26
|
Takáčová A, Bajuszová M, Šimonovičová A, Šutý Š, Nosalj S. Biocoagulation of Dried Algae Chlorella sp. and Pellets of Aspergillus Niger in Decontamination Process of Wastewater, as a Presumed Source of Biofuel. J Fungi (Basel) 2022; 8:jof8121282. [PMID: 36547615 PMCID: PMC9783253 DOI: 10.3390/jof8121282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The removal of microalgae represents a problematic part of the water decontamination process, in which most techniques are expensive and non-ecological. In the paper, we focus on the synergistic relationship between microscopic filamentous fungi and algal culture. In the process of decontamination of a model sample containing ammonium ions, efficient biocoagulation, resp. co-pelletization of dried algae Chlorella sp. and Aspergillus niger sensu stricto are shown. The microscopic filamentous fungus species A. niger was added to a culture of an algal suspension of Chlorella sp., where the adhesion of the algal cells to the fungi subsequently occurred due to the electrostatic effect of the interaction, while the flocculation activity was approximately 70 to 80%. The algal cells adhered to the surface of the A. niger pellets, making them easily removable from the solution. The ability of filamentous fungi to capture organisms represents a great potential for the biological isolation of microalgae (biocoagulation) from production solutions because microalgae are considered to be a promising renewable source of oil and fermentables for bioenergy. This form of algae removal, or its harvesting, also represents a great low-cost method for collecting algae not only as a way of removing unnecessary material but also for the purpose of producing biofuels. Algae are a robust bioabsorbent for absorbing lipids from the environment, which after treatment can be used as a component of biodiesel. Chemical analyses also presented potential ecological innovation in the area of biofuel production. Energy-efficient and eco-friendly harvesting techniques are crucial to improving the economic viability of algal biofuel production.
Collapse
|
27
|
Mikolaitienė A, Šlinkšienė R. Effect of Various Binders on the Properties of Microalgae-Enriched Urea Granules. PLANTS (BASEL, SWITZERLAND) 2022; 11:3362. [PMID: 36501401 PMCID: PMC9740299 DOI: 10.3390/plants11233362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
As the human population grows and the demand for food grows with it, the recycling, or containment of materials is important for resource consumption. Nitrogen is one of the main plant nutrients, most commonly used as the chemical substance urea. Because urea is very soluble and at a relatively low temperature (50-60 °C) it hydrolyses easily (releases N2 and CO2) in soil solutions; this is why very large amounts of nitrogen are lost and greenhouse gases are released and this causes serious environmental problems. Therefore, the aim of this study was to create microalgae-enriched nitrogen fertilizers with different binders that inhibit nitrogen leaching from the soil. Binders such as water (W), polyvinyl acetate dispersion (PVAD), molasses (M), potato starch (S), and carboxymethyl cellulose (CMC) were used in this study and their influence on leaching was analysed. Granular fertilizers were produced in a drum granulator and dryer under equal conditions: granulation time was 7 min, granulation took place at a temperature of 50-60 °C, at a drum rotation speed of 26 rpm, with a 5° inclination angle of the drum. The results show that the highest quantity of the marketable fraction was 43.01 (±3.068%) and it was obtained using urea, with 10% (w/w) microalgae additive, and 11.4% (w/w) of 5% concentration molasses solution. The granules of the fertilizer marketable fraction are similar in size because the size guide number (SGN) of the granules vary in a narrow range and fall within the interval of 287 to 304; this means that the average particle size is ~3 mm. When different binders were used, the average static crushing strength of the granulated fertilizers was lower (approximately 6-12 MPa) than using water alone (approximately 12-16 MPa), but the lower values still fell into the required range. Additives of PVAD solutions and molasses solutions have been found to retain nitrogen in sand. The method of one-way analysis of variance (ANOVA) was used to evaluate the results.
Collapse
|
28
|
Comparative study between immobilized and suspended Chlorella sp in treatment of pollutant sites in Dhiba port Kingdom of Saudi Arabia. Heliyon 2022; 8:e10766. [PMID: 36193529 PMCID: PMC9526162 DOI: 10.1016/j.heliyon.2022.e10766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/05/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Dhiba port has a strategic location near the Neom project. Various anthropogenic activities contributed to the discharge of metals, metalloids and oil spills in the aquatic system and caused environmental pollution. Microalgae are the best microorganisms in aquatic conditions known to be capable of eliminating contaminants. In this work the Chlorella sp. was isolated from seawater, the metals, metalloids were determine using ICP- OES (Inductively Coupled Plasma-Optical Emission Spectrometer) and hydrocarbons were determine using GC-MS in different five sites in Dhiba port, after and before treated with Chlorella sp, and immobilized Chlorella sp. The growth parameters (optical density and pigment contents) of Chlorella sp and immobilized Chlorella sp. were investigated during 14 days of grown. The results showed that the most contaminated site by metals and metalloids was site no 3, by Sb, As, Be, Se, and Zn with concentrations 0.07546, 0.05709, 0.09326, 0.4618, and 0.00979 mg/L respectively, and site no 1 was the most contamination by organic compounds, so the site no 1 and site no 3 were chosen to test the efficiency of Chlorella sp. and immobilized Chlorella sp. to remove hydrocarbons and both metals and metalloids. Chlorella sp. and immobilized Chlorella sp. had completely removed metals and metalloids that were present in site 3. There were only 6 compounds remained, after treatments with immobilized alga in site 1. Immobilized Chlorella sp. is the most effective than suspended Chlorella sp in reduces the number of organic compounds in contaminated area. It is an economic tool due to simplifying harvesting and then retaining for further processing.
