26
|
Vezzani D, Diribarne I, Palacios JJ, Lopez J, Martinez S, Weis MDC, Gentile L, Castex A, Damiani M, Del Blanco N, Castiglia Sole JA, Rozas Dennis G. [Dengue, chikungunya and the mosquito vector at the Southern limit of distribution during the 2023 epidemic, Argentina]. Medicina (B Aires) 2024; 84:189-195. [PMID: 38683503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
OBJECTIVES To monitor the oviposition activity of the mosquito Aedes aegypti and of dengue and chikungunya cases in four localities of temperate Argentina, during the 2023 epidemic. METHODS During the summer and autumn of 2023, the oviposition activity of the mosquito vector was monitored weekly using ovitraps, and the arrival of cases with dengue or chikungunya in Tandil, Olavarría, Bahía Blanca and Laprida were registered. RESULTS Monthly variations of the percentage of positive traps were similar in the first three locations; in Laprida the mosquito was not detected. On the contrary, a significant difference was observed in the percentage of total traps that ever tested positive in each locality, being higher in Olavarría (83.3%) than in Bahía Blanca (68.6%) and Tandil (48.7%). Regarding diseases, 18 imported cases of dengue and 3 of chikungunya were registered. In addition, the first autochthonous case of dengue in the region was recorded, being the southernmost until known. CONCLUSION It is essential to raise awareness and train the members of the health systems of the new regions exposed to Ae. aegypti for early detection of cases, and to the general population to enhance prevention actions.
Collapse
|
27
|
Harris E. FDA Approves First Chikungunya Vaccine. JAMA 2023; 330:2241. [PMID: 38019496 DOI: 10.1001/jama.2023.23505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
|
28
|
Côrtes N, Lira A, Prates-Syed W, Dinis Silva J, Vuitika L, Cabral-Miranda W, Durães-Carvalho R, Balan A, Cabral-Marques O, Cabral-Miranda G. Integrated control strategies for dengue, Zika, and Chikungunya virus infections. Front Immunol 2023; 14:1281667. [PMID: 38196945 PMCID: PMC10775689 DOI: 10.3389/fimmu.2023.1281667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024] Open
Abstract
Arboviruses are a major threat to public health in tropical regions, encompassing over 534 distinct species, with 134 capable of causing diseases in humans. These viruses are transmitted through arthropod vectors that cause symptoms such as fever, headache, joint pains, and rash, in addition to more serious cases that can lead to death. Among the arboviruses, dengue virus stands out as the most prevalent, annually affecting approximately 16.2 million individuals solely in the Americas. Furthermore, the re-emergence of the Zika virus and the recurrent outbreaks of chikungunya in Africa, Asia, Europe, and the Americas, with one million cases reported annually, underscore the urgency of addressing this public health challenge. In this manuscript we discuss the epidemiology, viral structure, pathogenicity and integrated control strategies to combat arboviruses, and the most used tools, such as vaccines, monoclonal antibodies, treatment, etc., in addition to presenting future perspectives for the control of arboviruses. Currently, specific medications for treating arbovirus infections are lacking, and symptom management remains the primary approach. However, promising advancements have been made in certain treatments, such as Chloroquine, Niclosamide, and Isatin derivatives, which have demonstrated notable antiviral properties against these arboviruses in vitro and in vivo experiments. Additionally, various strategies within vector control approaches have shown significant promise in reducing arbovirus transmission rates. These encompass public education initiatives, targeted insecticide applications, and innovative approaches like manipulating mosquito bacterial symbionts, such as Wolbachia. In conclusion, combatting the global threat of arbovirus diseases needs a comprehensive approach integrating antiviral research, vaccination, and vector control. The continued efforts of research communities, alongside collaborative partnerships with public health authorities, are imperative to effectively address and mitigate the impact of these arboviral infections on public health worldwide.
