26
|
Wang Y, Gu Y, Zeng W, Lan Y, Zhang W, Lu H. 502 Expression, distribution and subcellular location of RGR in human skin. J Invest Dermatol 2021. [DOI: 10.1016/j.jid.2021.02.527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Liu D, Lan Y, Zhang L, Wu T, Cui H, Li Z, Sun P, Tian P, Tian J, Li X. Nomograms for Predicting Axillary Lymph Node Status Reconciled With Preoperative Breast Ultrasound Images. Front Oncol 2021; 11:567648. [PMID: 33898303 PMCID: PMC8058421 DOI: 10.3389/fonc.2021.567648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction The axillary lymph node (ALN) status of breast cancer patients is an important prognostic indicator. The use of primary breast mass features for the prediction of ALN status is rare. Two nomograms based on preoperative ultrasound (US) images of breast tumors and ALNs were developed for the prediction of ALN status. Methods A total of 743 breast cancer cases collected from 2016 to 2019 at the Second Affiliated Hospital of Harbin Medical University were randomly divided into a training set (n = 523) and a test set (n = 220). A primary tumor feature model (PTFM) and ALN feature model (ALNFM) were separately generated based on tumor features alone, and a combination of features was used for the prediction of ALN status. Logistic regression analysis was used to construct the nomograms. A receiver operating characteristic curve was plotted to obtain the area under the curve (AUC) to evaluate accuracy, and bias-corrected AUC values and calibration curves were obtained by bootstrap resampling for internal and external verification. Decision curve analysis was applied to assess the clinical utility of the models. Results The AUCs of the PTFM were 0.69 and 0.67 for the training and test sets, respectively, and the bias-corrected AUCs of the PTFM were 0.67 and 0.67, respectively. Moreover, the AUCs of the ALNFM were 0.86 and 0.84, respectively, and the bias-corrected AUCs were 0.85 and 0.81, respectively. Compared with the PTFM, the ALNFM showed significantly improved prediction accuracy (p < 0.001). Both the calibration and decision curves of the ALNFM nomogram indicated greater accuracy and clinical practicality. When the US tumor size was ≤21.5 mm, the Spe was 0.96 and 0.92 in the training and test sets, respectively. When the US tumor size was greater than 21.5 mm, the Sen was 0.85 in the training set and 0.87 in the test set. Our further research showed that when the US tumor size was larger than 35 mm, the Sen was 0.90 in the training set and 0.93 in the test set. Conclusion The ALNFM could effectively predict ALN status based on US images especially for different US tumor size.
Collapse
|
28
|
Chen Z, Xie H, Yuan J, Lan Y, Xie Z. Krüppel-like factor 6 promotes odontoblastic differentiation through regulating the expression of dentine sialophosphoprotein and dentine matrix protein 1 genes. Int Endod J 2021; 54:572-584. [PMID: 33200415 DOI: 10.1111/iej.13447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
AIM To investigate the potential role of Krüppel-like factor 6 (KLF6) in the odontoblastic differentiation of immortalized dental papilla mesenchymal cells (iMDP-3) cells. METHODOLOGY Alizarin Red S (ARS) and Alkaline phosphatase (ALP) staining was used to examine the mineralization effect of iMDP-3 cells after odontoblastic induction. Real-time PCR and Western blotting were employed to analyse dentine sialophosphoprotein (DSPP), dentine matrix protein 1 (DMP1), RUNX family transcription factor 2 (RUNX2), ALP and KLF6 expression during this process. Co-expression of the KLF6 with DMP1, DSPP and RUNX2 was detected by double immunofluorescence staining to explore their local relationship in the cell. To further investigate KLF6 functions, Klf6 gain- and loss-of-function assays followed by ARS and ALP stainings, real-time PCR and Western blotting were performed using Klf6-overexpression plasmids and Klf6 siRNA to investigate whether changes in Klf6 expression affect the odontoblastic differentiation of iMDP-3 cells. Dual-luciferase reporter assays were used to elucidate the mechanistic regulation of Dspp and Dmp1 expression by Klf6. Means were compared using the unpaired t-test and Kruskal-Wallis one-way anova with P < 0.05 and P < 0.01 defined as statistical significance levels. RESULTS The expression levels of Klf6 (P < 0.01), Dspp (P < 0.05), Dmp1 (P < 0.01), Runx2 (P < 0.01) and Alp (P < 0.01) were significantly elevated during odontoblastic differentiation of iMDP-3 cells. KLF6 was co-localized with DSPP, DMP1 and RUNX2 in the cytoplasm and nucleus of iMDP-3 cells. Overexpression of Klf6 promoted the odontoblastic differentiation of iMDP-3, whereas the inhibition of Klf6 prevented this procession. Dual-luciferase assays revealed that Klf6 upregulates Dspp and Dmp1 transcription in iMDP-3 cells during odontoblastic differentiation. CONCLUSION Klf6 promoted odontoblastic differentiation by targeting the transcription promoter of Dmp1 and Dspp. This study may offer novel insights into strategies for treating injuries to dental pulp tissue.