Collapse
|
29
|
Aththanayake AMKCB, Rathnayake IVN, Deeyamulla MP, Megharaj M. Potential use of Chlorella vulgaris KCBAL01 from a freshwater stream receiving treated textile effluent in hexavalent chromium [Cr(VI)] removal in extremely acidic conditions. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:780-788. [PMID: 36026594 DOI: 10.1080/10934529.2022.2113281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Remediation of hexavalent chromium with conventional chemical and physical methods is a costly process, while replacing some critical steps in physiochemical remediation with self-sustaining bioremediation agents are expected to be cost-effective and environmentally friendly implementation. In this study, a microalga isolated from a freshwater stream receiving treated textile wastewater was identified up to its molecular level and investigated its ability to tolerate and remove hexavalent chromium from extremely acidic conditions under different temperatures. The ability of microalgae to tolerate and remove Cr(VI) was investigated by growing it in BG11 media with different pH (1, 2, 3 & 7), amended with several concentrations of Cr(VI) and incubated under different temperatures for 96 hrs. Microalga was identified as Chlorella vulgaris and found that the isolated strain has a higher hexavalent chromium removal potential in extremely acidic conditions than in neutral pH conditions at 25 °C. In contrast, its Cr(VI) removal potential is significantly influenced by the pH and temperature of the growth medium. Furthermore, it exhibited a permanent viability loss at extreme acidic conditions (pH 1 - 3) and prolonged exposure to the higher chromium content. The microalga investigated will be a highly useful bioagent in hexavalent chromium remediation in high acidic conditions.
Collapse
|
30
|
Zhao Y, Wang X, Tang X, Zhao Y. Toxicity of 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) on the green microalgae Chlorella sp. and the role of cellular oxidative stress. MARINE POLLUTION BULLETIN 2022; 180:113810. [PMID: 35665619 DOI: 10.1016/j.marpolbul.2022.113810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are toxic to marine organisms including the major primary producer phytoplankton, while the toxic mechanisms haven't yet been fully clarified. Therefore, we comprehensively studied the toxic mechanisms of BDE-47 on the marine chlorophyte Chlorella sp., with a focus on the role of cellular oxidative stress. The results indicate that BDE-47 stress resulted in the inhibition of population growth as well as cell death and programmed cell death. The antioxidant system was activated in both low and high BDE-47 treatments, but only microalgal cells in the high BDE-47 treatment showed cellular oxidative stress. By adding ROS inhibitor, the relief of photosynthetic inhibition, Ca2+ overproduction and cell death was found. Therefore, we conclude that photosynthetic damage, cell death and cellular oxidative stress were the major mechanisms of BDE-47 toxicity to Chlorella sp., and that cellular oxidative stress played an important role in mediating the other mechanisms.
Collapse
|
31
|
Thiagarajan V, Seenivasan R, Jenkins D, Chandrasekaran N, Mukherjee A. Mixture toxicity of TiO 2 NPs and tetracycline at two trophic levels in the marine ecosystem: Chlorella sp. and Artemia salina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152241. [PMID: 34921881 DOI: 10.1016/j.scitotenv.2021.152241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/27/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Increasing usage of both nanomaterials and pharmaceuticals and their unabated release to the marine ecosystem pose a serious concern nowadays. The toxicity of the mixture of TiO2 NPs and tetracycline (TC) in the marine species are not very well covered in prior literature. The current study explores the joint toxic effects of TiO2 NPs and TC in a simulated marine food chain: Chlorella sp. and Artemia salina. Chlorella sp. was interacted with pristine TiO2 NPs (0.05, 05, and 5 mg/L), TC (0.5 mg/L), and their combinations for 48 h. The toxicity induced in Chlorella sp. by pristine TiO2 NPs through oxidative stress and chloroplast damage was not significantly changed in the presence of TC. Principal component analysis for the toxicity parameters revealed a strong association between growth inhibition and adsorption/internalization. In the second trophic level (A. salina), the waterborne exposure of TC additively increased the toxicity of TiO2 NPs. Both adsorption and degradation played a major role in the removal of TC from the suspension, resulting in additive toxic effects in both Chlorella sp. and A. salina. Compared to the waterborne exposure, the foodborne exposure of TiO2 NPs and TC induced lesser toxic effects owing to reduced uptake and accumulation in A. salina. Biomagnification results indicate that the dietary transfer of TiO2 NPs and TC does not pose a serious environmental threat in this two-level marine food chain.
