26
|
Lin TY, Li MD, Wang R, Wang X. Copper-Catalyzed Remote Asymmetric Yne-Allylic Substitution of Yne-Allylic Esters with Anthrones. Org Lett 2024; 26:5758-5763. [PMID: 38949506 DOI: 10.1021/acs.orglett.4c01916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Anthrones are key structural motifs in many natural products and pharmaceutical chemicals. However, due to its unique tricyclic aromatic structure, the synthetic space for the development of chiral anthrone derivatives is largely limited. By utilizing the potential of the copper-catalyzed remote asymmetric yne-allylic substitution reaction, we describe the first example of copper-catalyzed highly regio- and enantioselective remote yne-allylic substitution on various yne-allylic esters with anthrones under a mild reaction condition, which afforded a range of enantioenriched 1,3-enynes with exhibiting broad functional group tolerance across 51 examples.
Collapse
|
27
|
Wang X, Guillem-Marti J, Kumar S, Lee DS, Cabrerizo-Aguado D, Werther R, Alamo KAE, Zhao YT, Nguyen A, Kopyeva I, Huang B, Li J, Hao Y, Li X, Brizuela-Velasco A, Murray A, Gerben S, Roy A, DeForest CA, Springer T, Ruohola-Baker H, Cooper JA, Campbell MG, Manero JM, Ginebra MP, Baker D. De Novo Design of Integrin α5β1 Modulating Proteins for Regenerative Medicine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600123. [PMID: 38979380 PMCID: PMC11230231 DOI: 10.1101/2024.06.21.600123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Integrin α5β1 is crucial for cell attachment and migration in development and tissue regeneration, and α5β1 binding proteins could have considerable utility in regenerative medicine and next-generation therapeutics. We use computational protein design to create de novo α5β1-specific modulating miniprotein binders, called NeoNectins, that bind to and stabilize the open state of α5β1. When immobilized onto titanium surfaces and throughout 3D hydrogels, the NeoNectins outperform native fibronectin and RGD peptide in enhancing cell attachment and spreading, and NeoNectin-grafted titanium implants outperformed fibronectin and RGD-grafted implants in animal models in promoting tissue integration and bone growth. NeoNectins should be broadly applicable for tissue engineering and biomedicine.
Collapse
|
28
|
Lei J, Zhang X, Wang J, Yu F, Liang M, Wang X, Bi Z, Shang G, Xie H, Ma J. Interlayer Structure Manipulation of FeOCl/MXene with Soft/Hard Interface Design for Safe Water Production Using Dechlorination Battery Deionization. Angew Chem Int Ed Engl 2024; 63:e202401972. [PMID: 38703075 DOI: 10.1002/anie.202401972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
Suffering from the susceptibility to decomposition, the potential electrochemical application of FeOCl has greatly been hindered. The rational design of the soft-hard material interface can effectively address the challenge of stress concentration and thus decomposition that may occur in the electrodes during charging and discharging. Herein, interlayer structure manipulation of FeOCl/MXene using soft-hard interface design method were conducted for electrochemical dechlorination. FeOCl was encapsulated in Ti3C2Tx MXene nanosheets by electrostatic self-assembly layer by layer to form a soft-hard mechanical hierarchical structure, in which Ti3C2Tx was used as flexible buffer layers to relieve the huge volume change of FeOCl during Cl- intercalation/deintercalation and constructed a conductive network for fast charge transfer. The CDI dechlorination system of FeOCl/Ti3C2Tx delivered outstanding Cl- adsorption capacity (158.47 ± 6.98 mg g-1), rate (6.07 ± 0.35 mg g-1 min-1), and stability (over 94.49 % in 30 cycles), and achieved considerable energy recovery (21.14 ± 0.25 %). The superior dechlorination performance was proved to originate from the Fe2+/Fe3+ topochemical transformation and the deformation constraint effect of Ti3C2Tx on FeOCl. Our interfacial design strategy enables a hard-to-soft integration capacity, which can serve as a universal technology for solving the traditional problem of electrode volume expansion.
Collapse
|
29
|
Yang J, Luan H, Shen X, Xiong G, Wang X, Zhang X, Ji W, Jiang Y, Dai Y, Zhang E, Ou H, Cong Y, Wang X, Xing S, Yu Z. Single-dose Administration of Recombinant Human Thrombopoietin Enhances Survival and Hematopoietic Reconstruction in Canines Irradiated with 3 Gy Gamma Radiation. Radiat Res 2024; 202:51-58. [PMID: 38679421 DOI: 10.1667/rade-23-00206.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
We conducted this study to investigate the radioprotective effects of recombinant human thrombopoietin (rhTPO) on beagle dogs irradiated with 3.0 Gy 60Co gamma rays. Fifteen healthy adult beagles were randomly assigned to a control group with alleviating care, and 5 and 10 μg/kg rhTPO treatment group. All animals received total-body irradiation using 60Co γ-ray source at a dose of 3.0 Gy (dose rate was 69.1 cGy/min). The treatment group received intramuscular injection of rhTPO 5 and 10 μg/kg at 2 h postirradiation, and the control group was administrated the same volume of normal saline. The survival rate, clinical signs, peripheral hemogram, serum biochemistry, and histopathological examination of animals in each group were assessed. Single administration of 10 μg/kg rhTPO at 2 h postirradiation promoted the recovery of multilineage hematopoiesis and improved the survival rate of beagles irradiated with 3 Gy 60Co γ rays. The administration of 10 μg/kg rhTPO alleviated fever and bleeding, reduced the requirement for supportive care, and may have mitigated multiple organ damage.
