26
|
Liu J, Wang Z, Zhao C, Lu B, Zhao Y. Phytohormone gibberellins treatment enhances multiple antibiotics removal efficiency of different bacteria-microalgae-fungi symbionts. BIORESOURCE TECHNOLOGY 2024; 394:130182. [PMID: 38081467 DOI: 10.1016/j.biortech.2023.130182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 02/04/2024]
Abstract
To develop and characterize novel antibiotics removal biomaterial technology, we constructed three different bacteria-microalgae-fungi consortiums containing Chlorella vulgaris (C. vulgaris), endophytic bacterium, Clonostachys rosea (C. rosea), Ganoderma lucidum, and Pleurotus pulmonarius. The results showed that under treatment with 50 mg/L of gibberellins (GAs), the three bacteria-microalgae-fungi symbionts had maximal growth rates (0.317 ± 0.030 d-1) and the highest removal efficiency for seven different antibiotics. Among them, C. vulgaris-endophytic bacterium-C. rosea symbiont had the best performance, with antibiotics removal efficiencies of 96.0 ± 1.4 %, 91.1 ± 7.9 %, 48.7 ± 5.1 %, 34.6 ± 2.9 %, 61.0 ± 5.5 %, 63.7 ± 5.6 %, and 54.3 ± 4.9 % for tetracycline hydrochloride, oxytetracycline hydrochloride, ciprofloxacin, norfloxacin, sulfadiazine, sulfamethazine, and sulfamethoxazole, respectively. Overall, the present study demonstrates that 50 mg/L GAs enhances biomass production and antibiotics removal efficiency of bacteria-microalgae-fungi symbionts, providing a framework for future antibiotics-containing wastewater treatment using three-phase symbionts.
Collapse
|
27
|
Kandasamy GD, Kathirvel P. Production, characterization and in vitro biological activities of crude pigment from endophytic Micrococcus luteus associated with Avicennia marina. Arch Microbiol 2023; 206:26. [PMID: 38108901 DOI: 10.1007/s00203-023-03751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
Due to their non-toxic and non-carcinogenic nature, biopigments have a phenomenal benefit over synthetic pigments, making them a desirable source for human utilization and a potential alternative to traditional synthetic pigments that are hazardous to the environment and public health. Endosymbiotic interactions between mangrove plants and bacteria could provide an alternate source for the synthesis of unique compounds with potent biomedical applications. Pigmented endophytic bacteria were screened from the explants of Avicennia marina, a mangrove plant, and identified as Micrococcus luteus by molecular characterization. The intracellular pigment was successfully extracted using the sonication-assisted solvent extraction method, and screening factors impacting the pigmentation bioprocess were determined using a one-factor-at-a-time approach. The endophyte produced yellow pigment in the liquid medium, with the maximum growth and pigment production recorded in nutrient broth at 37 ℃ and pH 7 after 96 h of incubation, while the maximum accumulation of pigment was observed in the media supplemented with glucose and tryptone as carbon and nitrogen sources, respectively. The extracted crude pigment was further characterized by ultraviolet, followed by Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry. The obtained crude pigment has been evaluated for its antioxidant and anticancer activity by various assays, such as DPPH radical scavenging activity, FRAP assay, superoxide anion and nitric oxide radical scavenging, metal chelating activity, phosphomolybdenum assay, and MTT assay, respectively, at varying concentrations. The results of our study revealed that the yellow pigment produced by the endophyte showed significant dose-dependent antioxidant and anticancer activity.
Collapse
|
28
|
Mangun VV, Sugumaran R, Lym Yong WT, Yusof NA. Dataset of 16S ribosomal DNA sequence-based identification of endophytic bacteria isolated from healthy and diseased Sabah red algae, Kappaphycus alvarezii. Data Brief 2023; 51:109785. [PMID: 38053588 PMCID: PMC10694040 DOI: 10.1016/j.dib.2023.109785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/25/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023] Open
Abstract
Bacterial endophytes play a vital role in the growth and fitness of host plants from infection by phytopathogens. To our knowledge, however, little information is available on the endophytic bacterial composition in healthy and diseased Kappahycus alvarezii, one of the most important major sources of carrageenan industries, especially in Sabah. The main idea was to analyze and compare the composition of endophytic bacterial communities in healthy and diseased K. alvarezii isolated from Sabah, Malaysia. The data reveals the composition of endophytic bacterial microbiomes in healthy and diseased K. alvarezii isolated from Sabah. The isolated endophytes were identified using 16S rDNA sequencing. Taxonomic identification and phylogenetic tree analysis were done using the online BLAST (blastn) and MEGA11 software, respectively. The data presents the diversity of bacterial endosphere microbiomes found in healthy K. alvarezii which are composed of Bacillus, Cytobacillus and Priestia whereas Vibrio and Micrococcus occurred exclusively in the diseased K. alvarezii. Microbial comparative analysis between the healthy and diseased seaweed points to the potential of several Bacillus strains that may have biocontrol potential against Vibrio infection in seaweed such as the ice-ice disease. Raw data files are available at the GenBank, NCBI database under the accession number MZ570560 to MZ570580.
