1
|
Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 2004; 115:2292-307. [PMID: 15351371 DOI: 10.1016/j.clinph.2004.04.029] [Citation(s) in RCA: 1094] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE The main obstacle in interpreting EEG/MEG data in terms of brain connectivity is the fact that because of volume conduction, the activity of a single brain source can be observed in many channels. Here, we present an approach which is insensitive to false connectivity arising from volume conduction. METHODS We show that the (complex) coherency of non-interacting sources is necessarily real and, hence, the imaginary part of coherency provides an excellent candidate to study brain interactions. Although the usual magnitude and phase of coherency contain the same information as the real and imaginary parts, we argue that the Cartesian representation is far superior for studying brain interactions. The method is demonstrated for EEG measurements of voluntary finger movement. RESULTS We found: (a) from 5 s before to movement onset a relatively weak interaction around 20 Hz between left and right motor areas where the contralateral side leads the ipsilateral side; and (b) approximately 2-4 s after movement, a stronger interaction also at 20 Hz in the opposite direction. CONCLUSIONS It is possible to reliably detect brain interaction during movement from EEG data. SIGNIFICANCE The method allows unambiguous detection of brain interaction from rhythmic EEG/MEG data.
Collapse
|
Journal Article |
21 |
1094 |
2
|
Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P. Small-World Networks and Functional Connectivity in Alzheimer's Disease. Cereb Cortex 2006; 17:92-9. [PMID: 16452642 DOI: 10.1093/cercor/bhj127] [Citation(s) in RCA: 854] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated whether functional brain networks are abnormally organized in Alzheimer's disease (AD). To this end, graph theoretical analysis was applied to matrices of functional connectivity of beta band-filtered electroencephalography (EEG) channels, in 15 Alzheimer patients and 13 control subjects. Correlations between all pairwise combinations of EEG channels were determined with the synchronization likelihood. The resulting synchronization matrices were converted to graphs by applying a threshold, and cluster coefficients and path lengths were computed as a function of threshold or as a function of degree K. For a wide range of thresholds, the characteristic path length L was significantly longer in the Alzheimer patients, whereas the cluster coefficient C showed no significant changes. This pattern was still present when L and C were computed as a function of K. A longer path length with a relatively preserved cluster coefficient suggests a loss of complexity and a less optimal organization. The present study provides further support for the presence of "small-world" features in functional brain networks and demonstrates that AD is characterized by a loss of small-world network characteristics. Graph theoretical analysis may be a useful approach to study the complexity of patterns of interrelations between EEG channels.
Collapse
|
|
19 |
854 |
3
|
Pfurtscheller G, Stancák A, Neuper C. Event-related synchronization (ERS) in the alpha band--an electrophysiological correlate of cortical idling: a review. Int J Psychophysiol 1996; 24:39-46. [PMID: 8978434 DOI: 10.1016/s0167-8760(96)00066-9] [Citation(s) in RCA: 777] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
EEG desynchronization is a reliable correlate of excited neural structures of activated cortical areas. EEG synchronization within the alpha band may be an electrophysiological correlate of deactivated cortical areas. Such areas are not processing sensory information or motor output and can be considered to be in an idling state. One example of such an idling cortical area is the enhancement of mu rhythms in the primary hand area during visual processing or during foot movement. In both circumstances, the neurons in the hand area are not needed for visual processing or preparation for foot movement. As a result of this, an enhanced hand area mu rhythm can be observed.
Collapse
|
Review |
29 |
777 |
4
|
Shibasaki H, Hallett M. What is the Bereitschaftspotential? Clin Neurophysiol 2006; 117:2341-56. [PMID: 16876476 DOI: 10.1016/j.clinph.2006.04.025] [Citation(s) in RCA: 731] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 04/28/2006] [Accepted: 04/28/2006] [Indexed: 12/11/2022]
Abstract
Since discovery of the slow negative electroencephalographic (EEG) activity preceding self-initiated movement by Kornhuber and Deecke [Kornhuber HH, Deecke L. Hirnpotentialänderungen bei Willkurbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflugers Archiv 1965;284:1-17], various source localization techniques in normal subjects and epicortical recording in epilepsy patients have disclosed the generator mechanisms of each identifiable component of movement-related cortical potentials (MRCPs) to some extent. The initial slow segment of BP, called 'early BP' in this article, begins about 2 s before the movement onset in the pre-supplementary motor area (pre-SMA) with no site-specificity and in the SMA proper according to the somatotopic organization, and shortly thereafter in the lateral premotor cortex bilaterally with relatively clear somatotopy. About 400 ms before the movement onset, the steeper negative slope, called 'late BP' in this article (also referred to as NS'), occurs in the contralateral primary motor cortex (M1) and lateral premotor cortex with precise somatotopy. These two phases of BP are differentially influenced by various factors, especially by complexity of the movement which enhances only the late BP. Event-related desynchronization (ERD) of beta frequency EEG band before self-initiated movements shows a different temporospatial pattern from that of the BP, suggesting different neuronal mechanisms for the two. BP has been applied for investigating pathophysiology of various movement disorders. Volitional motor inhibition or muscle relaxation is preceded by BP quite similar to that preceding voluntary muscle contraction. Since BP of typical waveforms and temporospatial pattern does not occur before organic involuntary movements, BP is used for detecting the participation of the 'voluntary motor system' in the generation of apparently involuntary movements in patients with psychogenic movement disorders. In view of Libet et al.'s report [Libet B, Gleason CA, Wright EW, Pearl DK. Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious initiation of a freely voluntary act. Brain 1983;106:623-642] that the awareness of intention to move occurred much later than the onset of BP, the early BP might reflect, physiologically, slowly increasing cortical excitability and, behaviorally, subconscious readiness for the forthcoming movement. Whether the late BP reflects conscious preparation for intended movement or not remains to be clarified.