Collapse
|
29
|
Venkatesan A, Chouhan U, Suryawanshi SK, Choudhari JK. An in silico approach for prediction of B cell and T cell epitope candidates against Chikungunya virus. Immunol Med 2023; 46:163-174. [PMID: 37078425 DOI: 10.1080/25785826.2023.2202038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/08/2023] [Indexed: 04/21/2023] Open
Abstract
Several outbreaks of Chikungunya virus (CHIKV) had been reported since 1952 when mankind had his first encounter against the virus in Tanzania. Although these reports designate the CHIKV to be rarely fatal, cases of outbreaks in the last decade accompanied by severe complications and death poses a challenge to the development of effective treatment methods. Several attempts to vaccine development against CHIKV still remains unsuccessful. In this study, we aimed at the prediction of B-cell and T cell epitopes against CHIKV by using immunoinformatics. This, in turn, can contribute to development of an epitope based vaccine against CHIKV. Both linear and discontinuous B-cell epitopes, as well as Cytotoxic T-lymphocyte epitopes, were predicted for the CHIKV Envelope (E1 and E2) glycoproteins and (NS2). The antigenic CTL epitopes with highest binding affinities with type-1 MHC were selected and the peptides were docked to them. Docking followed by molecular dynamics simulations were performed to assess the stability of the docked complexes.
Collapse
|
30
|
|
31
|
Branda F, Scarpa F, Romano C, Ciccozzi A, Maruotti A, Giovanetti M, Ciccozzi M. Chikungunya vaccine: Is it time for it? J Med Virol 2023; 95:e29341. [PMID: 38124664 DOI: 10.1002/jmv.29341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
|
32
|
Abstract
Travelers are first, but the real need is in endemic areas.
Collapse
|
33
|
Ng WH, Liu X, Ling ZL, Santos CNO, Magalhães LS, Kueh AJ, Herold MJ, Taylor A, Freitas JR, Koit S, Wang S, Lloyd AR, Teixeira MM, Merits A, Almeida RP, King NJC, Mahalingam S. FHL1 promotes chikungunya and o'nyong-nyong virus infection and pathogenesis with implications for alphavirus vaccine design. Nat Commun 2023; 14:6605. [PMID: 37884534 PMCID: PMC10603155 DOI: 10.1038/s41467-023-42330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Arthritogenic alphaviruses are positive-strand RNA viruses that cause debilitating musculoskeletal diseases affecting millions worldwide. A recent discovery identified the four-and-a-half-LIM domain protein 1 splice variant A (FHL1A) as a crucial host factor interacting with the hypervariable domain (HVD) of chikungunya virus (CHIKV) nonstructural protein 3 (nsP3). Here, we show that acute and chronic chikungunya disease in humans correlates with elevated levels of FHL1. We generated FHL1-/- mice, which when infected with CHIKV or o'nyong-nyong virus (ONNV) displayed reduced arthritis and myositis, fewer immune infiltrates, and reduced proinflammatory cytokine/chemokine outputs, compared to infected wild-type (WT) mice. Interestingly, disease signs were comparable in FHL1-/- and WT mice infected with arthritogenic alphaviruses Ross River virus (RRV) or Mayaro virus (MAYV). This aligns with pull-down assay data, which showed the ability of CHIKV and ONNV nsP3 to interact with FHL1, while RRV and MAYV nsP3s did not. We engineered a CHIKV mutant unable to bind FHL1 (CHIKV-ΔFHL1), which was avirulent in vivo. Following inoculation with CHIKV-ΔFHL1, mice were protected from disease upon challenge with CHIKV and ONNV, and viraemia was significantly reduced in RRV- and MAYV-challenged mice. Targeting FHL1-binding as an approach to vaccine design could lead to breakthroughs in mitigating alphaviral disease.