Collapse
|
29
|
Pang B, Quan F, Ping Y, Hu J, Lan Y, Pang L. Dissecting the Invasion-Associated Long Non-coding RNAs Using Single-Cell RNA-Seq Data of Glioblastoma. Front Genet 2021; 11:633455. [PMID: 33505440 PMCID: PMC7831882 DOI: 10.3389/fgene.2020.633455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma (GBM) is characterized by rapid and lethal infiltration of brain tissue, which is the primary cause of treatment failure and deaths for GBM. Therefore, understanding the molecular mechanisms of tumor cell invasion is crucial for the treatment of GBM. In this study, we dissected the single-cell RNA-seq data of 3345 cells from four patients and identified dysregulated genes including long non-coding RNAs (lncRNAs), which were involved in the development and progression of GBM. Based on co-expression network analysis, we identified a module (M1) that significantly overlapped with the largest number of dysregulated genes and was confirmed to be associated with GBM invasion by integrating EMT signature, experiment-validated invasive marker and pseudotime trajectory analysis. Further, we denoted invasion-associated lncRNAs which showed significant correlations with M1 and revealed their gradually increased expression levels along the tumor cell invasion trajectory, such as VIM-AS1, WWTR1-AS1, and NEAT1. We also observed the contribution of higher expression of these lncRNAs to poorer survival of GBM patients. These results were mostly recaptured in another validation data of 7930 single cells from 28 GBM patients. Our findings identified lncRNAs that played critical roles in regulating or controlling cell invasion and migration of GBM and provided new insights into the molecular mechanisms underlying GBM invasion as well as potential targets for the treatment of GBM.
Collapse
|
30
|
Lan Y, Zeng W, Dong X, Lu H. Opsin 5 is a key regulator of ultraviolet radiation-induced melanogenesis in human epidermal melanocytes. Br J Dermatol 2021; 185:391-404. [PMID: 33400324 PMCID: PMC8453816 DOI: 10.1111/bjd.19797] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2021] [Indexed: 12/24/2022]
Abstract
Background Human skin, which is constantly exposed to solar ultraviolet radiation (UVR), has a unique ability to respond by increasing its pigmentation in a protective process driven by melanogenesis in human epidermal melanocytes (HEMs). However, the molecular mechanisms used by HEMs to detect and respond to UVR remain unclear. Objectives To investigate the function and potential mechanism of opsin 5 (OPN5), a photoreceptor responsive to UVR wavelengths, in melanogenesis in HEMs. Methods Melanin content in HEMs was determined using the NaOH method, and activity of tyrosinase (TYR) (a key enzyme in melanin synthesis) was determined by the l‐DOPA method. OPN5 expression in UVR‐treated vs. untreated HEMs and explant tissues was detected by reverse‐transcription quantitative polymerase chain reaction (RT‐qPCR), Western blotting and immunofluorescence. Short interfering RNA‐mediated OPN5 knockdown and a lentivirus OPN5 overexpression model were used to examine their respective effects on TYR, tyrosinase‐related protein 1 (TRP1), TRP2 and microphthalmia‐associated transcription factor (MITF) expression, under UVR. Changes in expression of TYR, TRP1 and TRP2 caused by changes in OPN5 expression level were detected by RT‐qPCR and Western blot. Furthermore, changes in signalling pathway proteins were assayed. Results We found that OPN5 is the key sensor in HEMs responsible for UVR‐induced melanogenesis. OPN5‐induced melanogenesis required Ca2+‐dependent G protein‐coupled receptor‐ and protein kinase C signal transduction, thus contributing to the UVR‐induced MITF response to mediate downstream cellular effects, and providing evidence of OPN5 function in mammalian phototransduction. Remarkably, OPN5 activation was necessary for UVR‐induced increase in cellular melanin and has an inherent function in melanocyte melanogenesis. Conclusions Our results provide insight into the molecular mechanisms of UVR sensing and phototransduction in melanocytes, and may reveal molecular targets for preventing pigmentation or pigment diseases.
What is already known about this topic?
Ultraviolet radiation (UVR) induces a protective response to DNA damage mediated by melanin synthesis in human epidermal melanocytes (HEMs). Tyrosinase (TYR), with tyrosinase‐related proteins (TRP1, TRP2), are the key enzymes for melanin synthesis. Microphthalmia‐associated transcription factor regulates key genes for melanocyte development and differentiation, and can stimulate melanogenesis by activating transcription of TYR and other pigmentation genes, including TRP1. Opsin 5 (OPN5) is known to function as a photoreceptor responsive to wavelengths in the near UV spectrum.
What does this study add?UVR induces melanogenesis in HEMs via OPN5. OPN5 regulates expression of TYR, TRP1 and TRP2 through the calcium‐dependent G protein‐coupled and protein kinase C signalling pathways. OPN5 has an inherent role in HEMs in mediating melanogenesis.
What is the translational message?OPN5 was discovered as a key sensor for UVR‐induced melanogenesis in human skin melanocytes. It could be a target for early treatment of pigmentation or pigment diseases, to provide a more personalized and economically feasible method.