Collapse
|
32
|
Natarajan L, Jenifer MA, Chandrasekaran N, Suraishkumar GK, Mukherjee A. Polystyrene nanoplastics diminish the toxic effects of Nano-TiO 2 in marine algae Chlorella sp. ENVIRONMENTAL RESEARCH 2022; 204:112400. [PMID: 34800532 DOI: 10.1016/j.envres.2021.112400] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/15/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Widespread usage of nano-TiO2 in various commercial products and their consequent release into the seawater pose a severe threat to marine biota. Nanoplastics, a secondary pollutant in the marine environment, could influence adverse effects of nano-TiO2. The main goal of the present study was to investigate the influence of the differently functionalized polystyrene nanoplastics (COOH-PSNPs, NH2-PSNPs, and Plain-PSNPs) on the acute toxic effects of P25 nano-TiO2 in marine algae Chlorella sp. Three different concentrations of nano-TiO2, 0.25, 0.5, and 1 mg/L, mixed with 5 mg/L of the PSNPs were employed in this study. A substantial increase was noted in mean hydrodynamic sizes of nano-TiO2 when they were mixed with the PSNPs. This hetero-aggregation would reduce the bioavailability of the particles to the algae. The presence of the PSNPs in the mixture reduced the toxicity of nano-TiO2 significantly. A signficant decline in the oxidative stress parameters like total ROS, superoxide (), and hydroxyl radical generation was noted for the mixture of nano-TiO2 with the PSNPs in comparison with the pristine counterparts. The lipid peroxidation, and the antioxidant enzyme activities in the cells correlated well with the reactive species generation results. The treatments with the mixture resulted in notable enhancement in the esterase activity in the cells. The Independent Action model suggested antagonistic interactions between PSNPs and nano-TiO2. The results from this study clearly demonstrate that nano-TiO2 in presence of the PSNPs exerted significantly reduced cytotoxic effects in Chlorella sp, in comparison with the pristine particles.
Collapse
|
33
|
Anto S, Premalatha M, Mathimani T. Tertiary amine as an efficient CO 2 switchable solvent for extracting lipids from hypersaline microalgae. CHEMOSPHERE 2022; 288:132442. [PMID: 34606898 DOI: 10.1016/j.chemosphere.2021.132442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/04/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Considering the momentous cost drivers in energy efficient algal biorefinery processes, a green alternative in extracting lipid from microalgae is anticipated. Switchable solvent system using tertiary amines namely DMBA (Dimethylbenzylamine), DMCHA (Dimethylcyclohexylamine), and DIPEA (Diisopropylethylamine) for lipid extraction from wet hypersaline microalgae was investigated in this study. Interestingly, present study showed that at 1:1 (v/v of fresh DMBA solvent: microalgal biomass), and for 1 h extraction time, the lipid yield was 41.9, 26.6, and 33.3% for Chlorella sp. NITT 05, Chlorella sp. NITT 02, and Picochlorum sp. NITT 04, respectively and for recovered DMBA solvent, at 1:1 (v/v) and for 1 h extraction time, the lipid yield was 40.8, 25.97, and 32%, respectively. Similarly, lipid extraction using DMCHA solvent for Chlorella sp. NITT 05, Chlorella sp. NITT 02, and Picochlorum sp. NITT 04 at 1:1 (v/v of solvent: microalgal biomass) and 1 h extraction time showed 34.28, 24.24 and 23.33% lipids, respectively for fresh solvent and 34.01, 24.24 and 23.18% for recovered solvent respectively; while DIPEA was not competent in lipid extraction from three tested microalgae. FAME profile revealed the presence of saturated fatty acids as 43.04%, 40.98%, 38.45% and monounsaturated fatty acids as 28.38%, 27.05%, 23.3% for Chlorella sp. NITT05, Picochlorum sp. NITT04, Chlorella sp. NITT02, respectively. This study attributes Chlorella sp. NITT05 and Picochlorum sp. NITT04 to be ideal algal species for biodiesel production.
Collapse
|
34
|
Kodama Y, Sumita H. The ciliate Paramecium bursaria allows budding of symbiotic Chlorella variabilis cells singly from the digestive vacuole membrane into the cytoplasm during algal reinfection. PROTOPLASMA 2022; 259:117-125. [PMID: 33881616 DOI: 10.1007/s00709-021-01645-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
The ciliate Paramecium bursaria harbors several hundred symbiotic Chlorella spp. cells in the cytoplasm. Algal re-endosymbiosis can be artificially induced using alga-removed P. bursaria. During algal re-endosymbiosis, algae ingested into the host digestive vacuoles (DVs) avoid digestion by the host lysosomal enzymes and then escape into the cytoplasm by budding off of the DV membrane. The budded alga-enclosing DV membrane then differentiates into the symbiosome or perialgal vacuole (PV) membrane and is localized beneath the host cell cortex. In this study, we determined whether the PV membrane has the ability to recognize the symbiotic alga singly by eliminating other small microspheres in the same DV. To clarify the accuracy of the budding process, we mixed fluorescent-labeled microspheres of diameter 0.20 µm with isolated symbiotic algae during algal re-endosymbiosis. No fluorescence was observed from the PV membrane, as expected, and the budding DVs that enclosed both undigested and digested algae. Additionally, the algal re-endosymbiosis rate was significantly reduced in the presence of microspheres. These observations showed that the host P. bursaria allowed budding of the algae singly from the membranes of DVs without microspheres and this process required close contact between the DV membrane and the algal cell wall.
