26
|
Aljabali AAA, Aljbaly MBM, Obeid MA, Shahcheraghi SH, Tambuwala MM. The Next Generation of Drug Delivery: Harnessing the Power of Bacteriophages. Methods Mol Biol 2024; 2738:279-315. [PMID: 37966606 DOI: 10.1007/978-1-0716-3549-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The use of biomaterials, such as bacteriophages, as drug delivery vehicles (DDVs) has gained increasing interest in recent years due to their potential to address the limitations of conventional drug delivery systems. Bacteriophages offer several advantages as drug carriers, such as high specificity for targeting bacterial cells, low toxicity, and the ability to be engineered to express specific proteins or peptides for enhanced targeting and drug delivery. In addition, bacteriophages have been shown to reduce the development of antibiotic resistance, which is a major concern in the field of antimicrobial therapy. Many initiatives have been taken to take up various payloads selectively and precisely by surface functionalization of the outside or interior of self-assembling viral protein capsids. Bacteriophages have emerged as a promising platform for the targeted delivery of therapeutic agents, including drugs, genes, and imaging agents. They possess several properties that make them attractive as drug delivery vehicles, including their ability to specifically target bacterial cells, their structural diversity, their ease of genetic manipulation, and their biocompatibility. Despite the potential advantages of using bacteriophages as drug carriers, several challenges and limitations need to be addressed. One of the main challenges is the limited host range of bacteriophages, which restricts their use to specific bacterial strains. However, this can also be considered as an advantage, as it allows for precise and targeted drug delivery to the desired bacterial cells. The use of biomaterials, including bacteriophages, as drug delivery vehicles has shown promising potential to address the limitations of conventional drug delivery systems. Further research is needed to fully understand the potential of these biomaterials and address the challenges and limitations associated with their use.
Collapse
|
27
|
Yang L, Gong Y, Liu F, Chen W, Wang X, Long G, Li H, Xiao F, Lu M, Hu Y, Tong X, Zuo J. A novel phthalazinone derivative as a capsid assembly modulator inhibits hepatitis B virus expression. Antiviral Res 2024; 221:105763. [PMID: 38008192 DOI: 10.1016/j.antiviral.2023.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Development of new anti-hepatitis B virus (HBV) drugs that target viral capsid assembly is a very active research field. We identify a novel phthalazinone derivative, compound 5832, as a potent HBV inhibitor. In this study, we intend to elaborate the antiviral effect and mechanism of 5832 against HBV in vitro and in vivo. Compound 5832 treatment induces the formation of genome-free empty capsid by interfering with the core protein assembly domain, which significantly decreases the extracellular and intracellular HBV DNA. In the AAV-HBV transduced mouse model, 5832 suppresses serum HBV DNA after 4-week treatment, and decreases HBsAg and HBeAg levels. 5832 treatment also reduces intrahepatic HBV RNA, DNA and HBcAg levels. During the follow-up period after treatment withdrawal, serum antigen levels demonstrated no increase. We demonstrate 5832 treatment could active apoptotic signaling by elevating the expression of death receptor 5 (DR5), which participated in corresponding HBcAg-positive hepatocyte eradication. Phthalazinone derivative 5832 may serve as a promising anti-HBV drug candidate to improve the treatment options for chronic HBV infection.
Collapse
|
28
|
Jablunovsky A, Narayanan A, Jose J. Identification of a critical role for ZIKV capsid α3 in virus assembly and its genetic interaction with M protein. PLoS Negl Trop Dis 2024; 18:e0011873. [PMID: 38166143 PMCID: PMC10786401 DOI: 10.1371/journal.pntd.0011873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/12/2024] [Accepted: 12/19/2023] [Indexed: 01/04/2024] Open
Abstract
Flaviviruses such as Zika and dengue viruses are persistent health concerns in endemic regions worldwide. Efforts to combat the spread of flaviviruses have been challenging, as no antivirals or optimal vaccines are available. Prevention and treatment of flavivirus-induced diseases require a comprehensive understanding of their life cycle. However, several aspects of flavivirus biogenesis, including genome packaging and virion assembly, are not well characterized. In this study, we focused on flavivirus capsid protein (C) using Zika virus (ZIKV) as a model to investigate the role of the externally oriented α3 helix (C α3) without a known or predicted function. Alanine scanning mutagenesis of surface-exposed amino acids on C α3 revealed a critical CN67 residue essential for ZIKV virion production. The CN67A mutation did not affect dimerization or RNA binding of purified C protein in vitro. The virus assembly is severely affected in cells transfected with an infectious cDNA clone of ZIKV with CN67A mutation, resulting in a highly attenuated phenotype. We isolated a revertant virus with a partially restored phenotype by continuous passage of the CN67A mutant virus in Vero E6 cells. Sequence analysis of the revertant revealed a second site mutation in the viral membrane (M) protein MF37L, indicating a genetic interaction between the C and M proteins of ZIKV. Introducing the MF37L mutation on the mutant ZIKV CN67A generated a double-mutant virus phenotypically consistent with the isolated genetic revertant. Similar results were obtained with analogous mutations on C and M proteins of dengue virus, suggesting the critical nature of C α3 and possible C and M residues contributing to virus assembly in other Aedes-transmitted flaviviruses. This study provides the first experimental evidence of a genetic interaction between the C protein and the viral envelope protein M, providing a mechanistic understanding of the molecular interactions involved in the assembly and budding of Aedes-transmitted flaviviruses.