Linked Comment: L.V.M. de Assis and A.M. de Lauro Castrucci. Br J Dermatol 2021; 185:249–250. Plain language summary available online
Collapse
|
31
|
Yu F, Quan F, Xu J, Zhang Y, Xie Y, Zhang J, Lan Y, Yuan H, Zhang H, Cheng S, Xiao Y, Li X. Breast cancer prognosis signature: linking risk stratification to disease subtypes. Brief Bioinform 2020; 20:2130-2140. [PMID: 30184043 DOI: 10.1093/bib/bby073] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 07/14/2018] [Accepted: 07/28/2018] [Indexed: 01/29/2023] Open
Abstract
Breast cancer is a very complex and heterogeneous disease with variable molecular mechanisms of carcinogenesis and clinical behaviors. The identification of prognostic risk factors may enable effective diagnosis and treatment of breast cancer. In particular, numerous gene-expression-based prognostic signatures were developed and some of them have already been applied into clinical trials and practice. In this study, we summarized several representative gene-expression-based signatures with significant prognostic value and separately assessed their ability of prognosis prediction in their originally targeted populations of breast cancer. Notably, many of the collected signatures were originally designed to predict the outcomes of estrogen receptor positive (ER+) patients or the whole breast cancer cohort; there are no typical signatures used for the prognostic prediction in a specific population of patients with the intrinsic subtype. We thus attempted to identify subtype-specific prognostic signatures via a computational framework for analyzing multi-omics profiles and patient survival. For both the discovery and an independent data set, we confirmed that subtype-specific signature is a strong and significant independent prognostic factor in the corresponding cohort. These results indicate that the subtype-specific prognostic signature has a much higher resolution in the risk stratification, which may lead to improved therapies and precision medicine for patients with breast cancer.
Collapse
|
32
|
Zhao E, Lan Y, Quan F, Zhu X, A S, Wan L, Xu J, Hu J. Identification of a Six-lncRNA Signature With Prognostic Value for Breast Cancer Patients. Front Genet 2020; 11:673. [PMID: 32849766 PMCID: PMC7396575 DOI: 10.3389/fgene.2020.00673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BRCA) is the most common cancer and a major cause of death in women. Long non-coding RNAs (lncRNAs) are emerging as key regulators and have been implicated in carcinogenesis and prognosis. In this study, we aimed to develop a lncRNA signature of BRCA patients to improve risk stratification. In the training cohort (GSE21653, n = 232), 17 lncRNAs were identified by univariate Cox proportional hazards regression, which were significantly associated with patients’ survival. The least absolute shrinkage and selection operator-penalized Cox proportional hazards regression analysis was used to identify a six-lncRNA signature. According to the median of the signature risk score, patients were divided into a high-risk group and a low-risk group with significant disease-free survival differences in the training cohort. A similar phenomenon was observed in validation cohorts (GSE42568, n = 101; GSE20711, n = 87). The six-lncRNA signature remained as independent prognostic factors after adjusting for clinical factors in these two cohorts. Furthermore, this signature significantly predicted the survival of grade III patients and estrogen receptor-positive patients. Furthermore, in another cohort (GSE19615, n = 115), the low-risk patients that were treated with tamoxifen therapy had longer disease-free survival than those who underwent no therapy. Overall, the six-lncRNA signature can be a potential prognostic tool used to predict disease-free survival of patients and to predict the benefits of tamoxifen treatment in BRCA, which will be helpful in guiding individualized treatments for BRCA patients.
Collapse
|
33
|
Zhang X, Xu J, Lan Y, Guo F, Xiao Y, Li Y, Li X. Transcriptome analysis reveals a reprogramming energy metabolism-related signature to improve prognosis in colon cancer. PeerJ 2020; 8:e9458. [PMID: 32704448 PMCID: PMC7350917 DOI: 10.7717/peerj.9458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022] Open
Abstract
Although much progress has been made to improve treatment, colon cancer remains a leading cause of cancer death worldwide. Metabolic reprogramming is a significant ability of cancer cells to ensure the necessary energy supply in uncontrolled proliferation. Since reprogramming energy metabolism has emerged as a new hallmark of cancer cells, accumulating evidences have suggested that metabolism-related genes may serve as key regulators of tumorigenesis and potential biomarkers. In this study, we analyzed a set of reprogramming energy metabolism-related genes by transcriptome analysis in colon cancer and revealed a five-gene signature that could significantly predict the overall survival. The reprogramming energy metabolism-related signature could distinguish patients into high-risk and low-risk groups with significantly different survival times (P = 0.0011; HR = 1.92; 95% CI [1.29–2.87]). Its prognostic value was confirmed in another two independent colon cancer cohorts (P = 5.2e–04; HR = 2.09, 95%; CI [1.37–3.2] for GSE17538 and P = 3.8e−04; HR = 2.08, 95% CI [1.37–3.16] for GSE41258). By multivariable analysis, we found that the signature was independent of clinicopathological features. Its power in promoting risk stratification of the current clinical stage was then evaluated by stratified analysis. Moreover, the signature could improve the power of the TNM stage for the prediction of overall survival and could be used in patients who received adjuvant chemotherapy. Overall, our results demonstrated the important role of the reprogramming energy metabolism-related signature in promoting stratification of high-risk patients, which could be diagnostic of adjuvant therapy benefit.