Collapse
|
30
|
Wu Q, Liao R, Miao C, Hasnat M, Li L, Sun L, Wang X, Yuan Z, Jiang Z, Zhang L, Yu Q. Oncofetal SNRPE promotes HCC tumorigenesis by regulating the FGFR4 expression through alternative splicing. Br J Cancer 2024; 131:77-89. [PMID: 38796598 PMCID: PMC11231362 DOI: 10.1038/s41416-024-02689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Due to insufficient knowledge about key molecular events, Hepatocellular carcinoma (HCC) lacks effective treatment targets. Spliceosome-related genes were significantly altered in HCC. Oncofetal proteins are ideal tumor therapeutic targets. Screening of differentially expressed Spliceosome-related oncofetal protein in embryonic liver development and HCC helps discover effective therapeutic targets for HCC. METHODS Differentially expressed spliceosome genes were analysis in fetal liver and HCC through bioinformatics analysis. Small nuclear ribonucleoprotein polypeptide E (SNRPE) expression was detected in fetal liver, adult liver and HCC tissues. The role of SNRPE in HCC was performed multiple assays in vitro and in vivo. SNRPE-regulated alternative splicing was recognized by RNA-Seq and confirmed by multiple assays. RESULTS We herein identified SNRPE as a crucial oncofetal splicing factor, significantly associated with the adverse prognosis of HCC. SOX2 was identified as the activator for SNRPE reactivation. Efficient knockdown of SNRPE resulted in the complete cessation of HCC tumorigenesis and progression. Mechanistically, SNRPE knockdown reduced FGFR4 mRNA expression by triggering nonsense-mediated RNA decay. A partial inhibition of SNRPE-induced malignant progression of HCC cells was observed upon FGFR4 knockdown. CONCLUSIONS Our findings highlight SNRPE as a novel oncofetal splicing factor and shed light on the intricate relationship between oncofetal splicing factors, splicing events, and carcinogenesis. Consequently, SNRPE emerges as a potential therapeutic target for HCC treatment. Model of oncofetal SNRPE promotes HCC tumorigenesis by regulating the AS of FGFR4 pre-mRNA.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Alternative Splicing
- Carcinogenesis/genetics
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Mice, Nude
- Prognosis
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
Collapse
|
31
|
Yang X, Shi Q, Wang X, Zhang T, Feng K, Wang G, Zhao J, Yuan X, Ren J. Melatonin-Induced Chromium Tolerance Requires Hydrogen Sulfide Signaling in Maize. PLANTS (BASEL, SWITZERLAND) 2024; 13:1763. [PMID: 38999603 PMCID: PMC11244195 DOI: 10.3390/plants13131763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
Both melatonin and hydrogen sulfide (H2S) mitigate chromium (Cr) toxicity in plants, but the specific interaction between melatonin and H2S in Cr detoxification remains unclear. In this study, the interaction between melatonin and H2S in Cr detoxification was elucidated by measuring cell wall polysaccharide metabolism and antioxidant enzyme activity in maize. The findings revealed that exposure to Cr stress (100 μM K2Cr2O7) resulted in the upregulation of L-/D-cysteine desulfhydrase (LCD/DCD) gene expression, leading to a 77.8% and 27.3% increase in endogenous H2S levels in maize leaves and roots, respectively. Similarly, the endogenous melatonin system is activated in response to Cr stress. We found that melatonin had a significant impact on the relative expression of LCD/DCD, leading to a 103.3% and 116.7% increase in endogenous H2S levels in maize leaves and roots, respectively. In contrast, NaHS had minimal effects on the relative mRNA expression of serotonin-Nacetyltransferase (SNAT) and endogenous melatonin levels. The production of H2S induced by melatonin is accompanied by an increase in Cr tolerance, as evidenced by elevated gene expression, elevated cell wall polysaccharide content, increased pectin methylesterase activity, and improved antioxidant enzyme activity. The scavenging of H2S decreases the melatonin-induced Cr tolerance, while the inhibitor of melatonin synthesis, p-chlorophenylalanine (p-CPA), has minimal impact on H2S-induced Cr tolerance. In conclusion, our findings suggest that H2S serves as a downstream signaling molecule involved in melatonin-induced Cr tolerance in maize.
Collapse
|
32
|
Gao J, Song X, Ou H, Cheng X, Zhang L, Liu C, Dong Y, Wang X. The association between vitamin D and the progression of diabetic nephropathy: insights into potential mechanisms. Front Med (Lausanne) 2024; 11:1388074. [PMID: 38978780 PMCID: PMC11228314 DOI: 10.3389/fmed.2024.1388074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
Aims Vitamin D deficiency (VDD) is prevalent in the population, with inadequate intake, impaired absorption and metabolism as the main causative factors. VDD increases the risk of developing chronic diseases such as type 2 diabetes mellitus (T2DM) and diabetic nephropathy (DN), but the molecular mechanisms underlying this phenomenon are not known. The aim of this study was to investigate the association and potential mechanisms of vitamin D levels with the progression of DN by analyzing general clinical data and using bioinformatics methods. Methods The study included 567 diabetes mellitus type 2 (T2DM) patients from the Rocket Force Characteristic Medical Center as the case group and 221 healthy examinees as the normal control group. T2DM patients were categorized into T2DM, early diabetic nephropathy (EDN), and advanced diabetic nephropathy (ADN) based on the progression of diabetic nephropathy. The renal RNA-seq and scRNA-seq data of patients with DN were mined from public databases, and the differential expression of vitamin D-related genes in normal-EDN-ADN was analyzed by bioinformatics method, protein interaction network was constructed, immune infiltration was evaluated, single cell map was drawn, and potential mechanisms of VD and DN interaction were explored. Results Chi-square test showed that vitamin D level was significantly negatively correlated with DN progression (p < 0.001). Bioinformatics showed that the expression of vitamin D-related cytochrome P450 family genes was down-regulated, and TLR4 and other related inflammatory genes were abnormally up-regulated with the progression of DN. Vitamin D metabolism disturbance up-regulate "Nf-Kappa B signaling pathway," B cell receptor signaling pathway and other immune regulation and insulin resistance related pathways, and inhibit a variety of metabolic pathways. In addition, vitamin D metabolism disturbance are strongly associated with the development of diabetic cardiomyopathy and several neurological disease complications. Conclusion VDD or vitamin D metabolism disturbance is positively associated with the severity of renal injury. The mechanisms may involve abnormal regulation of the immune system by vitamin D metabolism disturbance, metabolic suppression, upregulation of insulin resistance and inflammatory signalling pathways.