Collapse
|
29
|
Coleman H, Saylor Perez J, Schwartz DK, Kaar J, Garcea RL, Randolph TW. Effect of mechanical stresses on viral capsid disruption during droplet formation and drying. Colloids Surf B Biointerfaces 2024; 233:113661. [PMID: 38006709 PMCID: PMC10986848 DOI: 10.1016/j.colsurfb.2023.113661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Identification of the mechanisms by which viruses lose activity during droplet formation and drying is of great importance to understanding the spread of infectious diseases by virus-containing respiratory droplets and to developing thermally stable spray dried live or inactivated viral vaccines. In this study, we exposed suspensions of baculovirus, an enveloped virus, to isolated mechanical stresses similar to those experienced during respiratory droplet formation and spray drying: fluid shear forces, osmotic pressure forces, and surface tension forces at interfaces. DNA released from mechanically stressed virions was measured by SYBR Gold staining to quantify viral capsid disruption. Theoretical estimates of the force exerted by fluid shear, osmotic pressures and interfacial tension forces during respiratory droplet formation and spray drying suggest that osmotic and interfacial stresses have greater potential to mechanically destabilize viral capsids than forces associated with shear stresses. Experimental results confirmed that rapid changes in osmotic pressure, such as those associated with drying of virus-containing droplets, caused significant viral capsid disruption, whereas the effect of fluid shear forces was negligible. Surface tension forces were sufficient to provoke DNA release from virions adsorbed at air-water interfaces, but the extent of this disruption was limited by the time required for virions to diffuse to interfaces. These results demonstrate the effect of isolated mechanical stresses on virus particles during droplet formation and drying.
Collapse
|
30
|
Di W, Koczera K, Zhang P, Chen DP, Warren JC, Huang C. Improved adeno-associated virus empty and full capsid separation using weak partitioning multi-column AEX chromatography. Biotechnol J 2024; 19:e2300245. [PMID: 38013662 DOI: 10.1002/biot.202300245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/10/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Recombinant adeno-associated virus (rAAV) empty and full capsid separation has been a topic of interest in the rAAV gene therapy community for many years and the anion exchange chromatography (AEX) step has undergone various process optimizations to improve rAAV empty capsid separation, including AEX stationary phase, mobile phase, and process parameters. Here, we present a new AEX method that employs both weak partitioning chromatography (WPC) and multi-column chromatography (MCC) to achieve improved full rAAV percentage in the AEX pool. The WPC technology allows empty rAAV to be displaced by full rAAV during loading, while the MCC technology enables parallel column processing which further increases AEX step productivity. Our results show that, compared to baseline AEX batch chromatography, the AEX-WPC-MCC method demonstrated improvements in both AEX pool full rAAV percentage (∼ 20% increase) and rAAV genome recovery (∼ 20% increase). As a result, the productivity (full capsid generated per liter of AEX column per hour of processing time) of the AEX step increased by ∼34-fold from the baseline AEX batch run to the AEX-WPC-MCC run. It is foreseeable that this AEX-WPC-MCC method could find applications in large-scale rAAV manufacturing processes to improve AEX yield and reduce the cost of goods of rAAV manufacturing.
Collapse
|
31
|
Hitchcock AM, Kufel WD, Dwyer KAM, Sidman EF. Lenacapavir: A novel injectable HIV-1 capsid inhibitor. Int J Antimicrob Agents 2024; 63:107009. [PMID: 37844807 DOI: 10.1016/j.ijantimicag.2023.107009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/06/2023] [Accepted: 10/01/2023] [Indexed: 10/18/2023]
Abstract
Patients living with multidrug-resistant (MDR) HIV have limited antiretroviral regimen options that provide durable viral suppression. Lenacapavir is a novel first-in-class inhibitor of HIV-1 capsid function with efficacy at various stages of the viral life cycle, and it is indicated for the treatment of MDR HIV-1 infection in combination with optimized background antiretroviral therapy. The favourable pharmacokinetic profile supports an every sixth month dosing interval of subcutaneous lenacapavir after an initial oral loading dose, which may advocate for continued adherence to antiretroviral therapy (ART) through the reduction of daily pill burden. The role of lenacapavir in promoting virologic suppression has been studied in patients with MDR HIV-1 on failing ART at baseline. Lenacapavir was well tolerated in clinical trials with the most common adverse effects including mild to moderate injection site reactions, gastrointestinal symptoms, and headache. Substitutions on the capsid molecule may confer resistance to lenacapavir by changing the binding potential. Cross-resistance to other antiretrovirals has not been observed. The unique mechanism of action, pharmacokinetics, and safety and efficacy of lenacapavir support its use for the management of MDR HIV-1 infection. Current studies are ongoing to evaluate the potential use of subcutaneous lenacapavir for pre-exposure prophylaxis (PrEP). Future studies will confirm the long-term clinical safety, efficacy, and resistance data for lenacapavir.