Collapse
|
29
|
Wang X, Wang L, You Y, Yang D, Cao Y, Wang Y, Ma F. Differential interference of copper with endophytic bacterial inoculation: Atrazine decontamination in Acorus tatarinowii and culture solution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122523. [PMID: 37683758 DOI: 10.1016/j.envpol.2023.122523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
To clarify the interference effects of inorganic ions, Acorus tatarinowii and endophytic bacterium Herbaspirillum huttiense (Hh) were combined to decontaminate atrazine pollution under different copper levels. This study verified inoculation effects and revealed the complicated processes of atrazine transformation in solutions. 35.9% leaf biomass was promoted by Hh inoculation, and the value was lowered to 7.87% by high doses of copper. The changing trend of leaf N, K, and S contents, and tiller numbers were consistent with that of leaf biomass. Hh injection improved atrazine accumulation by 43.5% in roots, and under copper interference, this value lowered to 10.6%. Hh promoted atrazine deethylation in plants, which was copper-dose dependent in different plant organs. In solutions, atrazine was conjugated with small-molecule secretions at m/z 118, detoxicated into 2-hxydroatrazine and 2-hydroxy-4-acetamido-atrazine, then the triazine ring opened. Copper interference had a more significant impact on residual atrazine conversion products than Hh inoculation treatments. Hh treatment promoted the ring-opening degradation of atrazine in water. The addition of high doses of copper ions promoted the oxidative process of atrazine while inhibiting its ring-opening transformation process in water.
Collapse
|
30
|
Taniguchi T, Isobe K, Imada S, Eltayeb MM, Akaji Y, Nakayama M, Allen MF, Aronson EL. Root endophytic bacterial and fungal communities in a natural hot desert are differentially regulated in dry and wet seasons by stochastic processes and functional traits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165524. [PMID: 37467971 DOI: 10.1016/j.scitotenv.2023.165524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Dryland ecosystems experience seasonal cycles of severe drought and moderate precipitation. Desert plants may develop symbiotic relationships with root endophytic microbes to survive under the repeated wet and extremely dry conditions. Although community coalescence has been found in many systems, the colonization by functional microbes and its relationship to seasonal transitions in arid regions are not well understood. Here we examined root endophytic microbial taxa, and their traits in relation to their root colonization, during the dry and wet seasons in a hot desert of the southwestern United States. We used high-throughput DNA sequencing of 16S rRNA and internal transcribed spacer gene profiling of five desert shrubs, and analyzed the seasonal change in endophytic microbial lineages. Goodness of fit to the neutral community model in relationship to microbial traits was evaluated. In summer, Actinobacteria and Bacteroidia increased, although this was not genus-specific. For fungi, Glomeraceae selectively increased in summer. In winter, Gram-negative bacterial genera, including those capable of nitrogen fixation and plant growth promotion, increased. Neutral model analysis revealed a strong stochastic influence on endophytic bacteria but a weak effect for fungi, especially in summer. The taxa with higher frequency than that predicted by neutral model shared environmental adaptability and symbiotic traits, whereas the frequency of pathogenic fungi was at or under the predicted value. These results suggest that community assembly of bacteria and fungi is regulated differently. The bacterial community was affected by stochastic and deterministic processes via bacterial response to drought (response trait), beneficial effect on plants (effect trait), and likely stable mutualistic interactions with plants suggested by the frequency of nodule bacteria. For fungi, mycorrhizal fungi were selected by plants in summer. The regulation of beneficial microbes by plants in both dry and wet seasons suggests the presence of plant-soil positive feedback in this natural desert ecosystem.
Collapse
|
31
|
Wang Z, Li N, Wang W, Zhu Y, Liu Y. Endophytic bacterial community diversity in genetically related hybrid rice seeds. Appl Microbiol Biotechnol 2023; 107:6911-6922. [PMID: 37704771 DOI: 10.1007/s00253-023-12782-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
The Food and Agriculture Organization of the United Nations (FAO) has identified hybrid rice as ideal for addressing food scarcity in poor nations. A comprehensive investigation of the endophytic bacteria in hybrid rice seeds is essential from a microecological perspective to illuminate the mechanisms underlying its high yield, high quality, and multi-resistance. The endophytic bacterial diversity and community structures of 11 genetically correlated hybrid rice seeds with different rice blast resistance levels were studied using high-throughput sequencing (HTS) on the Illumina MiSeq platform to reveal their "core microbiota" and explore the effect of genotypes, genetic relationships, and resistance. Proteobacteria (78.15-99.15%) represented the most abundant group in the 11 hybrid rice cultivars, while Pantoea, Pseudomonas, and Microbacterium comprised the "core microbiota." Hybrid rice seeds with different genotypes, genetic correlations, and rice blast resistance displayed endophytic bacterial community structure and diversity variation. In addition, the network relationships between the rice seed endophytic bacteria of "the same female parent but different male parents" were more complex than those from "the same male parent but different female parents." Matrilineal inheritance may be the primary method of passing on endophytic bacteria in rice from generation to generation. The endophytic bacterial interaction network in rice blast-resistant hybrid rice seed varieties was more complicated than in susceptible varieties. In summary, this study demonstrated that the genotype, genetic relationship, and rice blast resistance were important factors affecting the community structures and diversity of endophytic bacteria in hybrid rice seeds, which was vital for revealing the interaction between endophytic bacteria and the host. KEY POINTS: • Pantoea, Pseudomonas, and Microbacterium represent the main endophytic bacteria in hybrid rice seeds. • Genotype is the primary factor affecting endophytic bacterial diversity in hybrid rice seeds. • The diversity of the endophytic bacterial community in hybrid rice seeds is related to their genotypes, genetic relationships, and rice blast resistance.
Collapse
|
32
|
Wang Z, Zhao C, Lu B, Zhang H, Zhao Y. Attenuation of antibiotics from simulated swine wastewater using different microalgae-based systems. BIORESOURCE TECHNOLOGY 2023; 388:129796. [PMID: 37742816 DOI: 10.1016/j.biortech.2023.129796] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Antibiotic misuse are potentially harmful to the environment and human health. Four algal symbionts were constructed using Chlorella vulgaris, endophytic bacterium and Clonostachys rosea (C. rosea) as the biomaterials. The growth, photosynthetic activity, and antibiotic removal efficiency of symbiont under different initial antibiotic concentrations was analyzed. The results showed that the microalgae-bacteria-fungi symbiont had a maximum growth rate of 0.307 ± 0.030 d-1 and achieved 99.35 ± 0.47%, 81.06 ± 7.83%, and 79.15 ± 7.26% removal of oxytetracycline (OTC), sulfadimethazine (SM2), and ciprofloxacin hydrochloride (CPFX), respectively, at an initial antibiotic concentration of 0.25 mg/L. C. rosea has always existed as a biocontrol fungus. In this study, it was innovatively used to construct algal symbionts and used for antibiotic wastewater treatment with a high efficiency. The results contribute to the development of appropriate bioaugmentation strategies and the design of an algal symbiont process for the treatment of antibiotic-containing wastewater.