Collapse
|
33
|
Li S, Hong L, Yang W, Liu X, Zhang Y, Ling Y, He Z, Wang X, Yue Y, Dong Q, Wang F, Cheng X. The benefit of favorable venous outflow profile is mediated through reduced microvascular dysfunction in acute ischemic stroke. Eur Stroke J 2024; 9:432-440. [PMID: 38291622 PMCID: PMC11318418 DOI: 10.1177/23969873231224573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024] Open
Abstract
INTRODUCTIONS Venous outflow (VO) is emerging as a marker of microvascular integrity in acute ischemic stroke. Using hemorrhagic transformation (HT) and infarct growth as mediators, we tested whether a favorable VO profile benefited functional outcome by reducing consequences of microvascular dysfunction. PATIENTS AND METHODS Patients receiving thrombectomy in three comprehensive stroke centers due to acute anterior circulation occlusion were included. VO was assessed semi-quantitatively by the opacification of ipsilateral vein of Labbé, Trolard and superficial middle cerebral vein. HT was graded on follow-up CT. Infarct growth volume (IGV) was the difference of final infarct volume and baseline core volume. The association of VO and functional independence (90-day modified Rankin Scale ⩽ 2) was examined by logistic regression. Mediation analysis was performed among VO, HT or IGV, and functional outcome in patients with or without recanalization, respectively. RESULTS In 242 patients analyzed, VO was strongly correlated with functional independence and VO ⩾ 4 was defined favorable. In 175 patients recanalized, favorable VO was associated with a reduced risk of HT (OR = 0.82, 95% CI 0.71-0.95, p = 0.008), which accounted for 13.1% of the association between VO and favorable outcome. In 67 patients without recanalization, favorable VO was associated with decreased IGV (β = -0.07, 95% CI -0.11 to -0.02, p = 0.007). The association of favorable VO and functional independence was no longer significant (aOR = 4.84, 95% CI 0.87-38.87, p = 0.089) after including IGV in the model, suggesting a complete mediation. DISCUSSION AND CONCLUSION In patients with acute anterior large vessel occlusion, the clinical benefit of VO may be mediated through reduced microvascular dysfunction.
Collapse
|
34
|
Li S, Ji L, Wang Y, Zhou X, Wang X, Jiang S, Sun Q. Can China's carbon generalized system of preferences reduce urban residents' carbon emissions? Evidence from a quasi-natural experiment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121222. [PMID: 38833928 DOI: 10.1016/j.jenvman.2024.121222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
The carbon generalized system of preferences (CGSP) is an innovative incentive mechanism implemented by the Chinese government, which has also become an important part of carbon emission reduction at the living end, and it is of great significance to study whether the Pilot Policy can reduce the carbon emissions of residents. This study firstly accounts for the total carbon emissions and per capita carbon emissions of the residents of 284 cities in China, and on this basis, adopts the SCM method to quantitatively study and analyze the overall and local implementation effects of CGSP in China by taking the first batch of CGSP pilots in China as an example, and further applies the mediation effect model to test the pathways of the role of CGSP. The main findings of the study are as follows: (1) During the period of 2010-2020, the total carbon emissions from urban residents' living in China showed a yearly growth trend, from 36,623.98 ×10-2Mt in 2010-85,241.20 ×10-2Mt in 2020, an increase of 8.83%. Total carbon emissions present a structural difference of "electricity consumption > central heating > private transport > gas (oil, natural gas) consumption". (2) Overall, the implementation of the CGSP had a robust positive impact on the overall carbon emission reduction in the pilot cities, with an average annual emission reduction effect value of 36.53 ×10-2Mt. Locally, the annual net policy effect values of Dongguan, Zhongshan, Heyuan, and Guangzhou are 6169.79 ×10-2, 26,600.17 ×10-2, 17,081.34 ×10-2 and 9393.36 ×10-2Mt respectively. (3) CGSP has a good carbon emission reduction effect by suppressing the impact on residents' carbon emissions through enhancing the city's innovation capacity and promoting electricity saving and consumption reduction, while the mediating effect played by the promotion of green and low-carbon travel in the pilot policy is not significant. Finally, based on the research findings, relevant suggestions are targeted.