Collapse
|
34
|
Schmitz KS, Comvalius AD, Nieuwkoop NJ, Geers D, Weiskopf D, Ramsauer K, Sette A, Tschismarov R, de Vries RD, de Swart RL. A measles virus-based vaccine induces robust chikungunya virus-specific CD4 + T-cell responses in a phase II clinical trial. Vaccine 2023; 41:6495-6504. [PMID: 37726181 DOI: 10.1016/j.vaccine.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Chikungunya virus (CHIKV) is an alphavirus transmitted by mosquitos that causes a debilitating disease characterized by fever and long-lasting polyarthralgia. To date, no vaccine has been licensed, but multiple vaccine candidates are under evaluation in clinical trials. One of these vaccines is based on a measles virus vector encoding for the CHIKV structural genes C, E3, E2, 6K, and E1 (MV-CHIK), which proved safe in phase I and II clinical trials and elicited CHIKV-specific antibody responses in adult measles seropositive vaccine recipients. Here, we predicted T-cell epitopes in the CHIKV structural genes and investigated whether MV-CHIK vaccination induced CHIKV-specific CD4+ and/or CD8+ T-cell responses. Immune-dominant regions containing multiple epitopes in silico predicted to bind to HLA class II molecules were found for four of the five structural proteins, while no such regions were predicted for HLA class I. Experimentally, CHIKV-specific CD4+ T-cells were detected in six out of twelve participants after a single MV-CHIK vaccination and more robust responses were found 4 weeks after two vaccinations (ten out of twelve participants). T-cells were mainly directed against the three large structural proteins C, E2 and E1. Next, we sorted and expanded CHIKV-specific T cell clones (TCC) and identified human CHIKV T-cell epitopes by deconvolution. Interestingly, eight out of nine CD4+ TCC recognized an epitope in accordance with the in silico prediction. CHIKV-specific CD8+ T-cells induced by MV-CHIK vaccination were inconsistently detected. Our data show that the MV-CHIK vector vaccine induced a functional transgene-specific CD4+ T cell response which, together with the evidence of neutralizing antibodies as correlate of protection for CHIKV, makes MV-CHIK a promising vaccine candidate in the prevention of chikungunya.
Collapse
|
35
|
McCarty JM, Bedell L, Mendy J, Coates EE, Chen GL, Ledgerwood JE, Tredo SR, Warfield KL, Richardson JS. Chikungunya virus virus-like particle vaccine is well tolerated and immunogenic in chikungunya seropositive individuals. Vaccine 2023; 41:6146-6149. [PMID: 37690874 DOI: 10.1016/j.vaccine.2023.08.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
In a phase 2 safety and immunogenicity study of a chikungunya virus virus-like particle (CHIKV VLP) vaccine in an endemic region, of 400 total participants, 78 were found to be focus reduction neutralizing antibody seropositive at vaccination despite being ELISA seronegative at screening, of which 39 received vaccine. This post hoc analysis compared safety and immunogenicity of CHIKV VLP vaccine in seropositive (n = 39) versus seronegative (n = 155) vaccine recipients for 72 weeks post-vaccination. There were no differences in solicited adverse events, except injection site swelling in 10.3% of seropositive versus 0.6% of seronegative recipients (p = 0.006). Baseline seropositive vaccine recipients had stronger post-vaccination luciferase neutralizing antibody responses versus seronegative recipients (peak geometric mean titer of 3594 and 1728, respectively) persisting for 72 weeks, with geometric mean fold increases of 3.1 and 13.2, respectively. In this small study, CHIKV VLP vaccine was well-tolerated and immunogenic in individuals with pre-existing immunity. ClinicalTrials.gov Identifier: NCT02562482.
Collapse
|
36
|
Tang TQ, Jan R, Khurshaid A, Shah Z, Vrinceanu N, Racheriu M. Analysis of the dynamics of a vector-borne infection with the effect of imperfect vaccination from a fractional perspective. Sci Rep 2023; 13:14398. [PMID: 37658134 PMCID: PMC10474157 DOI: 10.1038/s41598-023-41440-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
The burden of vector-borne infections is significant, particularly in low- and middle-income countries where vector populations are high and healthcare infrastructure may be inadequate. Further, studies are required to investigate the key factors of vector-borne infections to provide effective control measure. This study focuses on formulating a mathematical framework to characterize the spread of chikungunya infection in the presence of vaccines and treatments. The research is primarily dedicated to descriptive study and comprehension of dynamic behaviour of chikungunya dynamics. We use Banach's and Schaefer's fixed point theorems to investigate the existence and uniqueness of the suggested chikungunya framework resolution. Additionally, we confirm the Ulam-Hyers stability of the chikungunya system. To assess the impact of various parameters on the dynamics of chikungunya, we examine solution pathways using the Laplace-Adomian method of disintegration. Specifically, to visualise the impacts of fractional order, vaccination, bite rate and treatment computer algorithms are employed on the infection level of chikungunya. Our research identified the framework's essential input settings for managing chikungunya infection. Notably, the intensity of chikungunya infection can be reduced by lowering mosquito bite rates in the affected area. On the other hand, vaccination, memory index or fractional order, and treatment could be used as efficient controlling variables.