Collapse
|
Journal Article |
19 |
731 |
5
|
Ray WJ, Cole HW. EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science 1985; 228:750-2. [PMID: 3992243 DOI: 10.1126/science.3992243] [Citation(s) in RCA: 644] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two experiments were designed to examine the effects of attentional demands on the electroencephalogram during cognitive and emotional tasks. We found an interaction of task with hemisphere as well as more overall parietal alpha for tasks not requiring attention to the environment, such as mental arithmetic, than for those requiring such attention. Differential hemispheric activation for beta was found most strongly in the temporal areas for emotionally positive or negative tasks and in the parietal areas for cognitive tasks.
Collapse
|
|
40 |
644 |
6
|
Crone NE, Miglioretti DL, Gordon B, Sieracki JM, Wilson MT, Uematsu S, Lesser RP. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain 1998; 121 ( Pt 12):2271-99. [PMID: 9874480 DOI: 10.1093/brain/121.12.2271] [Citation(s) in RCA: 568] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Human scalp EEG studies have shown that event-related desynchronization (ERD) in the alpha (8-13 Hz) and beta (15-25 Hz) bands may be used to detect functional activation of sensorimotor cortex. However, in most previous studies somatotopy has not been examined in detail and brief, self-paced movements, focusing on the planning of motor output, have been used. We recorded electrocorticographic (ECoG) signals in five clinical subjects during a visual-motor decision task that was designed to activate the representations of different body parts in sensorimotor cortex. To focus more on execution of motor output than on its planning, subjects were instructed to make sustained isometric muscle contractions in different body parts (tongue protrusion, fist-clenching or foot dorsiflexion) in response to randomized visual stimuli depicting each action. ECoG spectral analysis utilized a mixed-effects analysis of variance model in which within-trial temporal dependencies were taken into account, and the magnitude and statistical significance of alpha and beta ERDs were mapped onto a surface rendering of each subject's brain MRI. Cortical electrical stimulation was performed in all subjects for clinical purposes, and the resulting maps of sensorimotor function were compared with those generated by ECoG spectral analysis. During the early phases of the motor responses, alpha ERD commonly occurred in a diffuse spatial pattern that was not somatotopically specific. During the late phases, the spatial pattern of alpha ERD usually became more focused and somatotopically specific. Maps of alpha ERD were closer to cortical stimulation maps when alpha ERD was sustained throughout the late phases of the motor responses. Thus, the topography of alpha ERD more resembled traditional somatotopy when its temporal profile approximated that of the motor response. The topography of beta ERD was often more discrete and somatotopically specific than that of alpha ERD, but beta ERD was often transient and sometimes absent. Sometimes, unilateral limb movement produced sustained alpha and beta ERD over bilateral sensorimotor cortices, with overlapping patterns for different body parts. The topographical spread of alpha ERD beyond expected functional-anatomical boundaries during early (and sometimes late) phases of motor responses invites a re-examination of traditional assumptions about sensorimotor functional neuroanatomy, as well as the role of alpha ERD as an index of cortical activation. We agree with others that the somatotopic representations of different body parts overlap more than previously thought. Also, unilateral limb movements may be associated with both contralateral and ipsilateral activation of sensorimotor cortex. We conjecture that alpha ERD may reflect activity within a broad synaptic network with distributed cortical representations.