Collapse
|
32
|
Aves KL, Sander AF. Design and Purification of Tag/Catcher AP205-Based Capsid Virus-Like Particle Vaccines. Methods Mol Biol 2024; 2720:127-141. [PMID: 37775662 DOI: 10.1007/978-1-0716-3469-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Capsid virus-like particles (cVLPs), assembled from viral coat proteins, are used as therapeutic cargo delivery vehicles as well as molecular scaffolds for display of vaccine antigens. A versatile vaccine platform has been developed based on the Acinetobacter phage AP205 cVLP, which has been shown to significantly improve antigen-specific antibody responses. This modular cVLP platform exploits a split-protein (Tag/Catcher) conjugation system to enable high-density, unidirectional antigen display. Accordingly, protein antigens can be independently expressed and quality-checked prior to conjugation to pre-assembled cVLPs. Here, we describe considerations for the design of vaccine antigens with genetically fused split-protein (Tag or Catcher) binding partners and provide protocols for the expression and purification of corresponding Tag- or Catcher-AP205 cVLPs from E.coli. Finally, we describe a generic protocol for the formulation and quality assessment of experimental/pre-clinical AP205 cVLP-based vaccines.
Collapse
|
33
|
Yu DL, van Lieshout LP, Stevens BAY, Near KJ(J, Stodola JK, Stinson KJ, Slavic D, Wootton SK. AAV Vectors Pseudotyped with Capsids from Porcine and Bovine Species Mediate In Vitro and In Vivo Gene Delivery. Viruses 2023; 16:57. [PMID: 38257756 PMCID: PMC10820940 DOI: 10.3390/v16010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Adeno-associated virus (AAV) vectors are among the most widely used delivery vehicles for in vivo gene therapy as they mediate robust and sustained transgene expression with limited toxicity. However, a significant impediment to the broad clinical success of AAV-based therapies is the widespread presence of pre-existing humoral immunity to AAVs in the human population. This immunity arises from the circulation of non-pathogenic endemic human AAV serotypes. One possible solution is to use non-human AAV capsids to pseudotype transgene-containing AAV vector genomes of interest. Due to the low probability of human exposure to animal AAVs, pre-existing immunity to animal-derived AAV capsids should be low. Here, we characterize two novel AAV capsid sequences: one derived from porcine colon tissue and the other from a caprine adenovirus stock. Both AAV capsids proved to be effective transducers of HeLa and HEK293T cells in vitro. In vivo, both capsids were able to transduce the murine nose, lung, and liver after either intranasal or intraperitoneal administration. In addition, we demonstrate that the porcine AAV capsid likely arose from multiple recombination events involving human- and animal-derived AAV sequences. We hypothesize that recurrent recombination events with similar and distantly related AAV sequences represent an effective mechanism for enhancing the fitness of wildtype AAV populations.
Collapse
|
34
|
Slack J, Nguyen C, Ibe-Enwo A. A Lac Repressor-Inducible Baculovirus Expression Vector for Controlling Adeno-Associated Virus Capsid Ratios. Viruses 2023; 16:51. [PMID: 38257750 PMCID: PMC10820722 DOI: 10.3390/v16010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
The baculovirus expression vector (BEV) system is an efficient, cost-effective, and scalable method to produce recombinant adeno-associated virus (rAAV) gene therapy vectors. Most BEV designs emulate the wild-type AAV transcriptome and translate the AAV capsid proteins, VP1, VP2, and VP3, from a single mRNA transcript with three overlapping open reading frames (ORFs). Non-canonical translation initiation codons for VP1 and VP2 reduce their abundances relative to VP3. Changing capsid ratios to improve rAAV vector efficacy requires a theoretical modification of the translational context. We have developed a Lac repressor-inducible system to empirically regulate the expression of VP1 and VP2 proteins relative to VP3 in the context of the BEV. We demonstrate the use of this system to tune the abundance, titer, and potency of a neurospecific rAAV9 serotype derivative. VP1:VP2:VP3 ratios of 1:1:8 gave optimal potency for this rAAV. It was discovered that the ratios of capsid proteins expressed were different than the ratios that ultimately were in purified capsids. Overexpressed VP1 did not become incorporated into capsids, while overexpressed VP2 did. Overabundance of VP2 correlated with reduced rAAV titers. This work demonstrates a novel technology for controlling the production of rAAV in the BEV system and shows a new perspective on the biology of rAAV capsid assembly.