Collapse
|
34
|
Al Kharusi S, Anton G, Badhrees I, Barbeau PS, Beck D, Belov V, Bhatta T, Breidenbach M, Brunner T, Cao GF, Cen WR, Chambers C, Cleveland B, Coon M, Craycraft A, Daniels T, Darroch L, Daugherty SJ, Davis J, Delaquis S, Der Mesrobian-Kabakian A, DeVoe R, Dilling J, Dolgolenko A, Dolinski MJ, Echevers J, Fairbank W, Fairbank D, Farine J, Feyzbakhsh S, Fierlinger P, Fudenberg D, Gautam P, Gornea R, Gratta G, Hall C, Hansen EV, Hoessl J, Hufschmidt P, Hughes M, Iverson A, Jamil A, Jessiman C, Jewell MJ, Johnson A, Karelin A, Kaufman LJ, Koffas T, Kostensalo J, Krücken R, Kuchenkov A, Kumar KS, Lan Y, Larson A, Lenardo BG, Leonard DS, Li GS, Li S, Li Z, Licciardi C, Lin YH, MacLellan R, McElroy T, Michel T, Mong B, Moore DC, Murray K, Nakarmi P, Njoya O, Nusair O, Odian A, Ostrovskiy I, Piepke A, Pocar A, Retière F, Robinson AL, Rowson PC, Ruddell D, Runge J, Schmidt S, Sinclair D, Skarpaas K, Soma AK, Stekhanov V, Suhonen J, Tarka M, Thibado S, Todd J, Tolba T, Totev TI, Tsang R, Veenstra B, Veeraraghavan V, Vogel P, Vuilleumier JL, Wagenpfeil M, Watkins J, Weber M, Wen LJ, Wichoski U, Wrede G, Wu SX, Xia Q, Yahne DR, Yang L, Yen YR, Zeldovich OY, Ziegler T. Measurement of the Spectral Shape of the β-Decay of ^{137}Xe to the Ground State of ^{137}Cs in EXO-200 and Comparison with Theory. PHYSICAL REVIEW LETTERS 2020; 124:232502. [PMID: 32603173 DOI: 10.1103/physrevlett.124.232502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/17/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
We report on a comparison between the theoretically predicted and experimentally measured spectra of the first-forbidden nonunique β-decay transition ^{137}Xe(7/2^{-})→^{137}Cs(7/2^{+}). The experimental data were acquired by the EXO-200 experiment during a deployment of an AmBe neutron source. The ultralow background environment of EXO-200, together with dedicated source deployment and analysis procedures, allowed for collection of a pure sample of the decays, with an estimated signal to background ratio of more than 99 to 1 in the energy range from 1075 to 4175 keV. In addition to providing a rare and accurate measurement of the first-forbidden nonunique β-decay shape, this work constitutes a novel test of the calculated electron spectral shapes in the context of the reactor antineutrino anomaly and spectral bump.
Collapse
|
35
|
Zhang X, Lan Y, Xu J, Quan F, Zhao E, Deng C, Luo T, Xu L, Liao G, Yan M, Ping Y, Li F, Shi A, Bai J, Zhao T, Li X, Xiao Y. CellMarker: a manually curated resource of cell markers in human and mouse. Nucleic Acids Res 2020; 47:D721-D728. [PMID: 30289549 PMCID: PMC6323899 DOI: 10.1093/nar/gky900] [Citation(s) in RCA: 784] [Impact Index Per Article: 196.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
One of the most fundamental questions in biology is what types of cells form different tissues and organs in a functionally coordinated fashion. Larger-scale single-cell sequencing and biology experiment studies are now rapidly opening up new ways to track this question by revealing substantial cell markers for distinguishing different cell types in tissues. Here, we developed the CellMarker database (http://biocc.hrbmu.edu.cn/CellMarker/ or http://bio-bigdata.hrbmu.edu.cn/CellMarker/), aiming to provide a comprehensive and accurate resource of cell markers for various cell types in tissues of human and mouse. By manually curating over 100 000 published papers, 4124 entries including the cell marker information, tissue type, cell type, cancer information and source, were recorded. At last, 13 605 cell markers of 467 cell types in 158 human tissues/sub-tissues and 9148 cell makers of 389 cell types in 81 mouse tissues/sub-tissues were collected and deposited in CellMarker. CellMarker provides a user-friendly interface for browsing, searching and downloading markers of diverse cell types of different tissues. Furthermore, a summarized marker prevalence in each cell type is graphically and intuitively presented through a vivid statistical graph. We believe that CellMarker is a comprehensive and valuable resource for cell researches in precisely identifying and characterizing cells, especially at the single-cell level.