Collapse
|
35
|
Šimonovičová A, Takáčová A, Šimkovic I, Nosalj S. Experimental Treatment of Hazardous Ash Waste by Microbial Consortium Aspergillus niger and Chlorella sp.: Decrease of the Ni Content and Identification of Adsorption Sites by Fourier-Transform Infrared Spectroscopy. Front Microbiol 2021; 12:792987. [PMID: 34950123 PMCID: PMC8689076 DOI: 10.3389/fmicb.2021.792987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Despite the negative impact on the environment, incineration is one of the most commonly used methods for dealing with waste. Besides emissions, the production of ash, which usually shows several negative properties, such as a higher content of hazardous elements or strongly alkaline pH, is problematic from an environmental viewpoint as well. The subject of our paper was the assessment of biosorption of Ni from ash material by a microbial consortium of Chlorella sp. and Aspergillus niger. The solid substrate represented a fraction of particles of size <0.63 mm with a Ni content of 417 mg kg-1. We used a biomass consisting of two different organisms as the sorbent: a non-living algae culture of Chlorella sp. (an autotrophic organism) and the microscopic filamentous fungus A. niger (a heterotrophic organism) in the form of pellets. The experiments were conducted under static conditions as well as with the use of shaker (170 rpm) with different modifications: solid substrate, Chlorella sp. and pellets of A. niger; solid substrate and pellets of A. niger. The humidity-temperature conditions were also changed. Sorption took place under dry and also wet conditions (with distilled water in a volume of 30-50 ml), partially under laboratory conditions at a temperature of 25°C as well as in the exterior. The determination of the Ni content was done using inductively coupled plasma optical emission spectrometry (ICP-OES). The removal of Ni ranged from 13.61% efficiency (Chlorella sp., A. niger with the addition of 30 ml of distilled water, outdoors under static conditions after 48 h of the experiment) to 46.28% (Chlorella sp., A. niger with the addition of 30 ml of distilled water, on a shaker under laboratory conditions after 48 h of the experiment). For the purpose of analyzing the representation of functional groups in the microbial biomass and studying their interaction with the ash material, we used Fourier-transform infrared (FTIR) spectroscopy. We observed that the amount of Ni adsorbed positively correlates with absorbance in the spectral bands where we detect the vibrations of several organic functional groups. These groups include hydroxyl, aliphatic, carbonyl, carboxyl and amide structural units. The observed correlations indicate that, aside from polar and negatively charged groups, aliphatic or aromatic structures may also be involved in sorption processes due to electrostatic attraction. The correlation between absorbance and the Ni content reached a maximum in amide II band (r = 0.9; P < 0.001), where vibrations of the C=O, C-N, and N-H groups are detected. The presented results suggest that the simultaneous use of both microorganisms in biosorption represents an effective method for reducing Ni content in a solid substrate, which may be useful as a partial process for waste disposal.
Collapse
|
36
|
Oliveira APDS, Assemany P, Ribeiro Júnior JI, Covell L, Nunes-Nesi A, Calijuri ML. Swine wastewater treatment in high rate algal ponds: Effects of Cu and Zn on nutrient removal, productivity and biomass composition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113668. [PMID: 34492441 DOI: 10.1016/j.jenvman.2021.113668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/06/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to evaluate the simultaneous interferences of Cu and Zn found in swine wastewater (SW) in the development of microalgae considering real conditions of cultivation in high rate algal ponds (HRAPs). Ten HRAPs on a pilot scale were fed with SW with different mixtures of Cu (0.5-3.0 mg/L) and Zn (5.0-25.0 mg/L). The interferences of these metals in removing nutrients (N-NH4+ and soluble phosphorus (Ps)) from the SW were determined. In addition, this study evaluated the effects on biomass growth and biochemical composition. Chlorella sp. was dominant in all HRAPs and the condition that potentiated its growth occurred in medium containing 1.8 mg Cu/L + 15.0 mg Zn/L, while higher concentrations conferred inhibition. Only Cu compromised the removal rates of N-NH4+ while the effects of Zn were not significant. Contrary, Zn interfered with Ps removal rates, but the impact of Cu was not significant. The greatest Cu applications increased the protein levels by biomass (50.5-55.2 %). Carbohydrate accumulation was favored by conditions that inhibited the development of microalgae due to either limitation or excess of metals. Copper and Zn compromised the levels of lipids, and the control treatment had the highest content (24.5 %). The presence of Cu and Zn changed the dynamics of HRAPs regarding nutrient removal, productivity, and biochemical composition of the biomass.
Collapse
|
37
|
Azam R, Kothari R, Singh HM, Ahmad S, Sari A, Tyagi VV. Cultivation of two Chlorella species in Open sewage contaminated channel wastewater for biomass and biochemical profiles: Comparative lab-scale approach. J Biotechnol 2021; 344:24-31. [PMID: 34838946 DOI: 10.1016/j.jbiotec.2021.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/13/2021] [Accepted: 11/20/2021] [Indexed: 11/28/2022]
Abstract
Open sewage contaminated channel wastewater (OSCCW) has high pollutant loads, responsible for eutrophication, when mixed with various channels of urban communities. But, these pollutants can be converted and recovered into useful end products with the help of algal species. In this study, two species of Chlorella (C. vulgaris and C. pyrenoidosa) were selected and investigated for the production of algal biomass and nutrient removal efficiencies with 50% concentration of OSCCW, in a comparative way at lab-scale. Chlorella sp. cultivated in OSCCW have removed nitrate (76.9-78.8%) and phosphate (67.6-79.7%) whereas COD (72.4-76.2%) and BOD (62.3-72.4%) respectively. Correlation analysis was investigated between physico-chemical parameters and biochemical profile of both species to analyze the positive and negative correlation between two variables. The bio-chemical profile and biomass productivity of both species of Chlorella were observed well on the basis of productivity of biomass (60.1, 56.5 mg/l/d), carbohydrate (15.71, 8.82 mg/l/d), protein (11.21, 15.82 mg/l/d), lipid (20.8, 17.5 mg/l/d) and chlorophyll (0.78, 0.67 mg/l/d) in OSCCW. The maximum lipid content (34.6%) was obtained with C. pyrenoidosa as compared to C. vulgaris. Findings also support that OSCCW is well-off with nutrient resources, which can be suitable alternative for algal biomass production and remediated wastewater can be used for animal and fish farming type activities.
