp00256a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Double ionization of alkali dimers attached to He nanodroplets by electron transfer mediated decay (ETMD).
Collapse
|
46
|
Ben Ltaief L, Shcherbinin M, Mandal S, Krishnan SR, LaForge AC, Richter R, Turchini S, Zema N, Pfeifer T, Fasshauer E, Sisourat N, Mudrich M. Charge Exchange Dominates Long-Range Interatomic Coulombic Decay of Excited Metal-Doped Helium Nanodroplets. J Phys Chem Lett 2019; 10:6904-6909. [PMID: 31625747 DOI: 10.1021/acs.jpclett.9b02726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atoms and molecules attached to rare-gas clusters are ionized by an interatomic autoionization process traditionally termed "Penning ionization" when the host cluster is resonantly excited. Here we analyze this process in the light of the interatomic Coulombic decay (ICD) mechanism, which usually contains a contribution from charge exchange at a short interatomic distance and one from virtual photon transfer at a large interatomic distance. For helium (He) nanodroplets doped with alkali metal atoms (Li, Rb), we show that long-range and short-range contributions to the interatomic autoionization can be clearly distinguished by detecting electrons and ions in coincidence. Surprisingly, ab initio calculations show that even for alkali metal atoms floating in dimples at a large distance from the nanodroplet surface, autoionization is largely dominated by charge-exchange ICD. Furthermore, the measured electron spectra manifest the ultrafast internal relaxation of the droplet mainly into the 1s2s1S state and partially into the metastable 1s2s3S state.
Collapse
|
47
|
Ott C, Aufleger L, Ding T, Rebholz M, Magunia A, Hartmann M, Stooß V, Wachs D, Birk P, Borisova GD, Meyer K, Rupprecht P, da Costa Castanheira C, Moshammer R, Attar AR, Gaumnitz T, Loh ZH, Düsterer S, Treusch R, Ullrich J, Jiang Y, Meyer M, Lambropoulos P, Pfeifer T. Strong-Field Extreme-Ultraviolet Dressing of Atomic Double Excitation. PHYSICAL REVIEW LETTERS 2019; 123:163201. [PMID: 31702368 DOI: 10.1103/physrevlett.123.163201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Indexed: 06/10/2023]
Abstract
We report on the experimental observation of a strong-field dressing of an autoionizing two-electron state in helium with intense extreme-ultraviolet laser pulses from a free-electron laser. The asymmetric Fano line shape of this transition is spectrally resolved, and we observe modifications of the resonance asymmetry structure for increasing free-electron-laser pulse energy on the order of few tens of Microjoules. A quantum-mechanical calculation of the time-dependent dipole response of this autoionizing state, driven by classical extreme-ultraviolet (XUV) electric fields, evidences strong-field-induced energy and phase shifts of the doubly excited state, which are extracted from the Fano line-shape asymmetry. The experimental results obtained at the Free-Electron Laser in Hamburg (FLASH) thus correspond to transient energy shifts on the order of a few meV, induced by strong XUV fields. These results open up a new way of performing nonperturbative XUV nonlinear optics for the light-matter interaction of resonant electronic transitions in atoms at short wavelengths.
Collapse
|
48
|
Goerttler S, Heeg K, Kaldun A, Reiser P, Strohm C, Haber J, Ott C, Subramanian R, Röhlsberger R, Evers J, Pfeifer T. Time-Resolved sub-Ångström Metrology by Temporal Phase Interferometry near X-Ray Resonances of Nuclei. PHYSICAL REVIEW LETTERS 2019; 123:153902. [PMID: 31702302 DOI: 10.1103/physrevlett.123.153902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 06/10/2023]
Abstract
We introduce an analytical phase-reconstruction principle that retrieves atomic scale motion via time-domain interferometry. The approach is based on a resonant interaction with high-frequency light and does not require temporal resolution on the time scale of the resonance period. It is thus applicable to hard x rays and γ rays for measurements of extremely small spatial displacements or relative-frequency changes. Here, it is applied to retrieve the temporal phase of a 14.4 keV emission line of an ^{57}Fe sample, which corresponds to a spatial translation of this sample. The small wavelength of this transition (λ=0.86 Å) allows for determining the motion of the emitter on sub-Ångström length and nanosecond timescales.
Collapse
|
49
|
Hartmann M, Stooß V, Birk P, Borisova G, Ott C, Pfeifer T. Attosecond precision in delay measurements using transient absorption spectroscopy. OPTICS LETTERS 2019; 44:4749-4752. [PMID: 31568433 DOI: 10.1364/ol.44.004749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Accessing attosecond (as) dynamics directly in the time domain has been achieved by several pioneering experiments over the course of the last decade. Extreme ultraviolet (XUV) group delays and, later, ionization time delays on the order of a few attoseconds have been extracted by photoemission or high-harmonic spectroscopy. Here, we present and benchmark an approach based on attosecond transient absorption spectroscopy to quantify deliberately induced delays by employing resonant photoexcitation of three XUV transitions with a precision of less than 5 as. While here we quantify the sensitivity to these delays via a chirp on the attosecond pulse by using thin-foil metallic filters, the method enables future studies of attosecond delays probed through resonant excitations.
Collapse
|
50
|
Obaid R, Schnorr K, Wolf TJA, Takanashi T, Kling NG, Kooser K, Nagaya K, Wada SI, Fang L, Augustin S, You D, Campbell EEB, Fukuzawa H, Schulz CP, Ueda K, Lablanquie P, Pfeifer T, Kukk E, Berrah N. Photo-ionization and fragmentation of Sc 3N@C 80 following excitation above the Sc K-edge. J Chem Phys 2019; 151:104308. [PMID: 31521092 DOI: 10.1063/1.5110297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have investigated the ionization and fragmentation of a metallo-endohedral fullerene, Sc3N@C80, using ultrashort (10 fs) x-ray pulses. Following selective ionization of a Sc (1s) electron (hν = 4.55 keV), an Auger cascade leads predominantly to either a vibrationally cold multiply charged parent molecule or multifragmentation of the carbon cage following a phase transition. In contrast to previous studies, no intermediate regime of C2 evaporation from the carbon cage is observed. A time-delayed, hard x-ray pulse (hν = 5.0 keV) was used to attempt to probe the electron transfer dynamics between the encapsulated Sc species and the carbon cage. A small but significant change in the intensity of Sc-containing fragment ions and coincidence counts for a delay of 100 fs compared to 0 fs, as well as an increase in the yield of small carbon fragment ions, may be indicative of incomplete charge transfer from the carbon cage on the sub-100 fs time scale.
Collapse
|