Collapse
|
36
|
Lan Y, Wang Y, Lu H. 一种名为 OPN3 的蛋白质可能在由阳光引起的皮肤老化中发挥作用. Br J Dermatol 2020. [DOI: 10.1111/bjd.19001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Lan Y, Wang Y, Lu H. A protein called OPN3 may play a role in skin ageing caused by sunlight. Br J Dermatol 2020. [DOI: 10.1111/bjd.18990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Xu J, Liu H, Lan Y, Park JS, Jiang R. Genome-wide Identification of Foxf2 Target Genes in Palate Development. J Dent Res 2020; 99:463-471. [PMID: 32040930 DOI: 10.1177/0022034520904018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cleft palate is among the most common structural birth defects in humans. Previous studies have shown that mutations in FOXF2 are associated with cleft palate in humans and mice and that Foxf2 acts in a Shh-Foxf-Fgf18-Shh molecular network controlling palatal shelf growth. In this study, we combined RNA-seq and ChIP-seq approaches to identify direct transcriptional target genes mediating Foxf2 function in palate development in mice. Of 155 genes that exhibited Foxf2-dependent expression in the developing palatal mesenchyme, 88 contained or were located next to Foxf2-binding sites. Through in situ hybridization analyses, we demonstrate that expression of many of these target genes, including multiple genes encoding transcription factors and several encoding extracellular matrix-modifying proteins, were specifically upregulated in the posterior region of palatal shelves in Foxf2-/- mouse embryos. Foxf2 occupancy at many of these putative target loci, including Fgf18, in the developing palatal tissues was verified by ChIP-polymerase chain reaction analyses. One of the Foxf2 target genes, Chst2, encodes a carbohydrate sulfotransferase integral to glycosaminoglycan sulfation. Correlating with ectopic Chst2 expression, Foxf2-/- embryos a exhibited region-specific increase in sulfated keratan sulfate and a concomitant reduction in chondroitin sulfate accumulation in the posterior palatal mesenchyme. However, expression of the core protein of versican, a major chondroitin sulfate proteoglycan important in palatal shelf morphogenesis, was increased, whereas expression of collagen I was reduced in the corresponding region of the palatal mesenchyme. These results indicate that, in addition to regulating palatal shelf growth through the Fgf18-Shh signaling network, Foxf2 controls palatal shelf morphogenesis through regulating expression of multiple transcription factors as well as through directly controlling the synthesis and processing of extracellular matrix components in the palatal mesenchyme. Our ChIP-seq and RNA-seq data sets provide an excellent resource for comprehensive understanding of the molecular network controlling palate development.
Collapse
|
39
|
Ping Y, Xu C, Xu L, Liao G, Zhou Y, Deng C, Lan Y, Yu F, Shi J, Wang L, Xiao Y, Li X. Prioritizing Gene Cascading Paths to Model Colorectal Cancer Through Engineered Organoids. Front Bioeng Biotechnol 2020; 8:12. [PMID: 32117908 PMCID: PMC7010597 DOI: 10.3389/fbioe.2020.00012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Engineered organoids by sequential introduction of key mutations could help modeling the dynamic cancer progression. However, it remains difficult to determine gene paths which were sufficient to capture cancer behaviors and to broadly explain cancer mechanisms. Here, as a case study of colorectal cancer (CRC), functional and dynamic characterizations of five types of engineered organoids with different mutation combinations of five driver genes (APC, SMAD4, KRAS, TP53, and PIK3CA) showed that sequential introductions of all five driver mutations could induce enhanced activation of more hallmark signatures, tending to cancer. Comparative analysis of engineered organoids and corresponding CRC tissues revealed sequential introduction of key mutations could continually shorten the biological distance from engineered organoids to CRC tissues. Nevertheless, there still existed substantial biological gaps between the engineered organoid even with five key mutations and CRC samples. Thus, we proposed an integrative strategy to prioritize gene cascading paths for shrinking biological gaps between engineered organoids and CRC tissues. Our results not only recapitulated the well-known adenoma–carcinoma sequence model (e.g., AKST-organoid with driver mutations in APC, KRAS, SMAD4, and TP53), but also provided potential paths for delineating alternative pathogenesis underlying CRC populations (e.g., A-organoid with APC mutation). Our strategy also can be applied to both organoids with more mutations and other cancers, which can improve and innovate mechanism across cancer patients for drug design and cancer therapy.
Collapse
|
40
|
Abstract
Cleft palate is a common major birth defect resulting from disruption of palatal shelf growth, elevation, or fusion during fetal palatogenesis. Whereas the molecular mechanism controlling palatal shelf elevation is not well understood, a prevailing hypothesis is that region-specific accumulation of hyaluronan, a predominant extracellular glycosaminoglycan in developing palatal mesenchyme, plays a major role in palatal shelf elevation. However, direct genetic evidence for a requirement of hyaluronan in palate development is still lacking. In this study, we show that Has2, 1 of 3 hyaluronan synthases in mammals, plays a major role in hyaluronan synthesis in the neural crest-derived craniofacial mesenchyme during palatogenesis in mice. We analyzed developmental defects caused by tissue-specific inactivation of Has2 throughout the cranial neural crest lineage or specifically in developing palatal or mandibular mesenchyme, respectively, using Wnt1-Cre, Osr2-Cre, and Hand2-Cre transgenic mice. Inactivation of Has2 either throughout the neural crest lineage or specifically in the developing palatal mesenchyme caused reduced palatal shelf size and increased palatal mesenchyme cell density prior to the time of normal palatal shelf elevation. Whereas both Has2f/f;Wnt1-Cre and Has2f/f;Osr2-Cre mutant mice exhibit cleft palate at complete penetrance, the Has2f/f; Wnt1-Cre fetuses showed dramatically reduced mandible size and complete failure of palatal shelf elevation, whereas Has2f/f;Osr2-Cre fetuses had normal mandibles and delayed palatal shelf elevation. All Has2f/f;Hand2-Cre pups showed reduced mandible size and about 50% of them had cleft palate with disruption of palatal shelf elevation. Results from explant culture assays indicate that disruption of palatal shelf elevation in Has2f/f;Hand2-Cre mutant fetuses resulted from physical obstruction by the malformed mandible and tongue. Together, these data indicate that hyaluronan plays a crucial intrinsic role in palatal shelf expansion and timely reorientation to the horizontal position above the tongue as well as an important role in mandibular morphogenesis that secondarily affects palatal shelf elevation.