Collapse
|
38
|
Uysal Ö, Eki Nci K. Treatment of Rose Oil Processing Effluent with Chlorella sp. Using Photobioreactor and Raceway. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113089. [PMID: 34157545 DOI: 10.1016/j.jenvman.2021.113089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 05/05/2023]
Abstract
The integration of treatment of wastewater from agro-based industries with microalgae cultivation can reduce costs associated with cultivation while treating wastewater to meet the discharge limits for chemical quality of irrigation in agriculture and to obtain biofertilizers. Rose Oil Processing Effluent (ROPE) can be utilized as a growth medium for Chlorella sp. and thus can be used for biofertilizer production. The present study is aimed at determining the feasibility of the cultivation of Chlorella sp. in ROPE using a tubular photobioreactor with a capacity of 50 L and a raceway to treat ROPE while consuming less energy. The optimum mixing ratio ([ROPE/(ROPE + Bold Basal Medium (BBM)] × 100) was determined as 50% using 2-L Erlenmeyer flasks based on the COD removal efficiency. Better removal efficiencies with regard to COD, BOD5, NH4+-N, and NO3--N were obtained from the raceway compared to the tubular photobioreactor. The effluents from both systems met the chemical quality of irrigation water. The results of the biomasses harvested from both systems in macro and microelements revealed that they have a potential as a biofertilizer in agriculture. The energetic analysis of the ROPE treatment using the tubular photobioreactor and raceway showed that the raceway system had a better net energy ratio while consuming less energy and producing more energy during cultivation. Overall, the raceway appeared to be a better option to treat ROPE with production of biofertilizer and irrigation water quality while consuming less energy.
Collapse
|
39
|
Jeong GT. Valorization of microalgae into 5-hydroxymethylfurfural by two-step conversion with ferric sulfate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112919. [PMID: 34089958 DOI: 10.1016/j.jenvman.2021.112919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Microalgae are known as renewable, potential, and sustainable feedstocks for biofuel production. The present work investigated the efficient valorization of green microalgae Chlorella sp. to produce sugars and 5-hydroxymethylfurfural (5-HMF) using thermochemical conversion with a metal-salt (ferric sulfate) as catalyst using a statistical approach and two-step conversion. A statistical approach with a Box-Behnken design was introduced to optimize the conversion for producing sugars. As a result of optimization, 86.46% sugar yield (68.32% glucose yield) was achieved under the condition of 5% biomass and 0.6 g-catalyst/g-biomass at 155 °C and 40 min. Two-step thermochemical conversion was introduced to produce 5-HMF from microalgae. In the first step, sugars were produced from the above optimum condition; in the second step, sugar hydrolysates were converted into 5-HMF by thermochemical conversion without an additional catalyst. In two-step conversion, the maximum 5-HMF yield (37.23%) was achieved at 170 °C and 60 min from the sugar hydrolysate of microalgae obtained from the first-step thermochemical conversion with ferric sulfate. In conclusion, the microalgae as biomass and ferric sulfate as catalyst have availability and the potential to produce biosugars and platform chemicals.
Collapse
|
40
|
Thiagarajan V, Alex SA, Seenivasan R, Chandrasekaran N, Mukherjee A. Toxicity evaluation of nano-TiO 2 in the presence of functionalized microplastics at two trophic levels: Algae and crustaceans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147262. [PMID: 34088027 DOI: 10.1016/j.scitotenv.2021.147262] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
The rising use of contaminants such as nanoparticles and microplastics has taken a heavy toll on the marine environment. However, their combined toxic effects on the species across various trophic levels remain quite unexplored. The aim of this study was to explore the effects of three surface-functionalized (carboxylated, plain, and aminated) polystyrene microplastics on nano-TiO2 toxicity across two trophic levels containing Chlorella sp. as the prey and Artemia salina as the predator. The experiments carried out on Chlorella sp. include the toxicity assessment, oxidative stress determination, and uptake of nano-TiO2 (both in the presence and absence of microplastics). Results revealed that the aminated and plain polystyrene microplastics enhanced nano-TiO2 toxicity, while carboxylated microplastics decreased the toxic effects in Chlorella sp. On the other hand, toxicity assessment in Artemia salina was carried out using two different modes of exposure: aqueous and dietary routes. The aqueous route involving the direct exposure of nano-TiO2 and microplastics indicated greater toxicity, uptake, and accumulation in Artemia salina than the dietary route of exposure. Since dietary exposure decreased the toxicity, uptake, and accumulation of nano-TiO2, no change (p > 0.05) in the biomagnification factors of nano-TiO2 was noted for all the test concentrations of nano-TiO2 combined with and without microplastics. The computed values were less than 1, indicating negligible transfer of nano-TiO2 from Chlorella sp. to Artemia salina. Overall, the study highlights the two-level trophic toxicity and the transfer potential of nano-TiO2 under the influence of different microplastics.