Collapse
|
35
|
Zhang Y, Liang H, Wang X, Yu Y, Cao Y, Guo M, Lin B. Phosphorus Modulated Peroxidase-Like Activity of Carbon Dots for Colorimetric Detection of Acid Phosphatase. APPLIED SPECTROSCOPY 2024; 78:633-643. [PMID: 38529537 DOI: 10.1177/00037028241238246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The precise regulation of nanoenzyme activity is of great significance for application to biosensing analysis. Herein, the peroxidase-like activity of carbon dots was effectively modulated by doping phosphorus, which was successfully employed for sensitive, selective detection of acid phosphatase (ACP). Phosphorus-doped carbon dots (P-CDs) with excellent peroxidase-like activity were synthesized by a one-pot hydrothermal method, and the catalytic activity could be easily modulated by controlling the additional amount of precursor phytic acid. P-CDs could effectively catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB oxidation products in the presence of hydrogen peroxide. While ACP was able to catalyze the hydrolysis of L-ascorbyl-2-phosphate trisodium salt (AAP) to produce ascorbic acid (AA), which inhibited the peroxidase-like activity of P-CDs, by combining P-CDs nanoenzymes and ACP-catalyzed hydrolysis the colorimetric method was established for ACP detection. The absorbance variation showed a good linear relationship with ACP concentration in the range of 0.4-4.0 mU/mL with a limit of detection at 0.12 mU/mL. In addition, the method was successfully applied to detect ACP in human serum samples with recoveries in the range of 98.7-101.6%. The work provides an effective strategy for regulating nanoenzymes activity and a low-cost detection technique for ACP.
Collapse
|
36
|
Pan T, Zhang Z, He T, Zhang C, Liang J, Wang X, Di X, Hong Y, Bai P. The association between urinary incontinence and suicidal ideation: Findings from the National Health and Nutrition Examination Survey. PLoS One 2024; 19:e0301553. [PMID: 38781254 PMCID: PMC11115289 DOI: 10.1371/journal.pone.0301553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Urinary incontinence (UI) might be linked to suicidal ideation, but we do not yet have all the relevant details. This study aimed to dig deeper into the connection between UI and suicidal ideation using data from the National Health and Nutrition Examination Survey (NHANES). METHODS We examined 31,891 participants aged ≥ 20 years from NHANES 2005-2018 who provided complete information. We used standardized surveys to check for UI and signs of suicidal ideation. To better understand this relationship, we used statistical tools such as multivariable logistic regression, subgroup analysis, and sensitivity analyses. RESULTS Among the 31,891 participants, 28.9% reported UI and 10.7% reported suicidal ideation. Those with UI exhibited a significantly greater incidence of suicidal ideation (15.5%) than did those without UI (8.8%, P < 0.001). After adjusting for various factors, including age, sex, marital status, socioeconomic status, educational level, lifestyle factors, and chronic comorbidities, UI remained significantly associated with suicidal ideation (OR:1.54, 95% CI = 1.39-1.7, P < 0.001). Among all types of UI, MUI participants were more likely to experience suicidal ideation. Compared with no UI, higher odds of suicidal ideation suffered from MUI (OR:2.11, 95%CI:1.83-2.44, P < 0.001), SUI (OR:1.4, 95%CI:1.19-1.65, P < 0.001), UUI(OR:1.37,95%CI:1.16-1.62, P < 0.001) after full adjustment. With the exception of individuals living with a partner, the remaining subgroups exhibited a positive correlation between urinary incontinence and suicidal ideation, considering that factors such as age, sex, and prevalent comorbidities such as hypertension, depression, and diabetes did not reveal any statistically significant interactions (all P > 0.05). Sensitivity analyses, incorporating imputed missing covariates, did not substantially alter the results (OR: 1.53, 95% CI: 1.4-1.68, P < 0.001). CONCLUSION Urinary incontinence may correlate with increased suicidal ideation risk, priority screening for suicidal ideation and timely intervention are essential for individuals with urinary incontinence, but prospective studies are needed to verify the results.
Collapse
|
37
|
Miao Y, Sun J, Gao C, Xue D, Wang XR. Anisotropic Galvanomagnetic Effects in Single Cubic Crystals: A Theory and Its Verification. PHYSICAL REVIEW LETTERS 2024; 132:206701. [PMID: 38829066 DOI: 10.1103/physrevlett.132.206701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/22/2024] [Accepted: 04/12/2024] [Indexed: 06/05/2024]
Abstract
A theory of anisotropic galvanomagnetic effects in single cubic crystals and its experimental verifications are presented for the current in the (001) plane. In contrast to the general belief that galvanomagnetic effects in single crystals are highly sensitive to many internal and external effects and have no universal features, the theory predicts universal angular dependencies of longitudinal and transverse resistivity and various characteristics when magnetization rotates in the (001) plane, the plane perpendicular to the current, and the plane containing the current and [001] direction. The universal angular dependencies are verified by experiments on Fe_{30}Co_{70} single cubic crystal film. The findings provide new avenues for fundamental research and applications of galvanomagnetic effects, because single crystals offer advantages over polycrystalline materials for band structure and crystallographic orientation engineering.
Collapse
|
38
|
Long XL, Wang XR, An N, Liu SY, Li Z, Li CH, Mu W, Wang D, Li CR. [Correlation analysis of polyclonal plasma cell proportion in the bone marrow with clinical characteristics of patients with newly diagnosed multiple myeloma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:475-480. [PMID: 38964922 DOI: 10.3760/cma.j.cn121090-20231020-00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Objective: To explore the correlation of bone marrow polychonal plasma cell proportion (pPC% ) and clinical features in newly diagnosed multiple myeloma (NDMM) patients. Methods: A retrospective analysis of 317 patients with NDMM admitted to Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology from January 2018 to January 2023 was performed. The results of the pPC% in all patients were clear. The relationship between the pPC% and clinical characteristics was analyzed. Results: A total of 317 patients were included, comprising 180 males and 137 females. The median age at diagnosis was 61 (26-91) years, and 55.8% were 60 years or older. The pPC% in the bone marrow of patients with NDMM was different in the DS, International Staging System (ISS), and revised ISS (R-ISS) stages (P=0.002, 0.010, and 0.049, respectively), whereas no statistical difference in pPC% was observed among patients with different FISH risk stratigrams (P=0.971). The correlation coefficient between pPC% and hemoglobin (HGB) at the first diagnosis in patients was 0.211 (P<0.01). The correlation coefficients with serum calcium, serum creatinine, M protein level, and β(2)-microglobulin were -0.141, -0.120, -0.181, and -0.207, respectively, and the results of the significance test were P=0.012, 0.033, 0.004, and 0.002, respectively, indicating a negative correlation. Compared with the patients with a pPC% of ≥2.5%, the group of patients with a pPC% of <2.5% had significantly higher levels of light chain, serum calcium, serum creatinine, M protein, and β(2)-microglobulin at the initial diagnosis (P<0.05) ; lower HGB level (P<0.001) ; and a higher proportion of patients in ISS stage Ⅲ (P=0.034) . Conclusion: In this study, the pPC% in patients with NDMM was associated with clinical features of good prognosis, including higher HGB, lower serum calcium, serum creatinine, M protein quantity, β(2)-microglobulin, light chain involvement, lower proportion of advanced disease (DS stage and ISS stage Ⅲ), and clinical features showing lower tumor burden.