Collapse
|
Clinical Trial |
27 |
568 |
7
|
Hanslmayr S, Aslan A, Staudigl T, Klimesch W, Herrmann CS, Bäuml KH. Prestimulus oscillations predict visual perception performance between and within subjects. Neuroimage 2007; 37:1465-73. [PMID: 17706433 DOI: 10.1016/j.neuroimage.2007.07.011] [Citation(s) in RCA: 507] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 06/13/2007] [Accepted: 07/06/2007] [Indexed: 11/17/2022] Open
Abstract
In the present study, the electrophysiological correlates of perceiving shortly presented visual stimuli are examined. In particular, we investigated the differences in the prestimulus EEG between subjects who were able to discriminate between four shortly presented stimuli (Perceivers) and subjects who were not (Non-Perceivers). Additionally, we investigated the differences between the subjects perceived and unperceived trials. The results show that Perceivers exhibited lower prestimulus alpha power than Non-Perceivers. Analysis of the prestimulus EEG between perceived and unperceived trials revealed that the perception of a stimulus is related to low phase coupling in the alpha frequency range (8-12 Hz) and high phase coupling in the beta and gamma frequency range (20-45 Hz). Single trial analyses showed that perception performance can be predicted by phase coupling in the alpha, beta and gamma frequency range. The findings indicate that synchronous oscillations in the alpha frequency band inhibit the perception of shortly presented stimuli whereas synchrony in higher frequency ranges (>20 Hz) enhances visual perception. We conclude that alpha, beta and gamma oscillations indicate the attentional state of a subject and thus are able to predict perception performance on a single trial basis.
Collapse
|
|
18 |
507 |
8
|
Neuper C, Wörtz M, Pfurtscheller G. ERD/ERS patterns reflecting sensorimotor activation and deactivation. PROGRESS IN BRAIN RESEARCH 2006; 159:211-22. [PMID: 17071233 DOI: 10.1016/s0079-6123(06)59014-4] [Citation(s) in RCA: 483] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Oscillations in the alpha and beta band (<35 Hz) show characteristic spatiotemporal patterns during sensorimotor processing. Whereas event-related desynchronization (ERD) during motor preparation, execution, and imagery can be seen as a correlate of an activated cortical area, event-related synchronization (ERS) of frequency components between 10 and 13 Hz may represent a deactivated cortical area or inhibited cortical network, at least under certain conditions. Induced beta rhythms (13-35 Hz, beta ERS) can be found in sensorimotor areas following both voluntary movement and somatosensory stimulation. In a recent study we used different tasks involving execution and imagery of movements of the upper and lower limb to produce activation vs. deactivation/inhibition of the sensorimotor hand area. Sensorimotor interference, as a function of the activation level of the motor cortex, was studied by the use of repetitive median nerve stimulation (MNS) (ISI 1.5 s) in 12 healthy volunteers during the following task conditions: (i) cube manipulation between thumb and fingers of one hand, (ii) imagined cube manipulation, (iii) continuous foot rotation movements, and (iv) imagined foot movements. EEG was recorded from hand and foot representation areas and processed time-locked to MNS (ERD/ERS). In addition, task-related band power changes (TRPD/TRPI) were analyzed. We found a clear-cut suppression of the stimulation-induced beta ERS (indicating an enhanced activity state of the sensorimotor areas) during active cube manipulation and a weaker suppression during cube imagery. Mental imagination of foot movement led to an increase of the hand area mu rhythm, but did not interfere with stimulation-related effects on beta ERS. These findings support that interfering sensorimotor activation and deactivation is reflected in graduated changes of induced mu and beta oscillations.
Collapse
|
Review |
19 |
483 |
9
|
McFarland DJ, Miner LA, Vaughan TM, Wolpaw JR. Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr 2000; 12:177-86. [PMID: 10791681 DOI: 10.1023/a:1023437823106] [Citation(s) in RCA: 478] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
People can learn to control the 8-12 Hz mu rhythm and/or the 18-25 Hz beta rhythm in the EEG recorded over sensorimotor cortex and use it to control a cursor on a video screen. Subjects often report using motor imagery to control cursor movement, particularly early in training. We compared in untrained subjects the EEG topographies associated with actual hand movement to those associated with imagined hand movement. Sixty-four EEG channels were recorded while each of 33 adults moved left- or right-hand or imagined doing so. Frequency-specific differences between movement or imagery and rest, and between right- and left-hand movement or imagery, were evaluated by scalp topographies of voltage and r spectra, and principal component analysis. Both movement and imagery were associated with mu and beta rhythm desynchronization. The mu topographies showed bilateral foci of desynchronization over sensorimotor cortices, while the beta topographies showed peak desynchronization over the vertex. Both mu and beta rhythm left/right differences showed bilateral central foci that were stronger on the right side. The independence of mu and beta rhythms was demonstrated by differences for movement and imagery for the subjects as a group and by principal components analysis. The results indicated that the effects of imagery were not simply an attenuated version of the effects of movement. They supply evidence that motor imagery could play an important role in EEG-based communication, and suggest that mu and beta rhythms might provide independent control signals.