Collapse
|
41
|
Narayanan M, Prabhakaran M, Natarajan D, Kandasamy S, Raja R, Carvalho IS, Ashokkumar V, Chinnathambi A, Alharbi SA, Devarayan K, Pugazhendhi A. Phycoremediation potential of Chlorella sp. on the polluted Thirumanimutharu river water. CHEMOSPHERE 2021; 277:130246. [PMID: 33780682 DOI: 10.1016/j.chemosphere.2021.130246] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/20/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Rivers are the most significant natural resources that afford outstanding habitation and nourishment for numerous living organisms. Urbanization and industrialization pollute rivers rendering their water unhealthy for consumption. Hence, this work was designed to find a potential native pollutant removing algae from polluted water. The physicochemical properties of the tested river water such as Electric Conductivity (EC), turbidity, total hardness, Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Ca, SO2-, and NH3, NO3, NO2, PO4, Mg, F- and Cl- contents were not within the permissible limits. Lab-scale and field-based phycoremediation treatments with the indigenous native microalgal species, Chlorella sp. from the Thirumanimutharu river water sample were set up for 15 days with three different (Group I, II, and III) biomass densities (4 × 104, 8 × 104, and 12 × 104 cells mL-1). Group III of both the lab-scale and field based treatments showed the maximum reduction in the physicochemical parameters compared to the other groups. Further, the group III of the field based study showed an extensive reduction in BOD (34.51%), COD (32.53%), NO3, NO2, free NH3 (100%) and increased dissolved oxygen (DO) (88.47%) compared to the lab scale study. In addition, the trace elements were also reduced significantly. The pollutant absorbing active functional moieties (O-H, CO, and CN) found on Chlorella sp. had been confirmed by Fourier-Transform Infrared Spectroscopy (FTIR) analysis. In the Scanning Electron Microscope (SEM) study, significant morphological changes on the surface of the treated Chlorella sp. were noticed compared with the untreated Chlorella sp. biomass, which also confirmed the absorption of the pollutants during treatment.
Collapse
|
42
|
Vilakazi H, Olasehinde TA, Olaniran AO. Chemical Characterization, Antiproliferative and Antioxidant Activities of Polyunsaturated Fatty Acid-Rich Extracts from Chlorella sp. S14. Molecules 2021; 26:molecules26144109. [PMID: 34299383 PMCID: PMC8303589 DOI: 10.3390/molecules26144109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/28/2022] Open
Abstract
Microalgae is a rich source of polyunsaturated fatty acid. This study was conducted to identify and isolate microalgal strain with the potentials for producing polyunsaturated fatty acids (PUFAs) and determine its cytotoxic effect on some cancer cells. The algal strain (Chlorella sp. S14) was cultivated using modified BG-11 media, and algal biomass obtained was used for fatty acid extraction. Gas chromatographic–mass spectrometry was used to identify and quantify the levels of the fatty acid constituents. The total content of monounsaturated fatty acids (1.12%) was low compared to polyunsaturated fatty acids (PUFAs) (52.87%). Furthermore, n-3 PUFAs accounted for (12.37%) of total PUFAs with the presence of α-linolenic acid (2.16%) and cis-11,14,17-eicosatrienoic acid (2.16%). The PUFA-rich extract did not exhibit a cytotoxic effect on normal cells. Treatment with the PUFA-rich extract (150 µg/mL) significantly reduced cell viability in MCF-7 (31.58%) and A549 (62.56%) cells after the 48 h treatment. Furthermore, treatment of MCF-7 with fatty acid extracts (125 and 150 µg/mL) showed a significant reduction in MDA levels, increase in catalase activities and decrease in GSH level compared to untreated cells. However, a slight decrease in MDA level was observed in A549 cells after the 48 h treatment. There are no significant changes in catalase activities and GSH level in treated A549 cells. However, a slight reduction of NO levels was observed in treated MCF-7 and A549 cells. These results indicate the potentials of PUFA-rich extracts from Chlorella sp. S14 to reduce viability and modulate redox status in A549 and MCF-7 cells.
Collapse
|
43
|
Shaari AL, Che Sa SN, Surif M, Zolkarnain N, Ghazali R. Growth of Marine Microalgae in Landfill Leachate and Their Ability as Pollutants Removal. Trop Life Sci Res 2021; 32:133-146. [PMID: 34367519 PMCID: PMC8300949 DOI: 10.21315/tlsr2021.32.2.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Leachate from landfill contains concentrated nutrients that may enter the terrestrial and aquatic environment, including nearby coastal areas. The nutrient contaminants eventually bring harm to marine organisms, including microalgae. This study was performed to investigate the growth of two green microalgal species, i.e. Chlorella sp. and Nannochloropsis sp. in diluted landfill leachate. Besides, the ability of nutrient removal by these microalgal was also explored from the changes of chemical oxygen demand (COD) and nutrients content. The initial and final concentrations of COD, NH3-N, and PO4 3- in the diluted leachate (5%, 10% and 15%) were measured and the growth patterns of these species were determined by counting the cell numbers for 12 days. Comparison of these microalgae showed that the growth rate of Nannochloropsis was significantly higher compared to Chlorella in all leachate concentrations. Leachate at 5% enhanced the growth of both microalgae, while leachates at 10% and 15% decreased their growth as early as at the beginning of the test. It is apparent that the less concentrated leachate discharged into seawater would not pose any toxicity to the environment and would not bear adverse effect to microalgae yet could promote their growth. This study also revealed that the microalgae could remediate leachate pollution by its ability of nutrient removal; thus, leading to the potential application in wastewater bioremediation, including industrial waste and palm oil mill effluent.