Collapse
|
35
|
Kevill JL, Farkas K, Ridding N, Woodhall N, Malham SK, Jones DL. Use of Capsid Integrity-qPCR for Detecting Viral Capsid Integrity in Wastewater. Viruses 2023; 16:40. [PMID: 38257740 PMCID: PMC10819219 DOI: 10.3390/v16010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Quantifying viruses in wastewater via RT-qPCR provides total genomic data but does not indicate the virus capsid integrity or the potential risk for human infection. Assessing virus capsid integrity in sewage is important for wastewater-based surveillance, since discharged effluent may pose a public health hazard. While integrity assays using cell cultures can provide this information, they require specialised laboratories and expertise. One solution to overcome this limitation is the use of photo-reactive monoazide dyes (e.g., propidium monoazide [PMAxx]) in a capsid integrity-RT-qPCR assay (ci-RT-qPCR). In this study, we tested the efficiency of PMAxx dye at 50 μM and 100 μM concentrations on live and heat-inactivated model viruses commonly detected in wastewater, including adenovirus (AdV), hepatitis A (HAV), influenza A virus (IAV), and norovirus GI (NoV GI). The 100 μM PMAxx dye concentration effectively differentiated live from heat-inactivated viruses for all targets in buffer solution. This method was then applied to wastewater samples (n = 19) for the detection of encapsulated AdV, enterovirus (EV), HAV, IAV, influenza B virus (IBV), NoV GI, NoV GII, and SARS-CoV-2. Samples were negative for AdV, HAV, IAV, and IBV but positive for EV, NoV GI, NoV GII, and SARS-CoV-2. In the PMAxx-treated samples, EV, NoV GI, and NoV GII showed -0.52-1.15, 0.9-1.51, and 0.31-1.69 log reductions in capsid integrity, indicating a high degree of potentially infectious virus in wastewater. In contrast, SARS-CoV-2 was only detected using RT-qPCR but not after PMAxx treatment, indicating the absence of encapsulated and potentially infectious virus. In conclusion, this study demonstrates the utility of PMAxx dyes to evaluate capsid integrity across a diverse range of viruses commonly monitored in wastewater.
Collapse
|
36
|
Dai W, Li X, Liu Z, Zhang C. Identification of four neutralizing antigenic sites on the enterovirus D68 capsid. J Virol 2023; 97:e0160023. [PMID: 38047678 PMCID: PMC10734511 DOI: 10.1128/jvi.01600-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Enterovirus D68 (EV-D68) is an emerging respiratory pathogen associated with acute flaccid myelitis. Currently, no approved vaccines or antiviral drugs are available. Here, we report four functionally independent neutralizing antigenic sites (I to IV) by analyses of neutralizing monoclonal antibody (MAb)-resistant mutants. Site I is located in the VP1 BC loop near the fivefold axis. Site II resides in the VP2 EF loop, and site III is situated in VP1 C-terminus; both sites are located at the south rim of the canyon. Site IV is composed of residue in VP2 βB strand and residues in the VP3 BC loop and resides around the threefold axis. The developed MAbs targeting the antigenic sites can inhibit viral binding to cells. These findings advance the understanding of the recognition of EV-D68 by neutralizing antibodies and viral evolution and immune escape and also have important implications for the development of novel EV-D68 vaccines.
Collapse
|
37
|
Kiss B, Kellermayer M. Packing up the genome. eLife 2023; 12:e94128. [PMID: 38095555 PMCID: PMC10721213 DOI: 10.7554/elife.94128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Nucleotide and force-dependent mechanisms control how the viral genome of lambda bacteriophage is inserted into capsids.
Collapse
|
38
|
Martinez FG, Zielke RA, Fougeroux CE, Li L, Sander AF, Sikora AE. Development of a Tag/Catcher-mediated capsid virus-like particle vaccine presenting the conserved Neisseria gonorrhoeae SliC antigen that blocks human lysozyme. Infect Immun 2023; 91:e0024523. [PMID: 37916806 PMCID: PMC10715030 DOI: 10.1128/iai.00245-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Virus-like particles (VLPs) are promising nanotools for the development of subunit vaccines due to high immunogenicity and safety. Herein, we explored the versatile and effective Tag/Catcher-AP205 capsid VLP (cVLP) vaccine platform to address the urgent need for the development of an effective and safe vaccine against gonorrhea. The benefits of this clinically validated cVLP platform include its ability to facilitate unidirectional, high-density display of complex/full-length antigens through an effective split-protein Tag/Catcher conjugation system. To assess this modular approach for making cVLP vaccines, we used a conserved surface lipoprotein, SliC, that contributes to the Neisseria gonorrhoeae defense against human lysozyme, as a model antigen. This protein was genetically fused at the N- or C-terminus to the small peptide Tag enabling their conjugation to AP205 cVLP, displaying the complementary Catcher. We determined that SliC with the N-terminal SpyTag, N-SliC, retained lysozyme-blocking activity and could be displayed at high density on cVLPs without causing aggregation. In mice, the N-SliC-VLP vaccines, adjuvanted with AddaVax or CpG, induced significantly higher antibody titers compared to controls. In contrast, similar vaccine formulations containing monomeric SliC were non-immunogenic. Accordingly, sera from N-SliC-VLP-immunized mice also had significantly higher human complement-dependent serum bactericidal activity. Furthermore, the N-SliC-VLP vaccines administered subcutaneously with an intranasal boost elicited systemic and vaginal IgG and IgA, whereas subcutaneous delivery alone failed to induce vaginal IgA. The N-SliC-VLP with CpG (10 µg/dose) induced the most significant increase in total serum IgG and IgG3 titers, vaginal IgG and IgA, and bactericidal antibodies.