Collapse
|
|
25 |
478 |
10
|
Perlis ML, Giles DE, Mendelson WB, Bootzin RR, Wyatt JK. Psychophysiological insomnia: the behavioural model and a neurocognitive perspective. J Sleep Res 1997; 6:179-88. [PMID: 9358396 DOI: 10.1046/j.1365-2869.1997.00045.x] [Citation(s) in RCA: 461] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A number of paradoxes are apparent in the assessment and treatment of psychophysiological insomnia and sleep state misperception. Three of these paradoxes exist as discrepancies between polysomnographic (PSG) measures and the subjective impressions regarding sleep quality and quantity. The remaining incongruity exists largely within the objective domain. In the case of subjective-objective discrepancies, patients with insomnia: (1) frequently identify themselves as having been awake when awakened from PSG defined sleep; (2) tend to overestimate sleep latency and underestimate total sleep time as compared with PSG measures; (3) appear to derive more benefit from pharmacotherapy that can be explained by objective gains. The remaining paradox pertains to the observation that hypnotic medications, by and large, do not normalize sleep architecture or produce a more 'sleep-like' EEG. In this paper, we review possible explanations for these various paradoxes, introduce a new perspective and suggest possible research avenues. The model introduced is based on the observation that beta and/or gamma activity (which have been found to be associated with cognitive processes) is enhanced in insomnia at or around sleep onset. We propose that this kind of high frequency EEG activity may interfere with the normal establishment of sleep onset-related mesograde amnesia. As a result, the patient with insomnia maintains a level of information and/or memory processing that blurs the phenomenological distinction between sleep and wakefulness and influences retrospective judgments about sleep initiation and duration.
Collapse
|
Review |
28 |
461 |
11
|
Weinberger M, Mahant N, Hutchison WD, Lozano AM, Moro E, Hodaie M, Lang AE, Dostrovsky JO. Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson's disease. J Neurophysiol 2006; 96:3248-56. [PMID: 17005611 DOI: 10.1152/jn.00697.2006] [Citation(s) in RCA: 424] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies suggest that beta (15-30 Hz) oscillatory activity in the subthalamic nucleus (STN) is dramatically increased in Parkinson's disease (PD) and may interfere with movement execution. Dopaminergic medications decrease beta activity and deep brain stimulation (DBS) in the STN may alleviate PD symptoms by disrupting this oscillatory activity. Depth recordings from PD patients have demonstrated beta oscillatory neuronal and local field potential (LFP) activity in STN, although its prevalence and relationship to neuronal activity are unclear. In this study, we recorded both LFP and neuronal spike activity from the STN in 14 PD patients during functional neurosurgery. Of 200 single- and multiunit recordings 56 showed significant oscillatory activity at about 26 Hz and 89% of these were coherent with the simultaneously recorded LFP. The incidence of neuronal beta oscillatory activity was significantly higher in the dorsal STN (P = 0.01) and corresponds to the significantly increased LFP beta power recorded in the same region. Of particular interest was a significant positive correlation between the incidence of oscillatory neurons and the patient's benefit from dopaminergic medications, but not with baseline motor deficits off medication. These findings suggest that the degree of neuronal beta oscillatory activity is related to the magnitude of the response of the basal ganglia to dopaminergic agents rather than directly to the motor symptoms of PD. The study also suggests that LFP beta oscillatory activity is generated largely within the dorsal portion of the STN and can produce synchronous oscillatory activity of the local neuronal population.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
424 |
12
|
Pfurtscheller G, Neuper C, Flotzinger D, Pregenzer M. EEG-based discrimination between imagination of right and left hand movement. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1997; 103:642-51. [PMID: 9546492 DOI: 10.1016/s0013-4694(97)00080-1] [Citation(s) in RCA: 409] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Three subjects were asked to imagine either right or left hand movement depending on a visual cue stimulus. The interval between two consecutive imagination tasks was > 10 s. Each subject imagined a total of 160 hand movements in each of 3-4 sessions (training) without feedback and 7-8 sessions with feedback. The EEG was recorded bipolarly from left and right central and parietal regions and was sampled at 128 Hz. In the feedback sessions, the EEG from both central channels was classified on-line with a neural network classifier, and the success of the discrimination between left and right movement imagination was given within 1.5 s by means of a visual feedback. For each subject, different frequency components in the alpha and beta band were found which provided best discrimination between left and right hand movement imagination. These frequency bands varied between 9 and 14 Hz and between 18 and 26 Hz. The accuracy of on-line classification was approximately 80% in all 3 subjects and did not improve with increasing number of sessions. By averaging over all training and over all feedback sessions, the EEG data revealed a significant desynchronisation (ERD) over the contralateral central area and synchronisation (ERS) over the ipsilateral side. The ERD/ERS patterns over all sessions displayed a relatively small intra-subject variability with slight differences between sessions with and without feedback.