Collapse
|
37
|
Nasrin F, Khoris IM, Chowdhury AD, Muttaqein SE, Park EY. Development of disposable electrode for the detection of mosquito-borne viruses. Biotechnol J 2023; 18:e2300125. [PMID: 37127933 DOI: 10.1002/biot.202300125] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
Development of disposable, rapid, and convenient biosensor with high sensitivity and reliability is the most desired method of viral disease prevention. To achieve this goal, in this work, a practical impedimetric biosensor has been implemented into a disposable electrode on a screen-printed carbon electrode (SPCE) for the detection of two mosquito-borne viruses. The biosensor fabrication has step-wisely carried out on the disposable electrode surface at room temperature: starting from conductive film formation, physical binding of the gold nanoparticles (AuNPs)-polyaniline (PAni) into the conductive film, and biofunctionalization. To get the maximum efficiency of the antibody, biotinylated antibody has been conjugated on the surface of AuNP-PAni/PAni-SPCE via the streptavidin-biotin conjugation method which is a critical factor for the high sensitivity. Using the antibody-antigen interaction, this disposable electrode has designed to detect mosquito-borne infectious viruses, Chikungunya virus (CHIKV), and Zika virus (ZIKV) separately in a wide linear range of 100 fg mL-1 to 1 ng mL-1 with a low detection limit of 1.33 and 12.31 fg mL-1 , respectively.
Collapse
|
38
|
de Jesús López Medina Y, Tamayo-Molina YS, Valdés-López JF, Urcuqui-Inchima S. Protective Effects of Caffeine on Chikungunya and Zika Virus Infections: An in Vitro and in Silico Study. Chem Biodivers 2023; 20:e202300192. [PMID: 37489706 DOI: 10.1002/cbdv.202300192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
Infection by viruses Chikungunya (CHIKV) and Zika (ZIKV) continue to be serious problems in tropical and subtropical areas of the world. Here, we evaluated the antiviral and virucidal activity of caffeine against CHIKV and ZIKV in Vero, A549, and Huh-7 cell lines. Results showed that caffeine displays antiviral properties against both viruses. By pre-and post-infection treatment, caffeine significantly inhibited CHIKV and ZIKV replication in a dose-dependent manner. Furthermore, caffeine showed a virucidal effect against ZIKV. Molecular docking suggests the possible binding of caffeine with envelope protein and RNA-dependent RNA polymerase of CHIKV and ZIKV. This is the first study that showed an antiviral effect of caffeine against CHIKV and ZIKV. Although further studies are needed to better understand the mechanism of caffeine-mediated repression of viral replication, caffeine appears to be a promising compound that could be used for in vivo studies, perhaps in synergy with other compounds present in daily beverages.