Collapse
|
41
|
Lan Y, Wang Y, Lu H. Opsin 3 is a key regulator of ultraviolet A-induced photoageing in human dermal fibroblast cells. Br J Dermatol 2019; 182:1228-1244. [PMID: 31380578 PMCID: PMC7318274 DOI: 10.1111/bjd.18410] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
Background Chronic exposure to ultraviolet (UV) radiation (mainly UVA) induces a sustained increase of matrix metalloproteinases (MMPs), especially MMP1, MMP2, MMP3 and MMP9 in human skin fibroblasts. MMPs can lead to the degradation of fibrous connective tissue, which is the main cause of skin photoageing. The molecular mechanisms through which fibroblasts sense UVA and trigger the cell signalling pathways involved in the upregulation of MMPs have not been well elucidated. Objectives Here, we investigated the function and potential mechanisms of photoageing of opsin (OPN)3 in normal human dermal fibroblasts (NHDFs). Methods Real‐time polymerase chain reaction and Western blot analysis were used to analyse the expression levels of OPN3 in NHDFs and photoageing models. Subsequently, NHDFs transfected with OPN3 inhibitors and indicators related to photoageing before and after UVA irradiation included expression levels of MMP1, MMP2, MMP3 and MMP9, and signalling pathway protein molecules were examined. Results We provide evidence that OPN3 initiates UVA phototransduction in NHDFs. OPN3 triggers phosphorylation of activator protein 1 and ultimately upregulates MMP1, MMP2, MMP3 and MMP9 in NHDFs through activating Ca2+/calmodulin‐dependent protein kinase II, cyclic adenosine monophosphate response element‐binding protein, extracellular signal‐regulated kinase, c‐JUN N‐terminal kinase and p38. Here, we demonstrate for the first time that OPN3 is the key sensor responsible for upregulating MMP1, MMP2, MMP3 and MMP9 in NHDFs following UVA exposure via the calcium‐dependent G protein‐coupled signalling pathway. Conclusions Our studies provide insights into the understanding of the molecular mechanisms through which human skin cells respond to UVA radiation and may reveal molecular targets for skin photoageing prevention or clinical management. What's already known about this topic? Photoaged fibroblasts accumulate with long‐term ultraviolet (UV) exposure. Matrix metalloproteinases (MMPs) play an important role in the pathogenesis of photoageing. MMP1, MMP2, MMP3 and MMP9 are responsible for the destruction of fibroblast collagen in severely photodamaged skin. Opsins (OPNs) are light‐sensitive members of the superfamily of heptahelical G protein‐coupled receptors, a family of cell surface receptors that are activated by a variety of stimuli and mediate signalling across membranes.
What does this study add? OPN3 is highly expressed in fibroblasts and responds to UVA irradiation. OPN3 regulates the expression of MMP1, MMP2, MMP3 and MMP9 via the calcium‐dependent G protein‐coupled signalling pathway. OPN3 is a light‐sensitive sensor that plays an important role in photoageing of the skin.
Linked Comment: Julie Thornton. Br J Dermatol 2020; 182:1086–1087. Plain language summary available online
Collapse
|
42
|
Anton G, Badhrees I, Barbeau PS, Beck D, Belov V, Bhatta T, Breidenbach M, Brunner T, Cao GF, Cen WR, Chambers C, Cleveland B, Coon M, Craycraft A, Daniels T, Danilov M, Darroch L, Daugherty SJ, Davis J, Delaquis S, Der Mesrobian-Kabakian A, DeVoe R, Dilling J, Dolgolenko A, Dolinski MJ, Echevers J, Fairbank W, Fairbank D, Farine J, Feyzbakhsh S, Fierlinger P, Fudenberg D, Gautam P, Gornea R, Gratta G, Hall C, Hansen EV, Hoessl J, Hufschmidt P, Hughes M, Iverson A, Jamil A, Jessiman C, Jewell MJ, Johnson A, Karelin A, Kaufman LJ, Koffas T, Krücken R, Kuchenkov A, Kumar KS, Lan Y, Larson A, Lenardo BG, Leonard DS, Li GS, Li S, Li Z, Licciardi C, Lin YH, MacLellan R, McElroy T, Michel T, Mong B, Moore DC, Murray K, Njoya O, Nusair O, Odian A, Ostrovskiy I, Piepke A, Pocar A, Retière F, Robinson AL, Rowson PC, Ruddell D, Runge J, Schmidt S, Sinclair D, Soma AK, Stekhanov V, Tarka M, Todd J, Tolba T, Totev TI, Veenstra B, Veeraraghavan V, Vogel P, Vuilleumier JL, Wagenpfeil M, Watkins J, Weber M, Wen LJ, Wichoski U, Wrede G, Wu SX, Xia Q, Yahne DR, Yang L, Yen YR, Zeldovich OY, Ziegler T. Search for Neutrinoless Double-β Decay with the Complete EXO-200 Dataset. PHYSICAL REVIEW LETTERS 2019; 123:161802. [PMID: 31702371 DOI: 10.1103/physrevlett.123.161802] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/30/2019] [Indexed: 06/10/2023]
Abstract
A search for neutrinoless double-β decay (0νββ) in ^{136}Xe is performed with the full EXO-200 dataset using a deep neural network to discriminate between 0νββ and background events. Relative to previous analyses, the signal detection efficiency has been raised from 80.8% to 96.4±3.0%, and the energy resolution of the detector at the Q value of ^{136}Xe 0νββ has been improved from σ/E=1.23% to 1.15±0.02% with the upgraded detector. Accounting for the new data, the median 90% confidence level 0νββ half-life sensitivity for this analysis is 5.0×10^{25} yr with a total ^{136}Xe exposure of 234.1 kg yr. No statistically significant evidence for 0νββ is observed, leading to a lower limit on the 0νββ half-life of 3.5×10^{25} yr at the 90% confidence level.