Collapse
|
|
28 |
409 |
13
|
Jurkiewicz MT, Gaetz WC, Bostan AC, Cheyne D. Post-movement beta rebound is generated in motor cortex: evidence from neuromagnetic recordings. Neuroimage 2006; 32:1281-9. [PMID: 16863693 DOI: 10.1016/j.neuroimage.2006.06.005] [Citation(s) in RCA: 337] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 05/30/2006] [Accepted: 06/02/2006] [Indexed: 11/19/2022] Open
Abstract
Voluntary movements are accompanied by amplitude changes in cortical rhythms presumably as a result of functional activation of sensorimotor areas. Recently, the location of the neural generators involved in increasing power within the beta (15-30 Hz) frequency band following movement (post-movement beta rebound, PMBR) has come into question [Parkes, L.M, Bastiaansen, M.C.M, Norris, D.G., 2006. Combining EEG and fMRI to investigate the post-movement beta rebound. NeuroImage 29, 685-696.]. We used the synthetic aperture magnetometry (SAM) spatial filtering method to identify the time course and location of oscillatory changes within the beta and mu (8-14 Hz) frequency bands during the performance of voluntary movements. Neuromagnetic activity was recorded from 10 adult subjects during abduction of the right index finger. Changes in beta and mu source power were calculated for periods during and following movement, relative to pre-movement baseline activity. Decreases in beta band activity (event-related desynchronization, ERD) were observed during movement, with a strong increase (PMBR) beginning 230+/-170 ms following movement, lasting for 680+/-170 ms. Mu band ERD was observed both during and following movement, with little to no post-movement rebound. Beta and mu ERD were localized bilaterally to the hand region of postcentral gyrus whereas PMBR was localized bilaterally to the hand region of precentral gyrus (motor cortex). Both PMBR and beta ERD were strongest contralateral to the side of movement. These results provide further evidence that movement influences independent cortical rhythms in sensorimotor areas, and confirm previous reports of precentral generators of PMBR in the region of motor cortex, with postcentral generators of beta and mu ERD during movement.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
337 |
14
|
Jelic V, Johansson SE, Almkvist O, Shigeta M, Julin P, Nordberg A, Winblad B, Wahlund LO. Quantitative electroencephalography in mild cognitive impairment: longitudinal changes and possible prediction of Alzheimer's disease. Neurobiol Aging 2000; 21:533-40. [PMID: 10924766 DOI: 10.1016/s0197-4580(00)00153-6] [Citation(s) in RCA: 333] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study evaluated the clinical course of patients with mild cognitive impairment (MCI), the pattern of electroencephalography (EEG) changes following cognitive deterioration, as well as the potential of neurophysiological measures in predicting dementia. Twenty-seven subjects with MCI were followed for a mean follow up period of 21 months. Fourteen subjects (52%) progressed (P MCI) to clinically manifest Alzheimer's disease (AD), and 13 (48%) remained stable (S MCI). The two MCI subgroups did not differ in baseline EEG measures between each other and the healthy controls (n = 16), but had significantly lower theta relative power at left temporal, temporo-occipital, centro-parietal, and right temporo-occipital derivation when compared to the reference AD group (n = 15). The P MCI baseline alpha band temporo-parietal coherence, alpha relative power values at left temporal and temporo-occipital derivations, theta relative power values at frontal derivations, and the mean frequency at centro-parietal and temporo-occipital derivations overlapped with those for AD and control groups. After the follow-up, the P MCI patients had significantly higher theta relative power and lower beta relative power and mean frequency at the temporal and temporo-occipital derivations. A logistic regression model of baseline EEG values adjusted for baseline Mini-Mental Test Examination showed that the important predictors were alpha and theta relative power and mean frequency from left temporo-occipital derivation (T5-O1), which classified 85% of MCI subjects correctly.
Collapse
|
|
25 |
333 |
15
|
Pfurtscheller G. Central beta rhythm during sensorimotor activities in man. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1981; 51:253-64. [PMID: 6163614 DOI: 10.1016/0013-4694(81)90139-5] [Citation(s) in RCA: 330] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Blocking or desynchronization of the central beta rhythm prior to and parallel to voluntary movement was found in 31 of 33 normal subjects investigated. The beta blocking was short lasting (1-3 sec), very often accompanied by blocking of the mu rhythm and localized in the central region. Phasic beta desynchronization was also observed after somatosensory stimulation. The beta rhythm showed a bilateral symmetrical blocking pattern with unilateral movement or stimulation. Patients with unilateral cerebral ischaemia showed an asymmetric blocking response and therefore demonstrated a high degree of hemispheric independence of the rhythmic generating systems. Central beta desynchronization is, therefore, a normal physiological phenomenon caused by activation processes of the sensorimotor cortex and detectable on the scalp very easily with closely spaced electrodes.