Collapse
|
39
|
Stephenson KE. Live-attenuated Chikungunya vaccine: a possible new era. Lancet 2023; 401:2090-2091. [PMID: 37321234 DOI: 10.1016/s0140-6736(23)01170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
|
40
|
Schneider M, Narciso-Abraham M, Hadl S, McMahon R, Toepfer S, Fuchs U, Hochreiter R, Bitzer A, Kosulin K, Larcher-Senn J, Mader R, Dubischar K, Zoihsl O, Jaramillo JC, Eder-Lingelbach S, Buerger V, Wressnigg N. Safety and immunogenicity of a single-shot live-attenuated chikungunya vaccine: a double-blind, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2023; 401:2138-2147. [PMID: 37321235 PMCID: PMC10314240 DOI: 10.1016/s0140-6736(23)00641-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND VLA1553 is a live-attenuated vaccine candidate for active immunisation and prevention of disease caused by chikungunya virus. We report safety and immunogenicity data up to day 180 after vaccination with VLA1553. METHODS This double-blind, multicentre, randomised, phase 3 trial was done in 43 professional vaccine trial sites in the USA. Eligible participants were healthy volunteers aged 18 years and older. Patients were excluded if they had history of chikungunya virus infection or immune-mediated or chronic arthritis or arthralgia, known or suspected defect of the immune system, any inactivated vaccine received within 2 weeks before vaccination with VLA1553, or any live vaccine received within 4 weeks before vaccination with VLA1553. Participants were randomised (3:1) to receive VLA1553 or placebo. The primary endpoint was the proportion of baseline negative participants with a seroprotective chikungunya virus antibody level defined as 50% plaque reduction in a micro plaque reduction neutralisation test (μPRNT) with a μPRNT50 titre of at least 150, 28 days after vaccination. The safety analysis included all individuals who received vaccination. Immunogenicity analyses were done in a subset of participants at 12 pre-selected study sites. These participants were required to have no major protocol deviations to be included in the per-protocol population for immunogenicity analyses. This trial is registered at ClinicalTrials.gov, NCT04546724. FINDINGS Between Sept 17, 2020 and April 10, 2021, 6100 people were screened for eligibility. 1972 people were excluded and 4128 participants were enrolled and randomised (3093 to VLA1553 and 1035 to placebo). 358 participants in the VLA1553 group and 133 participants in the placebo group discontinued before trial end. The per-protocol population for immunogenicity analysis comprised 362 participants (266 in the VLA1553 group and 96 in the placebo group). After a single vaccination, VLA1553 induced seroprotective chikungunya virus neutralising antibody levels in 263 (98·9%) of 266 participants in the VLA1553 group (95% CI 96·7-99·8; p<0·0001) 28 days post-vaccination, independent of age. VLA1553 was generally safe with an adverse event profile similar to other licensed vaccines and equally well tolerated in younger and older adults. Serious adverse events were reported in 46 (1·5%) of 3082 participants exposed to VLA1553 and eight (0·8%) of 1033 participants in the placebo arm. Only two serious adverse events were considered related to VLA1553 treatment (one mild myalgia and one syndrome of inappropriate antidiuretic hormone secretion). Both participants recovered fully. INTERPRETATION The strong immune response and the generation of seroprotective titres in almost all vaccinated participants suggests that VLA1553 is an excellent candidate for the prevention of disease caused by chikungunya virus. FUNDING Valneva, Coalition for Epidemic Preparedness Innovation, and EU Horizon 2020.
Collapse
|
41
|
Raju S, Adams LJ, Earnest JT, Warfield K, Vang L, Crowe JE, Fremont DH, Diamond MS. A chikungunya virus-like particle vaccine induces broadly neutralizing and protective antibodies against alphaviruses in humans. Sci Transl Med 2023; 15:eade8273. [PMID: 37196061 PMCID: PMC10562830 DOI: 10.1126/scitranslmed.ade8273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 04/27/2023] [Indexed: 05/19/2023]
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes epidemics of acute and chronic musculoskeletal disease. Here, we analyzed the human B cell response to a CHIKV-like particle-adjuvanted vaccine (PXVX0317) from samples obtained from a phase 2 clinical trial in humans (NCT03483961). Immunization with PXVX0317 induced high levels of neutralizing antibody in serum against CHIKV and circulating antigen-specific B cells up to 6 months after immunization. Monoclonal antibodies (mAbs) generated from peripheral blood B cells of three PXVX0317-vaccinated individuals on day 57 after immunization potently neutralized CHIKV infection, and a subset of these inhibited multiple related arthritogenic alphaviruses. Epitope mapping and cryo-electron microscopy defined two broadly neutralizing mAbs that uniquely bind to the apex of the B domain of the E2 glycoprotein. These results demonstrate the inhibitory breadth and activity of the human B cell response induced by the PXVX0317 vaccine against CHIKV and potentially other related alphaviruses.