Collapse
|
33
|
Woźniak M, Tyśkiewicz R, Siebielec S, Gałązka A, Jaroszuk-Ściseł J. Metabolic Profiling of Endophytic Bacteria in Relation to Their Potential Application as Components of Multi-Task Biopreparations. MICROBIAL ECOLOGY 2023; 86:2527-2540. [PMID: 37392205 PMCID: PMC10640448 DOI: 10.1007/s00248-023-02260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
Agricultural crops are exposed to various abiotic and biotic stresses that can constrain crop productivity. Focusing on a limited subset of key groups of organisms has the potential to facilitate the monitoring of the functions of human-managed ecosystems. Endophytic bacteria can enhance plant stress resistance and can help plants to cope with the negative impacts of stress factors through the induction of different mechanisms, influencing plant biochemistry and physiology. In this study, we characterise endophytic bacteria isolated from different plants based on their metabolic activity and ability to synthesise 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD), the activity of hydrolytic exoenzymes, the total phenolic compounds (TPC) and iron-complexing compounds (ICC). Test GEN III MicroPlate indicated that the evaluated endophytes are highly metabolically active, and the best used substrates were amino acids, which may be important in selecting potential carrier components for bacteria in biopreparations. The ACCD activity of strain ES2 (Stenotrophomonas maltophilia) was the highest, whereas that of strain ZR5 (Delftia acidovorans) was the lowest. Overall, the obtained results indicated that ∼91.3% of the isolates were capable of producing at least one of the four hydrolytic enzymes. In addition, most of the tested strains produced ICC and TPC, which play a significant role in reducing stress in plants. The results of this study suggest that the tested endophytic bacterial strains can potentially be used to mitigate climate change-associated stresses in plants and to inhibit plant pathogens.
Collapse
|
34
|
Kiros T, Ebu SM, Melaku Y, Tesfa T, Dekebo A. Isolation and identification of endophytic bacteria and associated compound from Gloriosa superba and their antibacterial activities. Heliyon 2023; 9:e22104. [PMID: 38045151 PMCID: PMC10692777 DOI: 10.1016/j.heliyon.2023.e22104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/05/2023] [Accepted: 11/04/2023] [Indexed: 12/05/2023] Open
Abstract
Gloriosa superba L., which belongs to the genus Gloriosa and family Colchicaceae, is a climbing annual herb and tuberous poisonous tropical medicinal plant. This study was aimed to isolate possible endophytic bacteria from leaves, stems and tubers of Gloriosa superba. Thirty pure endophytic bacteria were isolated and subjected to biochemical characterization. Bacterial identification was conducted by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The structure of the isolated compound was characterized. The antibacterial activity was also evaluated. Majority (21, 70 %) of the isolates were Gram-positive. Certain of them are spore formers. Based on MALDI-TOF MS, 26 of the isolates were identified as Bacillus spp. (65.4 %), Escherichia spp. (30.8 %) and Providencia spp. (3.9 %). A 1-undecene was isolated from culture filtrate of E. coli (GST-5). The ethyl acetate extracts (1000 μg/mL) of GSL-5 and GST-2 culture filtrates recorded maximum inhibition zone against E. coli (9.4 ± 0.6 mm) and S. aurous ATCC 25923T (8.4 ± 0.8 mm), respectively. The Pseudomonas aeruginosa ATCC 27853T was prone to all ethyl acetate extracts. A 1-undecene showed a moderate activity against E. coli ATCC 25922Tand P. aeruginosa ATCC 27853T at 50 μg/mL. The present finding would be a breakthrough to studies of similar works in Ethiopia since it may be for the first time.
Collapse
|
35
|
Qian X, Tang X, Tian W, Xiao X, Wang Y, Lv Q, Li H, Feng S. Climate factors and host chemical profiles jointly drives the bacterial community assembly in Mussaenda pubescens stems. ENVIRONMENTAL RESEARCH 2023; 235:116687. [PMID: 37467942 DOI: 10.1016/j.envres.2023.116687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Endophytic bacteria residing within host plants can significantly impact on the host's growth, health, and overall relationship with its surrounding environment. However, the process that shape the community assembly of stem bacterial endophytes (SBEs) remains poorly understood. This study explored the community structure, co-occurrence patterns, and ecological processes of the SBEs inhabiting the shrub host, Mussaenda pubescens, across seven locations in southeastern China. We found that the absolute abundances, alpha diversity, and community composition of SBE communities exhibited notable differences among various host populations. Stem chemical characteristics were the most important factors influencing SBE community distribution, followed by geographic distance and climatic factors. The beta diversity decomposition analyses indicated that SBE community dissimilarities between sites were nearly equally driven by similarity, replacement diversity, and richness difference. The co-occurrence network analysis revealed that the keystone taxa were mostly observed in rare species, which may be essential for preserving the ecosystem's functions. Conditionally abundant taxa (CAT) showcased the highest closeness centrality, while exhibiting the lowest degree centrality and betweenness centrality as opposed to rare taxa. In addition, stochastic processes also played an important role in structuring SBE communities, with ecological drift being the dominant factor for both abundant and rare taxa. This study would deepen our understanding of the ecological dynamics and microbial interactions within plant endophytic microbiomes.