Collapse
|
|
44 |
330 |
16
|
Mallet N, Pogosyan A, Márton LF, Bolam JP, Brown P, Magill PJ. Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. J Neurosci 2008; 28:14245-58. [PMID: 19109506 PMCID: PMC4243385 DOI: 10.1523/jneurosci.4199-08.2008] [Citation(s) in RCA: 297] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/11/2008] [Accepted: 11/13/2008] [Indexed: 11/21/2022] Open
Abstract
Inappropriately synchronized beta (beta) oscillations (15-30 Hz) in the subthalamic nucleus (STN) accompany movement difficulties in idiopathic Parkinson's disease (PD). The cellular and network substrates underlying these exaggerated beta oscillations are unknown but activity in the external globus pallidus (GP), which forms a candidate pacemaker network with STN, might be of particular importance. Using a clinically relevant rat model of PD, we demonstrate that oscillatory activity in GP neuronal networks becomes excessively and selectively synchronized at beta frequencies in a spatially widespread and brain state-dependent manner after lesion of dopamine neurons. Although synchronization of GP unit activity increased by almost 100-fold during beta oscillations, the mean firing rate of GP neurons decreased compared with controls. Importantly, in parkinsonian animals, two main types of GP neuron were identified according to their distinct and inversely related firing rates and patterns. Moreover, neurons of the same type tended to fire together, with small phase differences, whereas different types of neuron tended not to do so. This functional dichotomy in temporal coupling persisted across extreme brain states, suggesting that maladaptive interactions are dominated by hardwiring. Finally, the precisely timed discharges of GP and STN neurons indicated that rhythmic sequences of recurrent excitation and inhibition in the STN-GP network, and lateral inhibition between GP neurons, could actively support abnormal beta oscillations. We propose that GP neurons, by virtue of their spatiotemporal synchronization, widespread axon collaterals and feed-back/feed-forward mechanisms, are well placed to orchestrate and propagate exaggerated beta oscillations throughout the entire basal ganglia in PD.
Collapse
|
research-article |
17 |
297 |
17
|
Perlis ML, Smith MT, Andrews PJ, Orff H, Giles DE. Beta/Gamma EEG activity in patients with primary and secondary insomnia and good sleeper controls. Sleep 2001; 24:110-7. [PMID: 11204046 DOI: 10.1093/sleep/24.1.110] [Citation(s) in RCA: 295] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVE Several studies have shown that patients with insomnia exhibit elevated levels of Beta EEG activity (14-35 Hz) at or around sleep onset and during NREM sleep. In this study, we evaluated 1) the extent to which high frequency EEG activity is limited to the 14-32 Hz domain, 2) whether high frequency EEG activity (HFA) is associated with discrepancies between subjective and PSG measures of sleep continuity, and 3) the extent to which high frequency EEG activity occurs in patients with primary, as opposed to secondary, insomnia. DESIGN Three groups (n=9 per group) were compared: Primary Insomnia, Insomnia secondary to Major Depression, and Good Sleeper Controls. Groups were matched for age, sex and body mass. Average spectral profiles were created for each NREM cycle after removing waking and movement epochs and epochs containing micro- or mini-arousals. SETTING Sleep Research Laboratory PATIENTS OR PARTICIPANTS Patients with primary and secondary insomnia INTERVENTIONS N/A. MEASUREMENTS AND RESULTS Subjects with Primary Insomnia exhibited more average NREM activity for Beta-1 (14-20Hz), Beta-2 (20-35Hz) and Gamma activity (35-45Hz) than the other two groups (p.<.01). Group differences were also suggestive for Omega activity (45.0-125Hz) (p.<.10), with MDD subjects tending to exhibit more activity than the other groups. Correlational analyses revealed that average NREM Beta-1 and Beta-2 activity tended to be negatively correlated with subjective-objective discrepancy measures for total sleep time and sleep latency. CONCLUSIONS Our results confirm that Beta activity is increased in Primary Insomnia. In addition, our data suggest that high frequency activity in patients with Primary Insomnia is limited to the Beta/Gamma range (14-45 Hz), and is negatively associated with the perception of sleep.
Collapse
|
Comparative Study |
24 |
295 |
18
|
Tinkhauser G, Pogosyan A, Little S, Beudel M, Herz DM, Tan H, Brown P. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson's disease. Brain 2017; 140:1053-1067. [PMID: 28334851 PMCID: PMC5382944 DOI: 10.1093/brain/awx010] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 11/13/2022] Open
Abstract
Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson's disease, elevations in beta activity (13-35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson's disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could be more efficacious than conventional continuous deep brain stimulation in the treatment of Parkinson's disease, and helps inform how adaptive deep brain stimulation might best be delivered.