Collapse
|
42
|
Cisneros-Vázquez LA, Penilla-Navarro RP, Rodríguez AD, Ordóñez-González JG, Valdez-Delgado KM, Danis-Lozano R, Vázquez-Martínez G. Entomopathogenic fungi for the control of larvae and adults of Aedes aegypti (Diptera: Culicidae) vector of dengue, chikungunya and Zika viruses in Mexico. SALUD PUBLICA DE MEXICO 2023; 65:144-150. [PMID: 38060859 DOI: 10.21149/13931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/08/2022] [Indexed: 12/18/2023] Open
Abstract
OBJECTIVE To assess larvicide and adulticide activity of different native strains of fungi on Aedes aegypti. MATERIALS AND METHODS Third instar larvae were exposed for 72 h at a concentration of 1x108 conidia/ml of 15 fungi; only fungi that significantly affected the larvae were evaluated against the adult phase at a concentration of 2x1010 conidia/ml. Mortality readings were performed at 24, 48, and 72 h for larvae, and every day to 30 days for adults. RESULTS Trichoderma longibrachiatum, Aspergillus aculeatus, and Metarhizium anisopliae had the best larvicidal activity at 24 h of exposure (p<0.05), causing mortalities of 100, 72, and 62%, respectively. Adult mosquitoes were more affected by Gliocladium virens (45% mortality), M. anisopliae (30% mortality), and T. longibrachiatum (23.33% mortality). CONCLUSION The larval stage of Ae. aegypti was more susceptible than the adult phase to the pathogenic action of native fungi, with T. longibrachiatum being with the highest virulence.
Collapse
|
43
|
Abstract
A recent chikungunya outbreak affected 1.5 million cases in more than 60 countries. The virus causes low mortality but moderate to severe morbidities such as high fever, myalgia, and polyarthritis. The chikungunya virus is transmitted by Aedes spp. mosquitoes, of which the population has increased due to urbanization and global warming. Currently, no commercial vaccine is available, but several candidates are being tested in clinical trials. This review aimed to summarize the recent updates of candidates on each platform, ranging from traditional inactivation, live attenuation with reverse genetics, virus-like particles, viral vectors, and mRNA, mainly focusing on the candidates in clinical trials or recently developed.
Collapse
|
44
|
Lentscher AJ, McAllister N, Griswold KA, Martin JL, Welsh OL, Sutherland DM, Silva LA, Dermody TS. Chikungunya Virus Vaccine Candidate Incorporating Synergistic Mutations Is Attenuated and Protects Against Virulent Virus Challenge. J Infect Dis 2023; 227:457-465. [PMID: 35196388 PMCID: PMC10152497 DOI: 10.1093/infdis/jiac066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) is an arbovirus that periodically emerges to cause large epidemics of arthritic disease. Although the robust immunity elicited by live-attenuated virus (LAV) vaccine candidates makes them attractive, CHIKV vaccine development has been hampered by a high threshold for acceptable adverse events. METHODS We evaluated the vaccine potential of a recently described LAV, skeletal muscle-restricted virus (SKE), that exhibits diminished replication in skeletal muscle due to insertion of target sequences for skeletal muscle-specific miR-206. We also evaluated whether these target sequences could augment safety of an LAV encoding a known attenuating mutation, E2 G82R. Attenuation of viruses containing these mutations was compared with a double mutant, SKE G82R. RESULTS SKE was attenuated in both immunodeficient and immunocompetent mice and induced a robust neutralizing antibody response, indicating its vaccine potential. However, only SKE G82R elicited diminished swelling in immunocompetent mice at early time points postinoculation, indicating that these mutations synergistically enhance safety of the vaccine candidate. CONCLUSIONS These data suggest that restriction of LAV replication in skeletal muscle enhances tolerability of reactogenic vaccine candidates and may improve the rational design of CHIKV vaccines.