Collapse
|
36
|
Wang Y, Li P, Tian Y, Xiong Z, Zheng Z, Yi Z, Ao H, Wang Q, Li J. Bacterial seed endophyte and abiotic factors influence cadmium accumulation in rice (Oryza sativa) along the Yangtze River area. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115352. [PMID: 37579590 DOI: 10.1016/j.ecoenv.2023.115352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Cadmium (Cd) contamination in rice (Oryza sativa) is particularly problematic due to its high risk to human health. Investigating the hidden roles of seed endophytes of rice in influencing Cd accumulation is essential to comprehensively understand the effects of biotic and abiotic factors to food security. Here, the content of Cd in soils and rice (Huanghuazhan) seeds from 19 sites along the Yangtze River exhibited considerable differences. From a biotic perspective, we observed the dominant endophytic bacteria, Stenotrophomonas (7.25 %), contribute to Cd control of rice (below 0.2 mg kg-1). Partial Least Squares (PLS) analysis further suggested that Enterobacteriaceae (15.48 %), altitude and pH were found to be the strong variables that might reduce the Cd uptake of rice. In contrast, Cytophagaceae (0.58 %), latitude and mean annual air pressure had the opposite effect. In pot experiments, after respectively inoculating the isolated endophytic bacteria Stenotrophomonas T4 and Enterobacter R1, N1 (f_Enterobacteriaceae), the Cd contents in shoot decreased by 47.6 %, 21.9 % and 33.0 % compared to controls. The distribution of Cd resistant genes (e.g., czcABC, nccAB, cznA) of Stenotrophomonas, Enterobacteriaceaea and Cytophagaceae further suggested their distinct manners in influencing the Cd uptake of rice. Overall, this study provides new insights into the food security threatened by globally widespread Cd pollution.
Collapse
|
37
|
Saucedo-Bazalar M, Masias P, Nouchi-Moromizato E, Santos C, Mialhe E, Cedeño V. MALDI mass spectrometry-based identification of antifungal molecules from endophytic Bacillus strains with biocontrol potential of Lasiodiplodia theobromae, a grapevine trunk pathogen in Peru. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100201. [PMID: 37752899 PMCID: PMC10518354 DOI: 10.1016/j.crmicr.2023.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
Lasiodiplodia theobromae, a grapevine trunk pathogen, is becoming a significant threat to vineyards worldwide. In Peru, it is responsible for Botryosphaeria dieback in many grapevine-growing areas and it has spread rapidly due to its high transmissibility; hence, control measures are urgent. It is known that some endophytic bacteria are strong inhibitors of phytopathogens because they produce a wide range of antimicrobial molecules. However, studies of antimicrobial features from endophytic bacteria are limited to traditional confrontation methods. In this study, a MALDI mass spectrometry-based approach was performed to identify and characterize the antifungal molecules from Bacillus velezensis M1 and Bacillus amyloliquefaciens M2 grapevine endophytic strains. Solid medium antagonism assays were performed confronting B. velezensis M1 - L. theobromae and B. amyloliquefaciens M2 - L. theobromae for antifungal lipopeptides identification. By a MALDI TOF MS it was possible identify mass spectra for fengycin, iturin and surfactin protoned isoforms. Masses spectrums for mycobacillin and mycosubtilin were also identified. Using MALDI Imaging MS we were able to visualize and relate lipopeptides mass spectra of fengycin (1463.9 m/z) and mycobacillin (1529.6 m/z) in the interaction zone during confrontations. The presence of lipopeptides-synthesis genes was confirmed by PCR. Liquid medium antagonism assays were performed for a proteomic analysis during the confrontation of B. velezensis M1 - L. theobromae. Different peptide sequences corresponding to many antifungal proteins and enzymes were identified by MALDI TOF MS/MS. Oxalate decarboxylase bacisubin and flagellin, reported as antifungal proteins, were identified at 99 % identity through peptide mapping. MALDI mass spectrometry-based identification of antifungal molecules would allow the early selection of endophytic bacteria with antifungal features. This omics tool could lead to measures for prevention of grapevine diseases and other economically important crops in Peru.
Collapse
|
38
|
Cheng G, Cheng Y, Rahman E. Diversity analysis of Populus euphratica endophytic bacteria in Tarim River Basin, China. PeerJ 2023; 11:e15934. [PMID: 37663304 PMCID: PMC10470447 DOI: 10.7717/peerj.15934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
The bacterial diversity in Populus euphratica stem storage liquid samples grown in Shaya County and Yuli County of the Tarim River Basin was investigated. A culture-dependent (dilution spread plate method) and culture-independent method (PCR-RFLP technique) were used to identify the endophytic bacteria community structure and composition in P. euphratica in Tarim River Basin. Sixty-six bacterial strains were isolated from P. euphratica stem storage liquid samples on three agar media. The 16S rDNA gene was amplified and sequenced using bacterial universal primers. Phylogenetic analysis showed that the 66 strains belonged to three phyla (Firmicutes, Actinomycetes, and Gamma-Proteobacteria) and included 16 genera and 29 species. Among them, Pseudomonas (27.27%) and Bacillus (19.69%) were the dominant isolates. CGM-17 was a potentially new species of Pantoea. Restriction fragment length polymorphism of 16S rDNA gene amplified by polymerase chain reaction (PCR-RFLP) revealed 48 operational taxonomic units (OTUs). Phylogenetic analysis indicated that the 48 OTUs belonged to Firmicutes, Actinobacteria, Proteobacteria (α-, β-, γ-subgroup), Bacteroidetes, and Verrucomicrobia. Gamma-Proteobacteria was the dominant group, similarly to the culture-dependent method, accounting for 53% of the entire bacterial clone library. Our results indicate that P. euphratica endophytic bacteria diversity in the Tarim River Basin was rich, and the resources of endophytic bacteria were high. They provide valuable reference data and species resources for screening indigenous and functional strains of endophytic bacteria in P. euphratica.