Collapse
|
research-article |
8 |
283 |
19
|
Sammler D, Grigutsch M, Fritz T, Koelsch S. Music and emotion: Electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology 2007; 44:293-304. [PMID: 17343712 DOI: 10.1111/j.1469-8986.2007.00497.x] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human emotion and its electrophysiological correlates are still poorly understood. The present study examined whether the valence of perceived emotions would differentially influence EEG power spectra and heart rate (HR). Pleasant and unpleasant emotions were induced by consonant and dissonant music. Unpleasant (compared to pleasant) music evoked a significant decrease of HR, replicating the pattern of HR responses previously described for the processing of emotional pictures, sounds, and films. In the EEG, pleasant (contrasted to unpleasant) music was associated with an increase of frontal midline (Fm) theta power. This effect is taken to reflect emotional processing in close interaction with attentional functions. These findings show that Fm theta is modulated by emotion more strongly than previously believed.
Collapse
|
|
18 |
269 |
20
|
Clarke AR, Barry RJ, McCarthy R, Selikowitz M. Age and sex effects in the EEG: development of the normal child. Clin Neurophysiol 2001; 112:806-14. [PMID: 11336896 DOI: 10.1016/s1388-2457(01)00488-6] [Citation(s) in RCA: 266] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES This study investigated age-related changes and sex differences in the EEGs of normal children. METHODS Forty boys and 40 girls, between the ages of 8 and 12 years, participated in this study. The EEG was recorded during an eyes-closed resting condition and Fourier transformed to provide estimates for total power, absolute and relative power in the delta, theta, alpha and beta bands, and for theta/alpha and theta/beta ratios. RESULTS Absolute delta activity decreased with age. Relative delta and theta decreased and alpha and beta increased with increasing age. The theta/alpha and theta/beta ratios decreased with increasing age. All of these indicated a developmental reduction in slow wave activity. Maturational differences were found in the rates of change between the midline and the two hemispheres. In the absolute delta and the theta/beta ratio, the midline and the two hemispheres became more equipotential with age. In the beta band, power increased at a greater rate than in the two hemispheres. Sex differences were found, with males having less theta and more alpha than females. CONCLUSIONS These results indicated that maturation occurs earlier at the midline than in the two hemispheres. Females were also found to have a developmental lag in the EEG compared with males.
Collapse
|
|
24 |
266 |
21
|
David O, Cosmelli D, Friston KJ. Evaluation of different measures of functional connectivity using a neural mass model. Neuroimage 2004; 21:659-73. [PMID: 14980568 DOI: 10.1016/j.neuroimage.2003.10.006] [Citation(s) in RCA: 240] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2003] [Revised: 10/02/2003] [Accepted: 10/08/2003] [Indexed: 11/19/2022] Open
Abstract
We use a neural mass model to address some important issues in characterising functional integration among remote cortical areas using magnetoencephalography or electroencephalography (MEG or EEG). In a previous paper [Neuroimage (in press)], we showed how the coupling among cortical areas can modulate the MEG or EEG spectrum and synchronise oscillatory dynamics. In this work, we exploit the model further by evaluating different measures of statistical dependencies (i.e., functional connectivity) among MEG or EEG signals that are mediated by neuronal coupling. We have examined linear and nonlinear methods, including phase synchronisation. Our results show that each method can detect coupling but with different sensitivity profiles that depended on (i) the frequency specificity of the interaction (broad vs. narrow band) and (ii) the nature of the coupling (linear vs. nonlinear). Our analyses suggest that methods based on the concept of generalised synchronisation are the most sensitive when interactions encompass different frequencies (broadband analyses). In the context of narrow-band analyses, mutual information was found to be the most sensitive way to disclose frequency-specific couplings. Measures based on generalised synchronisation and phase synchronisation are the most sensitive to nonlinear coupling. These different sensitivity profiles mean that the choice of coupling measures can have dramatic effects on the cortical networks identified. We illustrate this using a single-subject MEG study of binocular rivalry and highlight the greater recovery of statistical dependencies among cortical areas in the beta band when mutual information is used.
Collapse
|
|
21 |
240 |
22
|
Rangaswamy M, Porjesz B, Chorlian DB, Wang K, Jones KA, Bauer LO, Rohrbaugh J, O'Connor SJ, Kuperman S, Reich T, Begleiter H. Beta power in the EEG of alcoholics. Biol Psychiatry 2002; 52:831-42. [PMID: 12372655 DOI: 10.1016/s0006-3223(02)01362-8] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In this study, the magnitude and spatial distribution of beta power in the resting electroencephalogram (EEG) were examined to address the possibility of an excitation-inhibition imbalance in the central nervous system of alcoholics. METHODS Log transformed absolute power in the Beta 1 (12.5-16 Hz), Beta 2 (16.5-20 Hz), and Beta 3 (20.5-28 Hz) bands in the eyes-closed EEG of 307 alcohol-dependent subjects and 307 unaffected age- and gender-matched control subjects were compared using a multivariate repeated measures design. Effect of gender, age, and drinking variables was examined separately. RESULTS Increased Beta 1 (12.5-16 Hz) and Beta 2 (16.5-20 Hz) absolute power was observed in alcohol-dependent subjects at all loci over the scalp. The increase was most prominent in the central region. Increased Beta 3 (20.5-28 Hz) power was frontal in the alcoholics. Age and clinical variables did not influence the increase. Male alcoholics had significantly higher beta power in all three bands. In female alcoholics the increase did not reach statistical significance. CONCLUSIONS Beta power in all three bands of resting EEG is elevated in alcoholics. This feature is more prominent in male alcoholics. The increased beta power in the resting EEG may be an electrophysiological index of the imbalance in the excitation-inhibition homeostasis in the cortex.