Collapse
|
45
|
Curren EJ, Ellis EM, Hennessey MJ, Delorey MJ, Fischer M, Staples JE. Acceptability of a Chikungunya Virus Vaccine, United States Virgin Islands. Am J Trop Med Hyg 2023; 108:363-365. [PMID: 36572007 PMCID: PMC9896335 DOI: 10.4269/ajtmh.22-0429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/18/2022] [Indexed: 12/27/2022] Open
Abstract
Chikungunya virus, a mosquito-borne alphavirus, causes acute febrile illness with polyarthralgia. Groups at risk for severe disease include neonates, people with underlying medical conditions, and those aged ≥ 65 years. Several chikungunya vaccines are in late clinical development with licensure expected in the United States during 2023. We administered a questionnaire to randomly selected households in the U.S. Virgin Islands (USVI) to assess interest in a hypothetical chikungunya vaccine. Estimates were calibrated to age and sex of USVI population, and univariate and multivariable analyses were performed. Of 966 participants, 520 (adjusted 56%, 95% CI = 51-60%) were interested in receiving the vaccine. Of 446 participants not interested in vaccination, 203 (adjusted 47%, 95% CI = 41-52%) cited safety concerns as the reason. Educational efforts addressing vaccine safety concerns and risk factors for severe disease would likely improve vaccine acceptability and uptake among those most at risk.
Collapse
|
46
|
Hakim MS, Aman AT. Understanding the Biology and Immune Pathogenesis of Chikungunya Virus Infection for Diagnostic and Vaccine Development. Viruses 2022; 15:48. [PMID: 36680088 PMCID: PMC9863735 DOI: 10.3390/v15010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Chikungunya virus, the causative agent of chikungunya fever, is generally characterized by the sudden onset of symptoms, including fever, rash, myalgia, and headache. In some patients, acute chikungunya virus infection progresses to severe and chronic arthralgia that persists for years. Chikungunya infection is more commonly identified in tropical and subtropical regions. However, recent expansions and epidemics in the temperate regions have raised concerns about the future public health impact of chikungunya diseases. Several underlying factors have likely contributed to the recent re-emergence of chikungunya infection, including urbanization, human travel, viral adaptation to mosquito vectors, lack of effective control measures, and the spread of mosquito vectors to new regions. However, the true burden of chikungunya disease is most likely to be underestimated, particularly in developing countries, due to the lack of standard diagnostic assays and clinical manifestations overlapping with those of other endemic viral infections in the regions. Additionally, there have been no chikungunya vaccines available to prevent the infection. Thus, it is important to update our understanding of the immunopathogenesis of chikungunya infection, its clinical manifestations, the diagnosis, and the development of chikungunya vaccines.