Collapse
|
43
|
Lan Y, Verstegen M, Tamminga S, Williams B. The role of the commensal gut microbial community in broiler chickens. WORLD POULTRY SCI J 2019. [DOI: 10.1079/wps200445] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Wang L, Zhao H, Li J, Xu Y, Lan Y, Yin W, Liu X, Yu L, Lin S, Du MY, Li X, Xiao Y, Zhang Y. Identifying functions and prognostic biomarkers of network motifs marked by diverse chromatin states in human cell lines. Oncogene 2019; 39:677-689. [PMID: 31537905 PMCID: PMC6962092 DOI: 10.1038/s41388-019-1005-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/30/2019] [Accepted: 08/15/2019] [Indexed: 12/15/2022]
Abstract
Epigenetic modifications play critical roles in modulating gene expression, yet their roles in regulatory networks in human cell lines remain poorly characterized. We integrated multiomics data to construct directed regulatory networks with nodes and edges labeled with chromatin states in human cell lines. We observed extensive association of diverse chromatin states and network motifs. The gene expression analysis showed that diverse chromatin states of coherent type-1 feedforward loop (C1-FFL) and incoherent type-1 feedforward loops (I1-FFL) contributed to the dynamic expression patterns of targets. Notably, diverse chromatin state compositions could help C1- or I1-FFL to control a large number of distinct biological functions in human cell lines, such as four different types of chromatin state compositions cooperating with K562-associated C1-FFLs controlling “regulation of cytokinesis,” “G1/S transition of mitotic cell cycle,” “DNA recombination,” and “telomere maintenance,” respectively. Remarkably, we identified six chromatin state-marked C1-FFL instances (HCFC1-NFYA-ABL1, THAP1-USF1-BRCA2, ZNF263-USF1-UBA52, MYC-ATF1-UBA52, ELK1-EGR1-CCT4, and YY1-EGR1-INO80C) could act as prognostic biomarkers of acute myelogenous leukemia though influencing cancer-related biological functions, such as cell proliferation, telomere maintenance, and DNA recombination. Our results will provide novel insight for better understanding of chromatin state-mediated gene regulation and facilitate the identification of novel diagnostic and therapeutic biomarkers of human cancers.
Collapse
|
45
|
Zhang G, Lan Y, Xie A, Shi J, Zhao H, Xu L, Zhu S, Luo T, Zhao T, Xiao Y, Li X. Comprehensive analysis of long noncoding RNA (lncRNA)-chromatin interactions reveals lncRNA functions dependent on binding diverse regulatory elements. J Biol Chem 2019; 294:15613-15622. [PMID: 31484726 DOI: 10.1074/jbc.ra119.008732] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/30/2019] [Indexed: 12/28/2022] Open
Abstract
Over the past decade, thousands of long noncoding RNAs (lncRNAs) have been identified, many of which play crucial roles in normal physiology and human disease. LncRNAs can interact with chromatin and then recruit protein complexes to remodel chromatin states, thus regulating gene expression. However, how lncRNA-chromatin interactions contribute to their biological functions is largely unknown. Here, we collected and constructed an atlas of 188,647 lncRNA-chromatin interactions in human and mouse. All lncRNAs showed diverse epigenetic modification patterns at their binding sites, especially the marks of enhancer activity. Functional analysis of lncRNA target genes further revealed that lncRNAs could exert their functions by binding to both promoter and distal regulatory elements, especially the distal regulatory elements. Intriguingly, many important pathways were observed to be widely regulated by lncRNAs through distal binding. For example, NEAT1, a cancer lncRNA, controls 13.3% of genes in the PI3K-AKT signaling pathway by interacting with distal regulatory elements. In addition, "two-gene" signatures composed of a lncRNA and its distal target genes, such as HOTAIR-CRIM1, provided significant clinical benefits relative to the lncRNA alone. In summary, our findings underscored that lncRNA-distal interactions were essential for lncRNA functions, which would provide new clues to understand the molecular mechanisms of lncRNAs in complex disease.