Collapse
|
39
|
Zhang K, Yin M, Lei S, Zhang H, Yin X, Niu Q. Bacillus sp. YC7 from intestines of Lasioderma serricorne degrades nicotine due to nicotine dehydrogenase. AMB Express 2023; 13:87. [PMID: 37603100 PMCID: PMC10441963 DOI: 10.1186/s13568-023-01593-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
A large number of nicotine-containing wastes produced during the tobacco manufacturing process are seriously harmful to the environment and human health. The degradation and transformation of nicotine-containing environmental contaminants to harmless substances has become an urgent requirement. Lasioderma serricorne can grow and reproduce in nicotine-rich sources, and their intestinal microbiota show promising potential to degrade and utilize nicotine. The purpose of this study is to screen and identify nicotine-degrading bacteria from the intestines of L. serricorne and explore their degradation characteristics. A dominant strain, YC7, with significant nicotine degradation capabilities was isolated from the intestines of L. serricorne. The strain was identified as Bacillus using a polyphasic approach. The test results showed it can produce multiple enzymes that include β-glucosidase, cellulase, proteases, and amylases. The nicotine-degrading bacteria were functionally annotated using databases. Nicotine dehydrogenase (NDH) was found by combining an activity tracking test and protein mass spectrometry analysis. The YC-7 NDH in the pathway was molecularly docked and functionally verified via the gene knockdown method. The binding ability of nicotine to nicotine-degrading enzymes was investigated using molecular docking. A high-efficiency nicotine-degrading bacteria, YC-7, was isolated and screened from tobacco, and the gene functions related to degradation were verified. This investigation provides a new hypothesis for screening nicotine-degrading bacteria and increases our knowledge of potential nicotine-degrading microbial sources.
Collapse
|
40
|
Xiao W, Zhang Z, Wang H, Han G, Yan ZY, He D. Recombination of endophytic bacteria in asexual plant Ligusticum chuanxiong Hort. caused by transplanting. PeerJ 2023; 11:e15579. [PMID: 37520247 PMCID: PMC10386827 DOI: 10.7717/peerj.15579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/25/2023] [Indexed: 08/01/2023] Open
Abstract
Background Long-term asexual reproduction can easily lead to the degradation of plant germplasm, serious diseases and insect pests, reduction of production and even catastrophic crop failure. "Mountain Breeding and Dam Cultivation" is the main cultivation mode of Ligusticum chuanxiong Hort., which successfully avoided the germplasm degradation caused by long-term asexual reproduction. The recombination of endophytic fungi of L. chuanxiong caused by off-site transplantation was considered to be an important reason for its germplasm rejuvenation. However, whether bacteria have the same regularity is not yet known. Methods In this study, we carried out the experiment of cultivating propagation materials of L. chuanxiong in different regions and transplanting them to the same region. High-throughput sequencing was performed to analyze the bacterial communities in L. chuanxiong and its soil. Results The results showed that after transplanting, the plant height, tiller number, fresh weight, etc. of L. chuanxiong in mountainous areas were significantly higher than those in dam areas. At the same time, significant changes had taken place in the endophytic bacteria in reproductive material stem nodes (Lingzi, abbreviated as LZ). The diversity and abundance of bacteria in dam area LZ (YL) are significantly higher than those in mountainous area LZ (ML). The relative abundance of bacteria such as Xanthobacteraceae, Micromonosporaceae, Beijerinkiaceae, Rhodanobacteria, in ML is significantly higher than YL, mainly classified in Proteobateria and Actinobacteriota. In addition, the abundance advantage of Actinobacteriota still exists in MY (underground mature rhizomes obtained by ML). Meanwhile, the bacterial community was different in different area of transplanting. The diversity of bacterial communities in dam soil (YLS) is significantly higher than that in mountain soil (MLS). MLS had more Acidobacteriota than YLS. Comparative analysis showed that 74.38% of bacteria in ML are found in MLS, and 87.91% of bacteria in YL are found in YLS. Conclusions We can conclude that the community structure of endophytic bacteria recombined after the transplantation of L. chuanxiong, which was related to the bacterial community in soils. Moreover, after transplanting in mountainous areas, LZ accumulated more potentially beneficial Actinobacteriota, which may be an important reason for promoting the rejuvenation of germplasm in L. chuanxiong. However, this hypothesis requires more specific experiments to verify. This study provided a new idea that off-site transplanting may be a new strategy to restore vegetative plant germplasm resources.
Collapse
|
41
|
Shu L, Li J, Xu J, Zheng Z. Nutrient removal and biogas upgrade using co-cultivation of Chlorella vulgaris and three different bacteria under various GR24 concentrations by induction with 5-deoxystrigol. World J Microbiol Biotechnol 2023; 39:245. [PMID: 37420159 DOI: 10.1007/s11274-023-03647-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/14/2023] [Indexed: 07/09/2023]
Abstract
Algae symbiosis technology shows great potential in the synchronous treatment of biogas slurry and biogas, which has promising applications. For improving nutrients and CO2 removal rates, the present work constructed four microalgal systems: Chlorella vulgaris (C. vulgaris) monoculture, C. vulgaris-Bacillus licheniformis (B. licheniformis), C. vulgaris-activated sludge, and C. vulgaris-endophytic bacteria (S395-2) to simultaneously treat biogas as well as biogas slurry under GR24 and 5DS induction. Our results showed that the C. vulgaris-endophytic bacteria (S395-2) showed optimal growth performance along with photosynthetic activity under the introduction of GR24 (10-9 M). Under optimal conditions, CO2 removal efficiency form biogas, together with chemical oxygen demand, total phosphorus and total nitrogen removal efficiencies from biogas slurry reached 67.25 ± 6.71%, 81.75 ± 7.93%, 83.19 ± 8.32%, and 85.17 ± 8.26%, respectively. The addition of symbiotic bacteria isolated from microalgae can promote the growth of C. vulgaris, and the exogenous addition of GR24 and 5DS can strengthen the purification performance of the algae symbiosis to achieve the maximum removal of conventional pollutants and CO2.