Collapse
|
39
|
Jia P, Wang Z, Wang X, Qin K, Gao J, Sun J, Xia G, Dong T, Gong Y, Yu Z, Zhang J, Chen H, Wang S. Nanoporous Carbon Materials Derived from Zanthoxylum Bungeanum Peel and Seed for Electrochemical Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:836. [PMID: 38786793 PMCID: PMC11124505 DOI: 10.3390/nano14100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
In order to prepare biomass-derived carbon materials with high specific capacitance at a low activation temperature (≤700 °C), nanoporous carbon materials were prepared from zanthoxylum bungeanum peels and seeds via the pyrolysis and KOH-activation processes. The results show that the optimal activation temperatures are 700 °C and 600 °C for peels and seeds. Benefiting from the hierarchical pore structure (micropores, mesopores, and macropores), the abundant heteroatoms (N, S, and O) containing functional groups, and plentiful electrochemical active sites, the PAC-700 and SAC-600 derive the large capacities of ~211.0 and ~219.7 F g-1 at 1.0 A g-1 in 6 M KOH within the three-electrode configuration. Furthermore, the symmetrical supercapacitors display a high energy density of 22.9 and 22.4 Wh kg-1 at 7500 W kg-1 assembled with PAC-700 and SAC-600, along with exceptional capacitance retention of 99.1% and 93.4% over 10,000 cycles at 1.0 A g-1. More significantly, the contribution here will stimulate the extensive development of low-temperature activation processes and nanoporous carbon materials for electrochemical energy storage and beyond.
Collapse
|
40
|
Yang X, Wang X, Wang X, Li X, Xin H, Zhou J, Sun D. Utilization of composite particles with customizable cross-linked lignin patches for dental cleansing. Int J Biol Macromol 2024; 266:130619. [PMID: 38460629 DOI: 10.1016/j.ijbiomac.2024.130619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/31/2024] [Accepted: 03/02/2024] [Indexed: 03/11/2024]
Abstract
Lignin, a natural polyphenol polymer, is a biocompatible, cost-effective and accessible material. To fully utilize the benefits of lignin, it is crucial to transform its complex macromolecules into nanoscale particles in a single solvent. In this research, an assembly-mediated internal cross-linking method in single solvent was proposed to manufacture cross-linked lignin colloidal particles with nanoscale particle size controlled to be around 50 nm. Then, cross-linked lignin composite particles with a unique "patchy" structure for dental cleansing were obtained by rapidly grafting the cross-linked lignin colloidal particles onto the surface of silica microspheres through the bridging effect of silane coupling agent. The resulting composite particles have rivets with adjustable hardness, significantly lower than traditional abrasives like silica in both hardness and modulus. Through the group cleansing behavior of soft interlocking, a breakthrough has been achieved in the high solid content agglomeration friction mode of traditional abrasives, which effectively reduces tooth wear and exhibits an excellent plaque removal effect.
Collapse
|
41
|
Mu X, Li B, Liu W, Qiao Y, Huang C, Yang Y, Zhang M, Wang X, Liu Y, Yin Y, Wang K. Responses and resistance capacity of Solanum nigrum L. mediated by three ecological category earthworms in metal-[Cd-As-Cu-Pb]-contaminated soils of North China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171427. [PMID: 38432362 DOI: 10.1016/j.scitotenv.2024.171427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/04/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Earthworms play vital functions affecting plant growth and metal accumulation from downground to aboveground. Soil metal mobilization may be combined with use of earthworm and hyperaccumulator-Solanum nigrum to improve its remediation efficiency. Understanding the effects of specific-species earthworm belonging to different ecological categories on mechanisms underlying of S. nigrum is critical for metal-polluted remediation. However, seldom studies concerned earthworm-assisted phytoremediation of metal contaminated soil in Northern China. This study investigated the effects of earthworm (Eisenia fetida, Amynthas hupeiensis and Drawida gisti) on S. nigrum with exposure to uncontaminated and [Cd-As-Cu-Pb]-contaminated soil (referred to as S0 and S1) for 60 days, respectively. In S1 soil, A. hupeiensis (anecic) had stronger effects on growth and metal accumulation in the organs (root, stem, and leaf) of S. nigrum than D. gisti (endogeic) and E. fetida (epigeic), attributing to their ecological category. The BAF values of S. nigrum were generally ranking in Cd (0.66-5.13) > As (0.03-1.85) > Cu (0.03-0.06) > Pb (0.01-0.05); the BAFCd values were ranking in leaf (2.34-5.13) > root (1.96-4.14) > stem (0.66-1.33); BAFAs, BAFCu, and BAFPb were root (0.04-1.63) > stem (0.01-0.09) ≈ leaf (0.01-0.06). A. hupeiensis decreased the TF values of S. nigrum from the roots to the shoots. Co-effects of metal stress and earthworm activity on metal uptake by shoots suggested that A. hupeiensis increased the uptake of As, Cu, and Pb (by 56.3 %, 51.5 %, and 16.2 %, p < 0.05), but not Cd, which appeared to remain steady for prolonged durations. Alterations in the integrated biomarker response index version 2 (IBRv2) values demonstrated that A. hupeiensis (12.65) improved the resistance capacity (stimulated GSH, SnGS1, and SnCu-SOD) of S. nigrum under metal-containing conditions, compared with E. fetida and D. gisti (IBRv2 were 9.61 and 9.11). This study may provide insights into the patterns of 'soil-earthworm-plant system' on improving remediation efficiency of S. nigrum, from the perspective of earthworm ecological niche partitioning.