Collapse
|
44
|
Vadiveloo A, Foster L, Kwambai C, Bahri PA, Moheimani NR. Microalgae cultivation for the treatment of anaerobically digested municipal centrate (ADMC) and anaerobically digested abattoir effluent (ADAE). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145853. [PMID: 33621869 DOI: 10.1016/j.scitotenv.2021.145853] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 05/12/2023]
Abstract
The successful cultivation of microalgae in wastewater establishes a waste to profit scenario as it combines treatment of a waste stream with production of valuable end-products. Here, growth and nutrient removal efficiency of three different locally isolated microalgal cultures (Chlorella sp., Scenedesmus sp., and a mixed consortium) cultivated in anaerobically digested municipal centrate (ADMC) and anaerobically digested abattoir effluent (ADAE) was evaluated. No significant differences (P > 0.05) in specific growth rate and biomass productivity were recorded between Chlorella monocultures and the mixed culture grown in both effluents. Scenedesmus sp. monocultures was found incapable of growth in both ADMC and ADAE throughout the cultivation period resulting in the collapse of cultures and no further measurements on the growth, biomass production and nutrient removal efficiency of this alga in both effluent. Fq´/Fm´ values which represent the immediate photo-physiological status of microalgae found to be negatively inhibited when Scenedesmus sp. was grown in both effluents throughout the cultivation period. Fq´/Fm´ values of Chlorella sp. monocultures and the mixed cultures recovered back to normal (≈0.6) after an initial drop. Ammonium removal rates was found to be significantly higher (≈2 folds) for Chlorella sp. monocultures grown in both ADMC and ADAE when compared to the mixed cultures. Nonetheless, no significant differences were observed in the removal of phosphate for both cultures in the different effluents. The total protein and carbohydrate content of the biomass produced was similar for both microalgae cultures grown using ADAE and ADMC. However, chlorophyll a and total carotenoids content were found to be higher (P < 0.05) for the cultures grown in ADAE than ADMC. Overall, Chlorella sp. monoculture was the most efficient option for treating both ADMC and ADAE while simultaneously generating protein rich biomass (up to 49%) that can be potentially exploited as aquaculture feedstock.
Collapse
|
45
|
Lin Q, Dong F, Li C, Cui J. Disinfection byproduct formation from algal organic matters after ozonation or ozone combined with activated carbon treatment with subsequent chlorination. J Environ Sci (China) 2021; 104:233-241. [PMID: 33985726 DOI: 10.1016/j.jes.2020.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Algal organic matter (AOM), including extracellular organic matter (EOM) and intracellular organic matter (IOM) from algal blooms, is widely accepted as essential precursors of disinfection byproducts (DBPs). This study evaluated the effect of ozonation or ozone combined with activated carbon (O3-AC) treatment on characteristic alternation and DBP formation with subsequent chlorination of Chlorella sp.. The effects of pH and bromide concentration on DBP formation by ozonation or O3-AC treatment were also investigated. Results showed that the potential formation of DBPs might be attributed to ozonation, but these DBP precursors could be further removed by activated carbon (AC) treatment. Moreover, the formation of target DBPs was controlled at acidic pH by alleviating the reactions between chlorine and AOM. Besides, the bromide substitution factor (BSF) value of trihalomethanes (THMs) from EOM and IOM remained constant after AC treatment. However, THM precursors could be significantly decreased by AC treatment. The above results indicated that O3-AC was a feasible treatment method for algal-impacted water.
Collapse
|
46
|
Non-domestic wastewater treatment with fungal/bacterial consortium followed by Chlorella sp., and thermal conversion of the generated sludge. 3 Biotech 2021; 11:227. [PMID: 33968572 DOI: 10.1007/s13205-021-02780-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022] Open
Abstract
Liquid waste from biological stains is considered non-domestic wastewater difficult to treat, generating high environmental impact. Therefore, the objective of this work was to carry out secondary and tertiary treatment of these effluents at a pilot scale, using a fungal/bacterial consortium followed by Chorella sp., for 15 days. In addition, to obtain an adsorbent material for Malachite Green dye removal, sludge generated in the plant and pine bark co-pyrolysis was performed. For microalgae isolation and selection of the Chlorophyceae class, Chlorococcales order, and Chorella sp. genus Winogradsky columns were employed. After 15 days of pilot plant treatment, removal percentages of 91 ± 2%, 90 ± 4% and 17 ± 2% were obtained for Colour Units, Chemical Oxygen Demand and Nitrates, respectively. Two types of class II biochar (BC500 and BC700) and one of class III (BC300) were produced. The highest value for Fixed carbon (FC) was obtained at 300 °C (27.3 ± 3%), decreasing as the temperature increased by 25.9 ± 5% and 24.8 ± 2%, for BC500 and BC700, respectively. Biochar yield was 62.1 ± 3%, 46.3 ± 4% and 31.6 ± 3% for BC300, BC500 and BC700, respectively. Finally, BC500 and BC700 biochar efficiently adsorbed Malachite Green obtaining qe values of 0.290 ± 0.032, 0.281 ± 0.015, 0.186 ± 0.009 and 0.191 ± 0.012 mg g-1 at pH values of 4.0 and 8.0 ± 0.2, respectively. Pseudo-second order model demonstrated a chemical adsorption took place, which was influenced by pH. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02780-1.