Collapse
|
39
|
Kellish PC, Marsic D, Crosson SM, Choudhury S, Scalabrino ML, Strang CE, Hill J, McCullough KT, Peterson JJ, Fajardo D, Gupte S, Makal V, Kondratov O, Kondratova L, Iyer S, Witherspoon CD, Gamlin PD, Zolotukhin S, Boye SL, Boye SE. Intravitreal injection of a rationally designed AAV capsid library in non-human primate identifies variants with enhanced retinal transduction and neutralizing antibody evasion. Mol Ther 2023; 31:3441-3456. [PMID: 37814449 PMCID: PMC10727955 DOI: 10.1016/j.ymthe.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023] Open
Abstract
Adeno-associated virus (AAV) continues to be the gold standard vector for therapeutic gene delivery and has proven especially useful for treating ocular disease. Intravitreal injection (IVtI) is a promising delivery route because it increases accessibility of gene therapies to larger patient populations. However, data from clinical and non-human primate (NHP) studies utilizing currently available capsids indicate that anatomical barriers to AAV and pre-existing neutralizing antibodies can restrict gene expression to levels that are "sub-therapeutic" in a substantial proportion of patients. Here, we performed a combination of directed evolution in NHPs of an AAV2-based capsid library with simultaneous mutations across six surface-exposed variable regions and rational design to identify novel capsid variants with improved retinal transduction following IVtI. Following two rounds of screening in NHP, enriched variants were characterized in intravitreally injected mice and NHPs and shown to have increased transduction relative to AAV2. Lead capsid variant, P2-V1, demonstrated an increased ability to evade neutralizing antibodies in human vitreous samples relative to AAV2 and AAV2.7m8. Taken together, this study further contributed to our understanding of the selective pressures associated with retinal transduction via the vitreous and identified promising novel AAV capsid variants for clinical consideration.
Collapse
|
40
|
Asokan A, Shen S. Redirecting AAV vectors to extrahepatic tissues. Mol Ther 2023; 31:3371-3375. [PMID: 37805712 PMCID: PMC10727976 DOI: 10.1016/j.ymthe.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023] Open
Abstract
Recombinant adeno-associated viral (AAV) vectors are the current benchmark for systemic delivery of gene therapies to multiple organs in vivo. Despite clinical successes, safe and effective gene delivery to extrahepatic tissues has proven challenging due to dose limiting toxicity arising from high liver uptake of AAV vectors. Deeper understanding of AAV structure, receptor biology, and pharmacology has enabled the design and engineering of liver-de-targeted capsids ushering in several new vector candidates. This next generation of AAVs offers significant promise for extrahepatic gene delivery to cardiovascular, musculoskeletal, and neurological tissues with improved safety profiles.
Collapse
|
41
|
Prather C, Lee A, Yen C. Lenacapavir: A first-in-class capsid inhibitor for the treatment of highly treatment-resistant HIV. Am J Health Syst Pharm 2023; 80:1774-1780. [PMID: 37767713 DOI: 10.1093/ajhp/zxad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE The purpose of this article is to review the pharmacology, efficacy, and safety of the capsid inhibitor lenacapavir for the treatment of multidrug-resistant human immunodeficiency virus type 1 (HIV-1) infection. SUMMARY A review of the literature was performed by searching PubMed/MEDLINE for all relevant articles published between February 2021 and March 2023 using the keywords "lenacapavir," "Sunlenca," "human immunodeficiency virus," and "treatment" together with "multidrug resistant human immunodeficiency virus." All English-language articles describing clinical trials assessing the efficacy and safety of lenacapavir when used in humans for the treatment of HIV infection were included. Review articles, conference abstracts, and article references were evaluated for relevant information, and data were also obtained from the manufacturer's website and the package insert. Lenacapavir has been approved by the Food and Drug Administration (FDA) for the treatment of HIV-1 infection in heavily treatment-experienced adults with multidrug resistance for whom the current antiretroviral regimen is failing due to resistance, intolerance, or safety considerations. It is the first in a new class of drugs called capsid inhibitors to receive FDA approval. Lenacapavir is a long-acting subcutaneous injectable to be administered once every 6 months. The phase 3 clinical trial evaluating lenacapavir has demonstrated its efficacy in viral load reduction from baseline compared to placebo in patients receiving optimized background therapy. The most common adverse events reported in the clinical trial were injection site reactions, occurring in 63% of participants. CONCLUSION Lenacapavir is a novel capsid inhibitor indicated, in combination with other antiretroviral therapy, for treatment of multidrug-resistant HIV-1 infection.