Collapse
|
42
|
Ramakrishnan P, Ariyan M, Rangasamy A, Rajasekaran R, Ramasamy K, Murugaiyan S, Janahiraman V. Draft Genome Sequence of Enterobacter cloacae S23 a Plant Growth-promoting Passenger Endophytic Bacterium Isolated from Groundnut Nodule Possesses Stress Tolerance Traits. Curr Genomics 2023; 24:36-47. [PMID: 37920731 PMCID: PMC10334703 DOI: 10.2174/1389202924666230403123208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/25/2023] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
Aim This study aims to reveal the passenger endophytic bacterium Enterobacter cloacae S23 isolated from groundnut nodules and to underpin the molecular mechanism and genes responsible for abiotic stress tolerance. Background A variety of microorganisms that contribute to nodulation and encourage plant development activity in addition to the nodulating Rhizobium. Passenger endophytes (PE) are endophytes that accidentally penetrate the plant without any selective pressure keeping them in the interior tissue of the plant. PE possesses characteristics that encourage plant development and boost output while reducing pathogen infection and improving biotic and abiotic stress tolerance. However, there is a lack of molecular evidence on the passenger endophyte-mediated alleviation of abiotic stresses. Objective This study was formulated to reveal the draft genome sequence of Enterobacter cloacae S23, as well as genes and characteristics involved in plant growth promotion and stress tolerance. Method The data were submitted to PATRIC and the TORMES-1.0 Unicyclker tools were used to conduct a complete genome study of Enterobacter cloacae S23. The TORMES-1.0 platform was used to process the reads. RAST tool kit (RASTtk) was used to annotate the S23 sequence. The plant growth-promoting traits such as indole acetic acid production, siderophore secretion, production of extracellular polysaccharides, biofilm formation, phosphate solubilization, and accumulation of osmolytes were examined under normal, 7% NaCl and 30% polyethylene glycol amended conditions to determine their ability to withstand salt and moisture stressed conditions, respectively. Result We report the size of Enterobacter cloacae S23 is 4.82Mb which contains 4511 protein-coding sequences, 71 transfer RNA genes, and 3 ribosomal RNA with a G+C content of DNA is 55.10%. Functional analysis revealed that most of the genes are involved in the metabolism of amino acids, cofactors, vitamins, stress response, nutrient solubilization (kdp, pho, pst), biofilm formation (pga) IAA production (trp), siderophore production (luc, fhu, fep, ent, ybd), defense, and virulence. The result revealed that E. cloacae S23 exhibited multiple plant growth-promoting traits under abiotic stress conditions. Conclusion Our research suggested that the discovery of anticipated genes and metabolic pathways might characterise this bacterium as an environmentally friendly bioresource to support groundnut growth through several mechanisms of action under multi-stresses.
Collapse
|
43
|
Wu Q, Lin X, Li S, Liang Z, Wang H, Tang T. Endophytic Bacillus sp. AP10 harboured in Arabis paniculata mediates plant growth promotion and manganese detoxification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115170. [PMID: 37354566 DOI: 10.1016/j.ecoenv.2023.115170] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/27/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
Phytoremediation of heavy metal-polluted soils assisted by plant-associated endophytes, is a suitable method for plant growth and manganese (Mn) removal in contaminated soils. This investigation was conducted to evaluate the Mn-resistant endophytic resources of the Mn hyperaccumulator Arabis paniculata and their functions in the phytoremediation of Mn2+ toxicity. This study isolated an endophytic bacterium with high Mn resistance and indole-3-acetic acid (IAA) production form A. paniculata and identified it as Bacillus sp. AP10 using 16 S rRNA gene sequencing analysis. The effects of Bacillus sp. AP10 on the alleviation of Mn2+ toxicity in Arabidopsis thaliana seedlings and the molecular mechanisms were further investigated using biochemical tests and RNA-seq analysis. Under Mn2+ stress, Bacillus sp. AP10 increased the biomass, chlorophyll content and the translocation factor (TF) values of Mn in the aerial parts, while decreased the malondialdehyde (MDA) content of A. thaliana seedlings compared with that of control plants. The differentially expressed genes (DEGs) and enrichment analysis showed that Bacillus sp. AP10 could significantly increase the expression of key genes involved in cell-wall loosening, which may improve plant growth under Mn stress. Superoxide dismutase (SOD)-encoding genes were detected as DEGs after AP10 treatment. Moreover, AP10 regulated the expression of genes responsible for phenylpropanoid pathway, which may promote antioxidant flavonoids accumulation for reactive oxygen species (ROS) scavenging to improve Mn tolerance. The activation of ATP-binding cassette (ABC) transporter gene expression especially ABCB1 after AP10 stimulation, explained the elevation of metal ion binding or transport related to enhanced Mn accumulation in plants. Futhermore, AP10 might alleviate Mn toxicity through enhancing abscisic acid (ABA) responsive gene expression and ABA biosynthesis. These findings provide new insights into the functions and regulatory mechanism of Bacillus sp. AP10 in promoting plant growth, and tolerance, improving Mn accumulation and alleviating Mn2+ toxicity in plants. The application of Bacillus sp. AP10 as potential phytoremediators may be a promising strategy in Mn2+ contaminated fields. AVAILABILITY OF DATA AND MATERIALS: The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.