Collapse
|
47
|
Metabolomic Study of Heterotrophically Grown Chlorella sp. Isolated from Wastewater in Northern Sweden. Molecules 2021; 26:molecules26092410. [PMID: 33919133 PMCID: PMC8122269 DOI: 10.3390/molecules26092410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022] Open
Abstract
There are numerous strains of Chlorella with a corresponding variety of metabolic pathways. A strain we previously isolated from wastewater in northern Sweden can grow heterotrophically as well as autotrophically in light and has higher lipid contents under heterotrophic growth conditions. The aims of the present study were to characterize metabolic changes associated with the higher lipid contents in order to enhance our understanding of lipid production in microalgae and potentially identify new compounds with utility in sustainable development. Inter alia, the amino acids glutamine and lysine were 7-fold more abundant under heterotrophic conditions, the key metabolic intermediate alpha-ketoglutarate was more abundant under heterotrophic conditions with glucose, and maltose was more abundant under heterotrophic conditions with glycerol than under autotrophic conditions. The metabolite 3-hydroxy-butyric acid, the direct precursor of the biodegradable plastic PHB (poly-3-hydroxy-butyric acid), was also more abundant under heterotrophic conditions. Our metabolomic analysis has provided new insights into the alga's lipid production pathways and identified metabolites with potential use in sustainable development, such as the production of renewable, biodegradable plastics, cosmetics, and nutraceuticals, with reduced pollution and improvements in both ecological and human health.
Collapse
|
48
|
Li J, Pan K, Tang X, Li Y, Zhu B, Zhao Y. The molecular mechanisms of Chlorella sp. responding to high CO 2: A study based on comparative transcriptome analysis between strains with high- and low-CO 2 tolerance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:144185. [PMID: 33383507 DOI: 10.1016/j.scitotenv.2020.144185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 05/28/2023]
Abstract
High CO2 acclimation for microalgae has attracted large research attention owing to the usefulness of microalgae in bio-sequestration of CO2 from the emission source. In this study, one high CO2 tolerant (LAMB 31) and non-tolerant (LAMB 122) Chlorella sp. strains were transferred from air to 40% CO2, during which four time points were chosen for comparative transcriptome analysis. Gene changes started in the lag phase (T1) of population growth with more genes (7889) upregulated in LAMB 31 than in LAMB 122 (1092). Further function enrichments indicated: In LAMB 31, up-regulation of genes in cyclic electron transportation, F-type ATPase and Calvin cycle were associated with the enhancement of carbon fixation abilities; upregulation of genes in phosphorylation together with V-ATPase, which contributed to cytoplasmatic pH stability; Lastly, enhancement of carbon metabolisms including TCA cycle and glycolysis accelerated the consumption of cellular organic carbon. Most of the genes in these pathways and processes showed downregulation in LAMB 122. This study disclosed the most complete transcriptional molecular mechanisms of Chlorella sp. responding to high CO2 by combining CO2 fixation, transportation, and metabolic processes. The results provided valuable genetic information for future screening and breeding of microalgae with high-CO2 tolerance for more efficient CO2 bio-sequestration.
Collapse
|
49
|
Zhong R, Li JQ, Wu SW, He XM, Xuan JC, Long H, Liu HQ. Transcriptome analysis reveals possible antitumor mechanism of Chlorella exopolysaccharide. Gene 2021; 779:145494. [PMID: 33588036 DOI: 10.1016/j.gene.2021.145494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Microalgae, one of the most important classes of biomass producers, can produce exopolysaccharides similar to bacteria. The exopolysaccharide from Chlorella (CEPS) displays remarkable anticancer activity the mechanism of which remains to be elucidated. In this study, we analyzed the inhibitory effect of CEPS on the growth of HeLa cells. The results showed that CEPS inhibited the proliferation, decreased the viability, and changed the morphology of HeLa cells. Transcriptome analysis showed that 1894 genes were differentially expressed in the CEPS-treated group compared with the control group, including 1076 genes that were upregulated and 818 genes that were downregulated. The results of gene function enrichment analysis showed that the differentially expressed genes (DEGs) were significantly enriched in apoptosis and tumor-related biological processes and participated in several cancer and apoptosisrelated signaling pathways, including the MAPK signaling pathway, TNF signaling pathway, and the PI3K-Akt signaling pathway. The protein-protein interaction network identified 13 DEGs including PTPN11, RSAD2, ISG15, IFIT1, MX2, IFIT2, OASL, OAS1, JUN, OAS2, XAF1, ISG20, and IRF9 as hub genes. Our results suggest that CEPS is a promising therapeutic drug for the follow-up interventional therapy of cancer.
Collapse
|
50
|
Zheng S, Chen S, Zou S, Yan Y, Gao G, He M, Wang C, Chen H, Wang Q. Bioremediation of Pyropia-processing wastewater coupled with lipid production using Chlorella sp. BIORESOURCE TECHNOLOGY 2021; 321:124428. [PMID: 33272824 DOI: 10.1016/j.biortech.2020.124428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Pyropia-processing wastewater (PPW) contains diverse organic nutrients and causes environmental pollution. To explore the nutrient removal efficiency and growth performance of Chlorella sp. on PPW, the cultures were conducted in different culture substrates. Results showed that, after 7 days of incubation, the removal rates of total nitrogen (TN), total phosphorus (TP) and phycobiliprotein (PP) all reached more than 90% by cultivating Chlorella sp. C2 and C. sorokiniana F-275 in PPW. The chemical oxygen demand (COD) removal efficiencies could be over 50%. Meanwhile, the increments of biomass in two tested Chlorella strains were 1.39 and 4.89 times higher than those of BG11 and BBM substrates and the increases in lipid productivity were 1.34 and 10.18- fold, respectively. The C18:3 fatty acid proportions were markedly reduced by 27.89% and 29.10%. These results suggest that Chlorella sp. could efficiently reduce various nutrients in PPW and simultaneously accumulate higher biomass with higher biodiesel characteristics.
Collapse
|