Collapse
|
46
|
Zhang G, Shi J, Zhu S, Lan Y, Xu L, Yuan H, Liao G, Liu X, Zhang Y, Xiao Y, Li X. DiseaseEnhancer: a resource of human disease-associated enhancer catalog. Nucleic Acids Res 2019; 46:D78-D84. [PMID: 29059320 PMCID: PMC5753380 DOI: 10.1093/nar/gkx920] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/01/2017] [Indexed: 01/09/2023] Open
Abstract
Large-scale sequencing studies discovered substantial genetic variants occurring in enhancers which regulate genes via long range chromatin interactions. Importantly, such variants could affect enhancer regulation by changing transcription factor bindings or enhancer hijacking, and in turn, make an essential contribution to disease progression. To facilitate better usage of published data and exploring enhancer deregulation in various human diseases, we created DiseaseEnhancer (http://biocc.hrbmu.edu.cn/DiseaseEnhancer/), a manually curated database for disease-associated enhancers. As of July 2017, DiseaseEnhancer includes 847 disease-associated enhancers in 143 human diseases. Database features include basic enhancer information (i.e. genomic location and target genes); disease types; associated variants on the enhancer and their mediated phenotypes (i.e. gain/loss of enhancer and the alterations of transcription factor bindings). We also include a feature on our website to export any query results into a file and download the full database. DiseaseEnhancer provides a promising avenue for researchers to facilitate the understanding of enhancer deregulation in disease pathogenesis, and identify new biomarkers for disease diagnosis and therapy.
Collapse
|
47
|
Deng Y, Luo S, Deng C, Luo T, Yin W, Zhang H, Zhang Y, Zhang X, Lan Y, Ping Y, Xiao Y, Li X. Identifying mutual exclusivity across cancer genomes: computational approaches to discover genetic interaction and reveal tumor vulnerability. Brief Bioinform 2019; 20:254-266. [PMID: 28968730 DOI: 10.1093/bib/bbx109] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Indexed: 02/06/2023] Open
Abstract
Systematic sequencing of cancer genomes has revealed prevalent heterogeneity, with patients harboring various combinatorial patterns of genetic alteration. In particular, a phenomenon that a group of genes exhibits mutually exclusive patterns has been widespread across cancers, covering a broad spectrum of crucial cancer pathways. Recently, there is considerable evidence showing that, mutual exclusivity reflects alternative functions in tumor initiation and progression, or suggests adverse effects of their concurrence. Given its importance, numerous computational approaches have been proposed to study mutual exclusivity using genomic profiles alone, or by integrating networks and phenotypes. Some of them have been routinely used to explore genetic associations, which lead to a deeper understanding of carcinogenic mechanisms and reveals unexpected tumor vulnerabilities. Here, we present an overview of mutual exclusivity from the perspective of cancer genome. We describe the common hypothesis underlying mutual exclusivity, summarize the strategies for the identification of significant mutually exclusive patterns, compare the performance of representative algorithms from simulated data sets and discuss their common confounders.
Collapse
|
48
|
Deng T, Duan X, Liu B, Lan Y, Cai C, Zhang T, Zhu W, Mai Z, Wu W, Zeng G. Association between phosphodiesterase type 5 inhibitors use and risk of melanoma: a meta-analysis. Neoplasma 2019. [PMID: 29534582 DOI: 10.4149/neo_2018_170111n23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This meta-analysis aimed to clarify the actual association between the phosphodiesterase type 5 inhibitors (PDE5-Is) use and the risk of melanoma in erectile dysfunction (ED) patients. A systematic literature search was conducted in online databases in October, 2016 to identify studies focusing on the association between PDE5-Is use and the risk of melanoma. Summarized multivariate adjusted risk ratios (RRs) and 95% confidence intervals (CIs) were calculated to assess the strength of associations. A total of six clinical trials containing more than one million participants were included. ED patients using PDE5-Is shared a significant high risk of melanoma (RR=1.12, 95% CI=1.03-1.21, p=0.006). Positive associations were observed in all kinds of prescriptions: single prescription (RR=1.20, 95% CI=1.06-1.35, p=0.003), medium number of prescription (RR=1.15, 95% CI=1.01-1.30, p=0.03), and high number of prescription (RR=1.18, 95% CI=1.05-1.34, P=0.006). Additionally, PDE5-Is were also found to be significantly associated with increased risk of basal cell carcinoma (RR=1.14, 95% CI=1.09-1.19, p<0.00001). Our study indicates that PDE5-Is use could significantly increase the risk of melanoma and basal cell carcinoma. However, the risk of melanoma did not rise significantly with the increased number of prescriptions. Consequently, owing to the lack of information about other potential synergistic factors, it is difficult for us to make a solid conclusion that application of PDE5-Is is the direct cause of increased risk of melanoma. Their relationship needs to be validated by further evidences.
Collapse
|
49
|
Lan Y, Wang Y, Yang X, Lu H. 738 Opsin3- A link to UVA-induced skin photoaging. J Invest Dermatol 2019. [DOI: 10.1016/j.jid.2019.03.814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Egolf S, Aubert Y, Anderson A, Lan Y, Maldonado-Lopez A, Simpson C, Zarkos M, Ge K, Capell B. 319 Epigenetic enhancer regulation in epithelial development and carcinogenesis. J Invest Dermatol 2019. [DOI: 10.1016/j.jid.2019.03.395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|