Collapse
|
42
|
Zhen Q, Wang X, Cheng X, Fang W. Remediation of toxic metal and metalloid pollution with plant symbiotic fungi. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:171-187. [PMID: 39389705 DOI: 10.1016/bs.aambs.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Anthropogenic activities have dramatically accelerated the release of toxic metal(loid)s into soil and water, which can be subsequently accumulated in plants and animals, threatening biodiversity, human health, and food security. Compared to physical and chemical remediation, bioremediation of metal(loid)-polluted soil using plants and/or plant symbiotic fungi is usually low-cost and environmentally friendly. Mycorrhizal fungi and endophytic fungi are two major plant fungal symbionts. Mycorrhizal fungi can immobilize metal(loid)s via constitutive mechanisms, including intracellular sequestration with vacuoles and vesicles and extracellular immobilization by cell wall components and extracellular polymeric substances such as glomalin. Mycorrhizal fungi can improve the efficacy of phytoremediation by promoting plant symplast and apoplast pathways. Endophytic fungi also use constitutive cellular components to immobilize metal(loid)s and to reduce the accumulation of metal(loid)s in plants by modifying plant physiological status. However, a specific mechanism for the removal of methylmercury pollution was recently discovered in the endophytic fungi Metarhizium, which could be acquired from bacteria via horizontal gene transfer. In contrast to mycorrhizal fungi that are obligate biotrophs, some endophytic fungi, such as Metarhizium and Trichoderma, can be massively and cost-effectively produced, so they seem to be well-placed for remediation of metal(loid)-polluted soil on a large scale.
Collapse
|
43
|
Wang X, Wang J, Xia X, Xu X, Li L, Cao S, Hao Y, Zhang L. Effect of genotyping errors on linkage map construction based on repeated chip analysis of two recombinant inbred line populations in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2024; 24:306. [PMID: 38644480 PMCID: PMC11034145 DOI: 10.1186/s12870-024-05005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
Linkage maps are essential for genetic mapping of phenotypic traits, gene map-based cloning, and marker-assisted selection in breeding applications. Construction of a high-quality saturated map requires high-quality genotypic data on a large number of molecular markers. Errors in genotyping cannot be completely avoided, no matter what platform is used. When genotyping error reaches a threshold level, it will seriously affect the accuracy of the constructed map and the reliability of consequent genetic studies. In this study, repeated genotyping of two recombinant inbred line (RIL) populations derived from crosses Yangxiaomai × Zhongyou 9507 and Jingshuang 16 × Bainong 64 was used to investigate the effect of genotyping errors on linkage map construction. Inconsistent data points between the two replications were regarded as genotyping errors, which were classified into three types. Genotyping errors were treated as missing values, and therefore the non-erroneous data set was generated. Firstly, linkage maps were constructed using the two replicates as well as the non-erroneous data set. Secondly, error correction methods implemented in software packages QTL IciMapping (EC) and Genotype-Corrector (GC) were applied to the two replicates. Linkage maps were therefore constructed based on the corrected genotypes and then compared with those from the non-erroneous data set. Simulation study was performed by considering different levels of genotyping errors to investigate the impact of errors and the accuracy of error correction methods. Results indicated that map length and marker order differed among the two replicates and the non-erroneous data sets in both RIL populations. For both actual and simulated populations, map length was expanded as the increase in error rate, and the correlation coefficient between linkage and physical maps became lower. Map quality can be improved by repeated genotyping and error correction algorithm. When it is impossible to genotype the whole mapping population repeatedly, 30% would be recommended in repeated genotyping. The EC method had a much lower false positive rate than did the GC method under different error rates. This study systematically expounded the impact of genotyping errors on linkage analysis, providing potential guidelines for improving the accuracy of linkage maps in the presence of genotyping errors.
Collapse
|
44
|
Hu J, Yang F, Liu C, Wang N, Xiao Y, Zhai Y, Wang X, Zhang R, Gao L, Xu M, Wang J, Liu Z, Huang S, Liu W, Hu Y, Liu F, Guo Y, Wang L, Yuan J, Zhang Z, Chu J. UFObow: A single-wavelength excitable Brainbow for simultaneous multicolor ex-vivo and in-vivo imaging of mammalian cells. Commun Biol 2024; 7:394. [PMID: 38561421 PMCID: PMC10984974 DOI: 10.1038/s42003-024-06062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Brainbow is a genetic cell-labeling technique that allows random colorization of multiple cells and real-time visualization of cell fate within a tissue, providing valuable insights into understanding complex biological processes. However, fluorescent proteins (FPs) in Brainbow have distinct excitation spectra with peak difference greater than 35 nm, which requires sequential imaging under multiple excitations and thus leads to long acquisition times. In addition, they are not easily used together with other fluorophores due to severe spectral bleed-through. Here, we report the development of a single-wavelength excitable Brainbow, UFObow, incorporating three newly developed blue-excitable FPs. We have demonstrated that UFObow enables not only tracking the growth dynamics of tumor cells in vivo but also mapping spatial distribution of immune cells within a sub-cubic centimeter tissue, revealing cell heterogeneity. This provides a powerful means to explore complex biology in a simultaneous imaging manner at a single-cell resolution in organs or in vivo.