Collapse
|
Comparative Study |
23 |
238 |
23
|
Egner T, Gruzelier JH. EEG biofeedback of low beta band components: frequency-specific effects on variables of attention and event-related brain potentials. Clin Neurophysiol 2004; 115:131-9. [PMID: 14706480 DOI: 10.1016/s1388-2457(03)00353-5] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To test a common assumption underlying the clinical use of electroencephalographic (EEG) biofeedback training (neurofeedback), that the modulation of discreet frequency bands is associated with frequency-specific effects. Specifically, the proposal was assessed that enhancement of the low beta components sensorimotor rhythm (SMR: 12-15 Hz) and beta1 (15-18 Hz) affect different aspects of attentional processing. METHODS Subjects (n=25) were randomly allocated to training with either an SMR or beta1 protocol, or to a non-neurofeedback control group. Subjects were assessed prior and subsequent to the training process on two tests of sustained attention. The neurofeedback participants were also assessed on target P300 event-related potential (ERP) amplitudes in a traditional auditory oddball paradigm. RESULTS Protocol-specific effects were obtained in that SMR training was associated with increased perceptual sensitivity 'd prime' (d'), and reduced omission errors and reaction time variability. Beta1 training was associated with faster reaction times and increased target P300 amplitudes, whereas no changes were evident in the control group. CONCLUSIONS Neurofeedback training of SMR and beta1 band components led to significant and protocol-specific effects in healthy subjects. The data can be interpreted as indicating a general attention-enhancing effect of SMR training, and an arousal-enhancing effect of beta1 training.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
234 |
24
|
Roopun AK, Middleton SJ, Cunningham MO, LeBeau FEN, Bibbig A, Whittington MA, Traub RD. A beta2-frequency (20-30 Hz) oscillation in nonsynaptic networks of somatosensory cortex. Proc Natl Acad Sci U S A 2006; 103:15646-50. [PMID: 17030821 PMCID: PMC1592532 DOI: 10.1073/pnas.0607443103] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Beta2 frequency (20-30 Hz) oscillations appear over somatosensory and motor cortices in vivo during motor preparation and can be coherent with muscle electrical activity. We describe a beta2 frequency oscillation occurring in vitro in networks of layer V pyramidal cells, the cells of origin of the corticospinal tract. This beta2 oscillation depends on gap junctional coupling, but it survives a cut through layer 4 and, hence, does not depend on apical dendritic electrogenesis. It also survives a blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors or a blockade of GABA(A) receptors that is sufficient to suppress gamma (30-70 Hz) oscillations in superficial cortical layers. The oscillation period is determined by the M type of K+ current.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
223 |
25
|
Inouye T, Shinosaki K, Sakamoto H, Toi S, Ukai S, Iyama A, Katsuda Y, Hirano M. Quantification of EEG irregularity by use of the entropy of the power spectrum. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1991; 79:204-10. [PMID: 1714811 DOI: 10.1016/0013-4694(91)90138-t] [Citation(s) in RCA: 221] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A new method for quantifying irregularity of EEGs is proposed in this study. The entropy, an information measure, determines the uniformity of proportion distribution. The peakedness or flatness of the distribution of the EEG power spectrum, representing EEG rhythmicity, can be measured by the entropy, because the power spectrum consists of proportions of power at each frequency. The irregularity of the EEG was measured by the entropy of the power spectrum, called an irregularity index (II). The II was obtained from the power spectrum at F3, F4, C3, C4, P3, P4, O1 and O2 during rest and mental arithmetic in 10 normal subjects. Relative band powers of delta, theta, alpha and beta bands and alpha peak frequency were also obtained. EEGs during rest were significantly more irregular anteriorly than in the occipital areas. Alpha activity was also more irregular in the anterior region. A greater degree of EEG desynchronization during mental arithmetic was found over the left hemisphere and the right occipital area. The II was more sensitive to such desynchronization than alpha band power and alpha peak frequency. The differences in spectral structures between rest and mental arithmetic conditions, mainly over the left hemisphere, were also confirmed by the Kullback-Leibler information.
Collapse
|
|
34 |
221 |