Collapse
|
42
|
Subramanian R, Tang J, Zheng J, Lu B, Wang K, Yant SR, Stepan GJ, Mulato A, Yu H, Schroeder S, Shaik N, Singh R, Wolckenhauer S, Chester A, Tse WC, Chiu A, Rhee M, Cihlar T, Rowe W, Smith BJ. Lenacapavir: A Novel, Potent, and Selective First-in-Class Inhibitor of HIV-1 Capsid Function Exhibits Optimal Pharmacokinetic Properties for a Long-Acting Injectable Antiretroviral Agent. Mol Pharm 2023; 20:6213-6225. [PMID: 37917742 PMCID: PMC10698746 DOI: 10.1021/acs.molpharmaceut.3c00626] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
Lenacapavir (LEN) is a picomolar first-in-class capsid inhibitor of human immunodeficiency virus type 1 (HIV-1) with a multistage mechanism of action and no known cross resistance to other existing antiretroviral (ARV) drug classes. LEN exhibits a low aqueous solubility and exceptionally low systemic clearance following intravenous (IV) administration in nonclinical species and humans. LEN formulated in an aqueous suspension or a PEG/water solution formulation showed sustained plasma exposure levels with no unintended rapid drug release following subcutaneous (SC) administration to rats and dogs. A high total fraction dose release was observed with both formulations. The long-acting pharmacokinetics (PK) were recapitulated in humans following SC administration of both formulations. The SC PK profiles displayed two-phase absorption kinetics in both animals and humans with an initial fast-release absorption phase, followed by a slow-release absorption phase. Noncompartmental and compartmental analyses informed the LEN systemic input rate from the SC depot and exit rate from the body. Modeling-enabled deconvolution of the input rates from two processes: absorption of the soluble fraction (minor) from a direct fast-release process leading to the early PK phase and absorption of the precipitated fraction (major) from an indirect slow-release process leading to the later PK phase. LEN SC PK showed flip-flop kinetics due to the input rate being substantially slower than the systemic exit rate. LEN input rates via the slow-release process in humans were slower than those in both rats and dogs. Overall, the combination of high potency, exceptional stability, and optimal release rate from the injection depot make LEN well suited for a parenteral long-acting formulation that can be administered once up to every 6 months in humans for the prevention and treatment of HIV-1.
Collapse
|
43
|
Amblard F, Chen Z, Wiseman J, Zhou S, Liu P, Salman M, Verma K, Azadi N, Downs-Bowen J, Tao S, Kumari A, Zhang Q, Smith DB, Patel D, Bassit L, Schinazi RF. Synthesis and evaluation of highly potent HBV capsid assembly modulators (CAMs). Bioorg Chem 2023; 141:106923. [PMID: 37871391 PMCID: PMC10765384 DOI: 10.1016/j.bioorg.2023.106923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Chronic hepatitis B virus (HBV) infection remains a major global health burden. It affects more than 290 million individuals worldwide and is responsible for approximately 900,000 deaths annually. Anti-HBV treatment with a nucleoside analog in combination with pegylated interferon are considered first-line therapy for patients with chronic HBV infection and liver inflammation. However, because cure rates are low, most patients will require lifetime treatment. HBV Capsid Assembly Modulators (CAMs) have emerged as a promising new class of compounds as they can affect levels of HBV covalently closed-circular DNA (cccDNA) associated with viral persistence. SAR studies around the core structure of lead HBV CAM GLP-26 (Fig. 1B) was performed and led to the discovery of non-toxic compound 10a displaying sub-nanomolar anti-HBV activity. Advanced toxicity and cellular pharmacology profiles of compounds 10a were also established and the results are discussed herein.