Collapse
|
45
|
Ye F, Zhang S, Fu Y, Yang L, Zhang G, Wu Y, Pan J, Chen H, Wang X, Ma L, Niu H, Jiang M, Zhang T, Jia D, Wang J, Wang Y, Han X, Guo G. Fast and flexible profiling of chromatin accessibility and total RNA expression in single nuclei using Microwell-seq3. Cell Discov 2024; 10:33. [PMID: 38531851 DOI: 10.1038/s41421-023-00642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/21/2023] [Indexed: 03/28/2024] Open
Abstract
Single cell chromatin accessibility profiling and transcriptome sequencing are the most widely used technologies for single-cell genomics. Here, we present Microwell-seq3, a high-throughput and facile platform for high-sensitivity single-nucleus chromatin accessibility or full-length transcriptome profiling. The method combines a preindexing strategy and a penetrable chip-in-a-tube for single nucleus loading and DNA amplification and therefore does not require specialized equipment. We used Microwell-seq3 to profile chromatin accessibility in more than 200,000 single nuclei and the full-length transcriptome in ~50,000 nuclei from multiple adult mouse tissues. Compared with the existing polyadenylated transcript capture methods, integrative analysis of cell type-specific regulatory elements and total RNA expression uncovered comprehensive cell type heterogeneity in the brain. Gene regulatory networks based on chromatin accessibility profiling provided an improved cell type communication model. Finally, we demonstrated that Microwell-seq3 can identify malignant cells and their specific regulons in spontaneous lung tumors of aged mice. We envision a broad application of Microwell-seq3 in many areas of research.
Collapse
|
46
|
Zhang W, Qi C, Wang X, Fu Z, Zhang J, Zhou Y, Wang Y. An ultrasensitive and selective near-infrared fluorescent probe for tracking carboxylesterases with large Stokes shift in living cells and mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123708. [PMID: 38042124 DOI: 10.1016/j.saa.2023.123708] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Carboxylesterases (CEs) play great role in CEs-related diseases and drug metabolism. Selectively monitoring its activity is important to explore its role in CEs-related diseases and drug combination. Herein, a new "turn-on" near-infrared (NIR) fluorescent probe (CHY-1) was reported with large Stokes shift (145 nm) for CEs detection. Dicyanoisophorone-based derivative was chosen as NIR fluorophore and 4-bromobutyrate was the identifying group. What's more, CHY-1 exhibited ultra-sensitivity (LOD ∼ 9.2 × 10-5 U/mL), high selectivity against Acetylcholinesterase (AChE), Butyrylcholinesterase (BChE) and Chymotrypsin for CEs fluorescence detection under physiological pH and temperature. Furthermore, CHY-1 showed little effect on cell viability at high concentration and featured good optical imaging character for the slight change of CEs activity induced by 5-Fu (5-Fluorouridine, anti-tumor drug) and CEs inhibitor in living cells. Moreover, CHY-1 was also used to detect the activity and distribution of CEs in mice. Taken together, CHY-1 had widely applicable value in the diagnosis of CEs-related diseases and drug combination.
Collapse
|
47
|
Wang X, Li L, Liu T, Shi Y. More than nutrition: Therapeutic potential and mechanism of human milk oligosaccharides against necrotizing enterocolitis. Life Sci 2024; 339:122420. [PMID: 38218534 DOI: 10.1016/j.lfs.2024.122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Human milk is the most valuable source of nutrition for infants. The structure and function of human milk oligosaccharides (HMOs), which are key components of human milk, have long been attracting particular research interest. Several recent studies have found HMOs to be efficacious in the prevention and treatment of necrotizing enterocolitis (NEC). Additionally, they could be developed in the future as non-invasive predictive markers for NEC. Based on previous findings and the well-defined functions of HMOs, we summarize potential protective mechanisms of HMOs against neonatal NEC, which include: modulating signal receptor function, promoting intestinal epithelial cell proliferation, reducing apoptosis, restoring intestinal blood perfusion, regulating microbial prosperity, and alleviating intestinal inflammation. HMOs supplementation has been demonstrated to be protective against NEC in both animal studies and clinical observations. This calls for mass production and use of HMOs in infant formula, necessitating more research into the safety of industrially produced HMOs and the appropriate dosage in infant formula.