Collapse
|
44
|
Zhao J, Yang L, Yang X, Zhao X, Li M, Zhao S, Zhu L, Zhan J. Degradation of 8:2 fluorotelomer carboxylic acid (8:2 FTCA) by plants and their co-existing microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131129. [PMID: 36871467 DOI: 10.1016/j.jhazmat.2023.131129] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
8:2 fluorotelomer carboxylic acid (8:2 FTCA), an important precursor of perfluorocarboxylic acids (PFCAs), is widely detected in environment and biotas. Hydroponic exposures were conducted to investigate the accumulation and metabolism of 8:2 FTCA in wheat (Triticum aestivum L.) and pumpkin (Cucurbita maxima L.). Endophytic and rhizospheric microorganisms co-existing with the plants were isolated to investigate their contributions to degrade 8:2 FTCA. Wheat and pumpkin roots could take up 8:2 FTCA efficiently with the root concentration factor (RCF) as 5.78 and 8.93, respectively. 8:2 FTCA could be biotransformed to 8:2 fluorotelomer unsaturated carboxylic acid (8:2 FTUCA), 7:3 fluorotelomer carboxylic acid (7:3 FTCA), and seven PFCAs with 2-8 carbon chain length in plant roots and shoots. Cytochromes P450 (CYP450) and glutathione-S-transferase (GST) activities in plants were significantly increased, while flavin-dependent monooxygenases (FMOs) activities were not changed, suggesting that CYP 450 and GST were involved in the transformation of 8:2 FTCA in plant tissues. Twelve 8:2 FTCA-degrading endophytic (8 strains) and rhizospheric (4 strains) bacterial strains were isolated from root interior, shoot interior and rhizosphere of plants, respectively. These bacteria were identified as Klebsiella sp. based on the morphology and 16S rDNA sequence, and they could biodegrade 8:2 FTCA to intermediates and stable PFCAs.
Collapse
|
45
|
Singh S, Aghdam SA, Lahowetz RM, Brown AMV. Metapangenomics of wild and cultivated banana microbiome reveals a plethora of host-associated protective functions. ENVIRONMENTAL MICROBIOME 2023; 18:36. [PMID: 37085932 PMCID: PMC10120106 DOI: 10.1186/s40793-023-00493-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Microbiomes are critical to plants, promoting growth, elevating stress tolerance, and expanding the plant's metabolic repertoire with novel defense pathways. However, generally microbiomes within plant tissues, which intimately interact with their hosts, remain poorly characterized. These endospheres have become a focus in banana (Musa spp.)-an important plant for study of microbiome-based disease protection. Banana is important to global food security, while also being critically threatened by pandemic diseases. Domestication and clonal propagation are thought to have depleted protective microbiomes, whereas wild relatives may hold promise for new microbiome-based biological controls. The goal was to compare metapangenomes enriched from 7 Musa genotypes, including wild and cultivated varieties grown in sympatry, to assess the host associations with root and leaf endosphere functional profiles. RESULTS Density gradients successfully generated culture-free microbial enrichment, dominated by bacteria, with all together 24,325 species or strains distinguished, and 1.7 million metagenomic scaffolds harboring 559,108 predicted gene clusters. About 20% of sequence reads did not match any taxon databases and ~ 62% of gene clusters could not be annotated to function. Most taxa and gene clusters were unshared between Musa genotypes. Root and corm tissues had significantly richer endosphere communities that were significantly different from leaf communities. Agrobacterium and Rhizobium were the most abundant in all samples while Chitinophagia and Actinomycetia were more abundant in roots and Flavobacteria in leaves. At the bacterial strain level, there were > 2000 taxa unique to each of M. acuminata (AAA genotype) and M. balbisiana (B-genotype), with the latter 'wild' relatives having richer taxa and functions. Gene ontology functional enrichment showed core beneficial functions aligned with those of other plants but also many specialized prospective beneficial functions not reported previously. Some gene clusters with plant-protective functions showed signatures of phylosymbiosis, suggesting long-standing associations or heritable microbiomes in Musa. CONCLUSIONS Metapangenomics revealed key taxa and protective functions that appeared to be driven by genotype, perhaps contributing to host resistance differences. The recovery of rich novel taxa and gene clusters provides a baseline dataset for future experiments in planta or in vivo bacterization or engineering of wild host endophytes.
Collapse
|
46
|
Yuan T, Qazi IH, Yang P, Zhang X, Li J, Liu J. Analysis of endophytic bacterial flora of mulberry cultivars susceptible and resistant to bacterial wilt using metagenomic sequencing and culture-dependent approach. World J Microbiol Biotechnol 2023; 39:163. [PMID: 37067654 DOI: 10.1007/s11274-023-03599-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/30/2023] [Indexed: 04/18/2023]
Abstract
Endophytes have a wide range of potential in maintaining plant health and sustainable agricultural environmental conditions. In this study, we analysed the diversity of endophytic bacteria in four mulberry cultivars with different resistance capacity against bacterial wilt using metagenomic sequencing and culture-dependent approaches. We further assessed the role of 11 shared genera in the control of bacterial wilt of mulberry. The results of the present study showed that Actinobacteria, Firmicutes, and Proteobacteria were the three dominant phyla in all communities, with the representative genera Acinetobacter and Pseudomonas. The diversity analysis showed that the communities of the highly and moderately resistant varieties were more diverse compared to those of the weakly resistant and susceptible varieties. The control tests of mulberry bacterial wilt showed that Pantoea, Atlantibacter, Stenotrophomonas, and Acinetobacter were effective, with a control rate of over 80%. Microbacterium and Kosakonia were moderately effective, with a control rate between 50 and 80%. At the same time, Escherichia, Lysinibacillus, Pseudomonas, and Rhizobium were found to be less effective, with a control rate of less than 40%. In conclusion, this study provides a reasonable experimental reference data for the control of bacterial wilt of mulberry.