Collapse
|
44
|
Yost SA, Firlar E, Glenn JD, Carroll HB, Foltz S, Giles AR, Egley JM, Firnberg E, Cho S, Nguyen T, Henry WM, Janczura KJ, Bruder J, Liu Y, Danos O, Karumuthil-Melethil S, Pannem S, Yost V, Engelson Y, Kaelber JT, Dimant H, Smith JB, Mercer AC. Characterization and biodistribution of under-employed gene therapy vector AAV7. J Virol 2023; 97:e0116323. [PMID: 37843374 PMCID: PMC10688378 DOI: 10.1128/jvi.01163-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/27/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE The use of adeno-associated viruses (AAVs) as gene delivery vectors has vast potential for the treatment of many severe human diseases. Over one hundred naturally existing AAV capsid variants have been described and classified into phylogenetic clades based on their sequences. AAV8, AAV9, AAVrh.10, and other intensively studied capsids have been propelled into pre-clinical and clinical use, and more recently, marketed products; however, less-studied capsids may also have desirable properties (e.g., potency differences, tissue tropism, reduced immunogenicity, etc.) that have yet to be thoroughly described. These data will help build a broader structure-function knowledge base in the field, present capsid engineering opportunities, and enable the use of novel capsids with unique properties.
Collapse
|
45
|
Rodríguez-Espinosa MJ, Rodríguez JM, Castón JR, de Pablo PJ. Mechanical disassembly of human picobirnavirus like particles indicates that cargo retention is tuned by the RNA-coat protein interaction. NANOSCALE HORIZONS 2023; 8:1665-1676. [PMID: 37842804 DOI: 10.1039/d3nh00195d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Here we investigate the cargo retention of individual human picobirnavirus (hPBV) virus-like particles (VLPs) which differ in the N-terminal of their capsid protein (CP): (i) hPBV CP contains the full-length CP sequence; (ii) hPBV Δ45-CP lacks the first 45 N-terminal residues; and (iii) hPBV Ht-CP is the full-length CP with a N-terminal 36-residue tag that includes a 6-His segment. Consequently, each VLP variant holds a different interaction with the ssRNA cargo. We used atomic force microscopy (AFM) to induce and monitor the mechanical disassembly of individual hPBV particles. First, while Δ45-CP particles that lack ssRNA allowed a fast tip indentation after breakage, CP and Ht-CP particles that pack heterologous ssRNA showed a slower tip penetration after being fractured. Second, mechanical fatigue experiments revealed that the increased length in 8% of the N-terminal (Ht-CP) makes the virus particles to crumble ∼10 times slower than the wild type N-terminal CP, indicating enhanced RNA cargo retention. Our results show that the three differentiated N-terminal topologies of the capsid result in distinct cargo release dynamics during mechanical disassembly experiments because of the different interaction with RNA.
Collapse
|
46
|
Lanning S, Pedicino N, Haley DJ, Hernandez S, Cortez V, DuBois RM. Structure and immunogenicity of the murine astrovirus capsid spike. J Gen Virol 2023; 104:001913. [PMID: 37910165 PMCID: PMC10773150 DOI: 10.1099/jgv.0.001913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
Human astroviruses (HAstVs) are small, non-enveloped icosahedral RNA viruses that are a significant cause of diarrhoea in young children. Despite their worldwide prevalence, HAstV pathogenesis studies and vaccine development remain challenging due to the lack of an animal model for HAstV infection. The recent development of a murine astrovirus (MuAstV) infection model in mice provides the opportunity to test proof-of-concept vaccines based on MuAstV antigens. To help establish a system in which an astrovirus capsid spike-based vaccine could be tested in vivo, we designed and produced a recombinant MuAstV capsid spike protein based on predicted secondary structure homology to HAstV spike proteins. The recombinant MuAstV spike can be expressed with high efficiency in Escherichia coli and retains antigenicity to polyclonal antibodies elicited by MuAstV infection. We determined the crystal structure of the MuAstV spike to 1.75 Å and assessed its structural conservation with HAstV capsid spike. Despite low sequence identity between the MuAstV and HAstV spikes and differences in their overall shapes, they share related structural folds. Additionally, we found that vaccination with MuAstV spike induced anti-MuAstV-spike antibodies, highlighting that the recombinant spike is immunogenic. These studies lay a foundation for future in vivo MuAstV challenge studies to test whether MuAstV spike can be the basis of an effective vaccine.