Collapse
|
48
|
Wang X, Ding R, Fu Z, Yang M, Li D, Zhou Y, Qin C, Zhang W, Si L, Zhang J, Chai Y. Overexpression of miR-506-3p reversed doxorubicin resistance in drug-resistant osteosarcoma cells. Front Pharmacol 2024; 15:1303732. [PMID: 38420199 PMCID: PMC10899521 DOI: 10.3389/fphar.2024.1303732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Background and objective: Osteosarcoma is a common primary malignant tumor of bone, and doxorubicin is one of the most widely used therapeutic drugs. While the problem of doxorubicin resistance limits the long-term treatment benefits in osteosarcoma patients. The role of miRNAs and their target genes in osteosarcoma have become increasingly prominent. Currently, there is no report on miR-506-3p reversing doxorubicin resistance by targeting STAT3 in osteosarcoma. The purpose of this study was to investigate the molecular mechanism that overexpression of miR-506-3p reverses doxorubicin resistance in drug-resistant osteosarcoma cells. Methods: Doxorubicin-resistant osteosarcoma cells (U-2OS/Dox) were constructed by intermittent stepwise increasing stoichiometry. The target genes of miR-506-3p were predicted by bioinformatics approach and the targeting relationship between miR-506-3p and STAT3 was detected using dual luciferase reporter assay. U-2OS/Dox cells were treated with miR-506-3p overexpression and STAT3 silencing respectively. Then Western blot and RT-qPCR were used to detect the protein and mRNA expression levels of JAK2/STAT3 signaling pathway, drug-resistant and apoptotic associated molecules. The migration and invasion were assessed by cell scratch assay and transwell assay. The cell proliferative viability and apoptosis were investigated by CCK8 assay and flow cytometry assay. Results: U-2OS/Dox cells were successfully constructed with a 14.4-fold resistance. MiR-506-3p is directly bound to the 3'-UTR of STAT3 mRNA. Compared with U-2OS cells, the mRNA expression of miR-506-3p was reduced in U-2OS/Dox cells. Overexpression of miR-506-3p decreased the mRNA expression levels of JAK2, STAT3, MDR1/ABCB1, MRP1/ABCC1, Survivin and Bcl-2, and decreased the protein expression levels of p-JAK2, STAT3, MDR1/ABCB1, MRP1/ABCC1, Survivin and Bcl-2, and conversely increased Bax expression. It also inhibited the proliferation, migration and invasion of U-2OS/Dox cells and promoted cells apoptosis. The results of STAT3 silencing experiments in the above indicators were consistent with that of miR-506-3p overexpression. Conclusion: Overexpression of miR-506-3p could inhibit the JAK2/STAT3 pathway and the malignant biological behaviors, then further reverse doxorubicin resistance in drug-resistant osteosarcoma cells. The study reported a new molecular mechanism for reversing the resistance of osteosarcoma to doxorubicin chemotherapy and provided theoretical support for solving the clinical problems of doxorubicin resistance in osteosarcoma.
Collapse
|
49
|
Guo X, Zhang X, Jiang S, Qiao X, Meng B, Wang X, Wang Y, Yang K, Zhang Y, Li N, Chen T, Kang Y, Yao M, Zhang X, Wang X, Zhang E, Li J, Yan D, Hu Z, Botella JR, Song CP, Li Y, Guo S. E3 ligases MAC3A and MAC3B ubiquitinate UBIQUITIN-SPECIFIC PROTEASE14 to regulate organ size in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:684-697. [PMID: 37850874 PMCID: PMC10828200 DOI: 10.1093/plphys/kiad559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
The molecular mechanisms controlling organ size during plant development ultimately influence crop yield. However, a deep understanding of these mechanisms is still lacking. UBIQUITIN-SPECIFIC PROTEASE14 (UBP14), encoded by DA3, is an essential factor determining organ size in Arabidopsis (Arabidopsis thaliana). Here, we identified two suppressors of the da3-1 mutant phenotype, namely SUPPRESSOR OF da3-1 1 and 2 (SUD1 and SUD2), which encode the E3 ligases MOS4-ASSOCIATED COMPLEX 3A (MAC3A) and MAC3B, respectively. The mac3a-1 and mac3b-1 mutations partially suppressed the high ploidy level and organ size phenotypes observed in the da3-1 mutant. Biochemical analysis showed that MAC3A and MAC3B physically interacted with and ubiquitinated UBP14/DA3 to modulate its stability. We previously reported that UBP14/DA3 acts upstream of the B-type cyclin-dependent kinase CDKB1;1 and maintains its stability to inhibit endoreduplication and cell growth. In this work, MAC3A and MAC3B were found to promote the degradation of CDKB1;1 by ubiquitinating UBP14/DA3. Genetic analysis suggests that MAC3A and MAC3B act in a common pathway with UBP14/DA3 to control endoreduplication and organ size. Thus, our findings define a regulatory module, MAC3A/MAC3B-UBP14-CDKB1;1, that plays a critical role in determining organ size and endoreduplication in Arabidopsis.
Collapse
|
50
|
Wang X, Deliu N, Narita Y, Chakraborty B. Incorporating participants' welfare into sequential multiple assignment randomized trials. Biometrics 2024; 80:ujad004. [PMID: 38364800 DOI: 10.1093/biomtc/ujad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/02/2023] [Accepted: 11/03/2023] [Indexed: 02/18/2024]
Abstract
Dynamic treatment regimes (DTRs) are sequences of decision rules that recommend treatments based on patients' time-varying clinical conditions. The sequential, multiple assignment, randomized trial (SMART) is an experimental design that can provide high-quality evidence for constructing optimal DTRs. In a conventional SMART, participants are randomized to available treatments at multiple stages with balanced randomization probabilities. Despite its relative simplicity of implementation and desirable performance in comparing embedded DTRs, the conventional SMART faces inevitable ethical issues, including assigning many participants to the empirically inferior treatment or the treatment they dislike, which might slow down the recruitment procedure and lead to higher attrition rates, ultimately leading to poor internal and external validities of the trial results. In this context, we propose a SMART under the Experiment-as-Market framework (SMART-EXAM), a novel SMART design that holds the potential to improve participants' welfare by incorporating their preferences and predicted treatment effects into the randomization procedure. We describe the steps of conducting a SMART-EXAM and evaluate its performance compared to the conventional SMART. The results indicate that the SMART-EXAM can improve the welfare of the participants enrolled in the trial, while also achieving a desirable ability to construct an optimal DTR when the experimental parameters are suitably specified. We finally illustrate the practical potential of the SMART-EXAM design using data from a SMART for children with attention-deficit/hyperactivity disorder.
Collapse
|