Collapse
|
47
|
Ling L, Wang Y, Cheng W, Jiang K, Luo H, Pang M, Yue R. Research progress of volatile organic compounds produced by plant endophytic bacteria in control of postharvest diseases of fruits and vegetables. World J Microbiol Biotechnol 2023; 39:149. [PMID: 37022503 DOI: 10.1007/s11274-023-03598-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023]
Abstract
Pathogen infestation results in significant losses of fruits and vegetables during handling, transportation, and storage. The use of synthetic fungicides has been a common measure for controlling plant pathogens. However, their excessive use of chemicals has led to increased environmental pollution, leaving large amounts of chemicals in agricultural products, posing a threat to human and animal health. There is now an increasing amount of research activities to explore safer and more innovative ways to control plant pathogens. In this regard, endophytic bacteria contribute significantly. Endophytic bacteria are ubiquitous in the internal tissues of plants without causing damage or disease to the host. Due to their high volatility and difficulties in residue in fruits and vegetables, volatile organic chemicals (VOCs) produced by endophytic bacteria have received a lot of attention in recent years. VOCs are a potential biofumigant for the effective control of postharvest fruits and vegetables diseases. This review focuses mainly on the recent progress in using endophytic bacteria VOCs to control post-harvest fruits and vegetables disease. This review provides a brief overview of the concept, characteristics, and summarises the types, application effect, and control mechanisms of endophytic bacterial VOCs. The research area that is being developed has great application value in agriculture and living practice.
Collapse
|
48
|
Li J, Wu H, Pu Q, Zhang C, Chen Y, Lin Z, Hu X, Li O. Complete genome of Sphingomonas paucimobilis ZJSH1, an endophytic bacterium from Dendrobium officinale with stress resistance and growth promotion potential. Arch Microbiol 2023; 205:132. [PMID: 36959350 DOI: 10.1007/s00203-023-03459-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/25/2023]
Abstract
Sphingomonas paucimobilis ZJSH1 is an endophytic bacterium isolated from the roots of Dendrobium officinale with the ability to promote plant growth. It was found that the genome of strain ZJSH1 had gene fragment rearrangement compared with the genomes of the other four strains of S. paucimobilis, and the genome was integrated with phage genes. Functional analysis showed that the strain contained colonization-related genes, chemotaxis and invasion. A variety of genes encoding active materials, such as hormones (IAA, SA, ABA and zeaxanthin), phosphate cycle, antioxidant enzymes, and polysaccharides were identified which provide the strain with growth promotion and stress-resistant characteristics. Experiments proved that S. paucimobilis ZJSH1 grew well in media containing 80 g/L sodium chloride, 240 g/L polyethylene glycol and 800 μmol/L Cd2+, indicating its potential for resistance to stresses of salt, drought and cadmium, respectively. S. paucimobilis ZJSH1 is the only endophytic bacterium of this species that has been reported to promote plant growth. The analysis of its genome is conducive to understanding its growth-promoting mechanism and laying a foundation for the development and utilization of this species in the field of agriculture.
Collapse
|
49
|
Wei J, Wang Z, Zhao C, Sun S, Xu J, Zhao Y. Effect of GR24 concentrations on tetracycline and nutrient removal from biogas slurry by different microalgae-based technologies. BIORESOURCE TECHNOLOGY 2023; 369:128400. [PMID: 36442601 DOI: 10.1016/j.biortech.2022.128400] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
A biogas slurry composed of carbon, nitrogen, phosphorus, and antibiotics was generated. Investigations into the nutrient and tetracycline removal performance of four microalgae-based contaminant removal technologies, including Chlorella vulgaris, C. vulgaris co-cultured with endophytic bacteria, C. vulgaris co-cultured with Ganoderma lucidum, and C. vulgaris co-cultured with G. lucidum and endophytic bacteria, were conducted. The algal-bacterial-fungal consortium with 10-9 M strigolactone (GR24) yielded the maximum growth rate and average daily yield for algae at 0.325 ± 0.03 d-1 and 0.192 ± 0.02 g L-1 d-1, respectively. The highest nutrient/ tetracycline removal efficiencies were 83.28 ± 7.95 % for chemical oxygen demand (COD), 82.62 ± 7.97 % for total nitrogen (TN), 85.15 ± 8.26 % for total phosphorus (TP) and 83.92 ± 7.65 % for tetracycline. Adding an algal-bacterial-fungal consortium with an optimal synthetic analog GR24 concentration is seemingly an encouraging strategy for enhancing pollutant removal by algae, possibly overcoming the challenges of eutrophication and antibiotic pollution.
Collapse
|
50
|
Wang H, Wu B, Jiang N, Liu J, Zhao Y, Xu J, Wang H. The effects of influent chemical oxygen demand and strigolactone analog concentration on integral biogas upgrading and pollutants removal from piggery wastewater by different microalgae-based technologies. BIORESOURCE TECHNOLOGY 2023; 370:128483. [PMID: 36513303 DOI: 10.1016/j.biortech.2022.128483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Microalgae-based technologies are promising strategies for efficient wastewater treatment and biogas upgrading. In this study, three types of microalga-fungi/bacteria symbiotic systems stimulated with the strigolactone analog (GR24) were used to simultaneously remove nutrients from treated piggery wastewater and CO2 from biogas. The effects of initial concentrations of chemical oxygen demand (COD) and GR24 on nutrient removal and biogas upgrading were investigated. When the initial COD concentration was 1200 mg/L, the Chlorella vulgaris-Ganoderma lucidum-endophytic bacteria co-cultivation systems achieved the best photosynthetic performance and microalgae growth. Moreover, under the appropriate COD concentration (1200 mg/L), the highest nutrient/CO2 removal efficiencies were obtained. In addition, 10-9 M GR24 significantly accelerated nutrient/CO2 removal efficiencies. These findings provide a theoretical basis for scale-up experiments using microalgae-based technologies.
Collapse
|