Collapse
|
47
|
Rosenberg JB, Fung EK, Dyke JP, De BP, Lou H, Kelly JM, Reejhsinghani L, Ricart Arbona RJ, Sondhi D, Kaminsky SM, Cartier N, Hinderer C, Hordeaux J, Wilson JM, Ballon DJ, Crystal RG. Positron Emission Tomography Quantitative Assessment of Off-Target Whole-Body Biodistribution of I-124-Labeled Adeno-Associated Virus Capsids Administered to Cerebral Spinal Fluid. Hum Gene Ther 2023; 34:1095-1106. [PMID: 37624734 PMCID: PMC10659018 DOI: 10.1089/hum.2023.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/09/2023] [Indexed: 08/27/2023] Open
Abstract
Based on studies in experimental animals demonstrating that administration of adeno-associated virus (AAV) vectors to the cerebrospinal fluid (CSF) is an effective route to transfer genes to the nervous system, there are increasing number of clinical trials using the CSF route to treat nervous system disorders. With the knowledge that the CSF turns over four to five times daily, and evidence in experimental animals that at least some of CSF administered AAV vectors are distributed to systemic organs, we asked: with AAV administration to the CSF, what fraction of the total dose remains in the nervous system and what fraction goes off target and is delivered systemically? To quantify the biodistribution of AAV capsids immediately after administration, we covalently labeled AAV capsids with iodine 124 (I-124), a cyclotron generated positron emitter, enabling quantitative positron emission tomography scanning of capsid distribution for up to 96 h after AAV vector administration. We assessed the biodistribution to nonhuman primates of I-124-labeled capsids from different AAV clades, including 9 (clade F), rh.10 (E), PHP.eB (F), hu68 (F), and rh91(A). The analysis demonstrated that 60-90% of AAV vectors administered to the CSF through either the intracisternal or intrathecal (lumbar) routes distributed systemically to major organs. These observations have potentially significant clinical implications regarding accuracy of AAV vector dosing to the nervous system, evoking systemic immunity at levels similar to that with systemic administration, and potential toxicity of genes designed to treat nervous system disorders being expressed in non-nervous system organs. Based on these data, individuals in clinical trials using AAV vectors administered to the CSF should be monitored for systemic as well as nervous system adverse events and CNS dosing considerations should account for a significant AAV systemic distribution.
Collapse
|
48
|
Galitska G, Jassey A, Wagner MA, Pollack N, Miller K, Jackson WT. Enterovirus D68 capsid formation and stability requires acidic compartments. mBio 2023; 14:e0214123. [PMID: 37819109 PMCID: PMC10653823 DOI: 10.1128/mbio.02141-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE The respiratory picornavirus enterovirus D68 is a causative agent of acute flaccid myelitis, a childhood paralysis disease identified in the last decade. Poliovirus, another picornavirus associated with paralytic disease, is a fecal-oral virus that survives acidic environments when passing from host to host. Here, we follow up on our previous work showing a requirement for acidic intracellular compartments for maturation cleavage of poliovirus particles. Enterovirus D68 requires acidic vesicles for an earlier step, assembly, and maintenance of viral particles themselves. These data have strong implications for the use of acidification blocking treatments to combat enterovirus diseases.
Collapse
|
49
|
Chan C, Harris KK, Zolotukhin S, Keeler GD. Rational Design of AAV-rh74, AAV3B, and AAV8 with Limited Liver Targeting. Viruses 2023; 15:2168. [PMID: 38005848 PMCID: PMC10675213 DOI: 10.3390/v15112168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) have become one of the leading gene therapies for treating a variety of diseases. One factor contributing to rAAVs' success is the fact that a wide variety of tissue types can be transduced by different serotypes. However, one commonality amongst most serotypes is the high propensity for liver transduction when rAAVs are administered peripherally. One of the few exceptions is the naturally occurring clade F AAV hematopoietic stem cell 16 (AAVHSC16). AAVHSC16 represents an interesting capsid in that it shows minimal liver transduction when injected peripherally. For capsids other than AAVHSC16, targeting non-liver tissues via peripheral AAV injection represents a challenge due to the high liver transduction. Thus, there is a demand for liver-de-targeted rAAV vectors. The rational design of rAAV capsids relies on current knowledge to design improved capsids and represents one means of developing capsids with reduced liver transduction. Here, we utilized data from the AAVHSC16 capsid to rationally design four non-clade F rAAV capsids that result in reduced liver transduction following peripheral injection.
Collapse
|
50
|
Wang M, Zhang J, Dou Y, Liang M, Xie Y, Xue P, Liu L, Li C, Wang Y, Tao F, Zhang X, Hu H, Feng K, Zhang L, Wu Z, Chen Y, Zhan P, Jia H. Design, Synthesis, and Biological Evaluation of Novel Thioureidobenzamide (TBA) Derivatives as HBV Capsid Assembly Modulators. J Med Chem 2023; 66:13968-13990. [PMID: 37839070 DOI: 10.1021/acs.jmedchem.3c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Hepatitis B virus (HBV) capsid assembly modulators (CAMs) represent a promising therapeutic approach for the treatment of HBV infection. In this study, we designed and synthesized five series of benzamide derivatives based on a multisite-binding strategy at the tolerant region and diversity modification in the solvent-exposed region. Among them, thioureidobenzamide compound 17i exhibited significantly increased anti-HBV activity in HepAD38 (EC50 = 0.012 μM) and HBV-infected HLCZ01 cells (EC50 = 0.033 μM). Moreover, 17i displayed a better inhibitory effect on the assembly of HBV capsid protein compared with NVR 3-778 and a inhibitory effect similar to the clinical drug GLS4. In addition, 17i showed moderate metabolic stability in human microsomes, had excellent oral bioavailability in Sprague-Dawley (SD) rats, and inhibited HBV replication in the HBV carrier mice model, which could be considered as a promising candidate drug for further development.
Collapse
|