Collapse
|
47
|
Ribeiro Dos Santos G, Durovni B, Saraceni V, Souza Riback TI, Pinto SB, Anders KL, Moreira LA, Salje H. Estimating the effect of the wMel release programme on the incidence of dengue and chikungunya in Rio de Janeiro, Brazil: a spatiotemporal modelling study. THE LANCET. INFECTIOUS DISEASES 2022; 22:1587-1595. [PMID: 36182679 PMCID: PMC9630156 DOI: 10.1016/s1473-3099(22)00436-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Introgression of genetic material from species of the insect bacteria Wolbachia into populations of Aedes aegypti mosquitoes has been shown in randomised and non-randomised trials to reduce the incidence of dengue; however, evidence for the real-world effectiveness of large-scale deployments of Wolbachia-infected mosquitoes for arboviral disease control in endemic settings is still scarce. A large Wolbachia (wMel strain) release programme was implemented in 2017 in Rio de Janeiro, Brazil. We aimed to assess the effect of this programme on the incidence of dengue and chikungunya in the city. METHODS 67 million wMel-infected mosquitoes were released across 28 489 locations over an area of 86·8 km2 in Rio de Janeiro between Aug 29, 2017 and Dec 27, 2019. Following releases, mosquitoes were trapped and the presence of wMel was recorded. In this spatiotemporal modelling study, we assessed the effect of the release programme on the incidence of dengue and chikungunya. We used spatiotemporally explicit mathematical models applied to geocoded dengue cases (N=283 270) from 2010 to 2019 and chikungunya cases (N=57 705) from 2016 to 2019. FINDINGS On average, 32% of mosquitoes collected from the release zones between 1 month and 29 months after the initial release tested positive for wMel. Reduced wMel introgression occurred in locations and seasonal periods in which cases of dengue and chikungunya were historically high, with a decrease to 25% of mosquitoes testing positive for wMel during months in which disease incidence was at its highest. Despite incomplete introgression, we found that the releases were associated with a 38% (95% CI 32-44) reduction in the incidence of dengue and a 10% (4-16) reduction in the incidence of chikungunya. INTERPRETATION Stable establishment of wMel in the geographically diverse, urban setting of Rio de Janeiro seems to be more complicated than has been observed elsewhere. However, even intermediate levels of wMel seem to reduce the incidence of disease caused by two arboviruses. These findings will help to guide future release programmes. FUNDING Bill & Melinda Gates Foundation and the European Research Council.
Collapse
|
48
|
Cao L, Wang W, Sun W, Zhang J, Han J, Xie C, Ha Z, Xie Y, Zhang H, Jin N, Lu H. Construction and Evaluation of Recombinant Adenovirus Candidate Vaccines for Chikungunya Virus. Viruses 2022; 14:v14081779. [PMID: 36016401 PMCID: PMC9414632 DOI: 10.3390/v14081779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne virus. The emergence of CHIKV infection has raised global concern, and there is a growing need to develop safe and effective vaccines. Here, adenovirus 5 was used as the vaccine vector to construct recombinant adenoviruses expressing CHIKV E2, E1, and E2-6K-E1, respectively. And then the immunogenicity and protective efficiency against CHIKV were evaluated in BALB/c mice. Compared to the ad-wt control group, all three vaccines elicited significant humoral and cellar immune responses. The levels of neutralizing antibodies in the rAd-CHIKV-E2-6K-E1 and rAd-CHIKV-E2 groups both reached 1:256, which were 3.2 times higher than those in the rAd-CHIKV-E1 group. Furthermore, the levels of lymphocyte proliferation in rAd-CHIKV-E2-6K-E1 group were the highest. Besides, the concentrations of IFN-γ and IL-4 in mice immunized with rAd-CHIKV-E2-6K-E1 were 1.37 and 1.20 times higher than those in ad-wt immunized mice, respectively. After the challenge, mice in the rAd-CHIKV-E2-6K-E1 and rAd-CHIKV-E2 groups lost 2% of their body weight compared with 5% in the ad-wt control group. And low viral loads were detected in the heart, kidney, and blood of mice immunized with rAd-CHIKV-E2-6K-E1 and rAd-CHIKV-E2 at 3–5 dpc, which decreased by 0.4–0.7 orders of magnitude compared with the ad-wt control. Overall, these data suggest that the recombinant adenovirus is a potential candidate vaccine against CHIKV.
Collapse
|
49
|
Gosavi M, Patil HP. Evaluation of monophosphoryl lipid A as an adjuvanted for inactivated chikungunya virus. Vaccine 2022; 40:5060-5068. [PMID: 35871870 DOI: 10.1016/j.vaccine.2022.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/14/2022] [Accepted: 07/14/2022] [Indexed: 11/19/2022]
Abstract
Currently there is no clinically approved chikungunya virus (CHIKV) vaccine for immunization. Though definite need is felt, long disappearance of CHIKV has been a concern. Inactivated CHIKV (I-CHIKV) is an attractive antigen to develop effective vaccines within a short period of time. However, highly purified inactivated CHIKV do not contain necessary triggers for induction of robust antibody response. Monophosphoryl lipid A (MPLA) is a TLR4 ligand which is expressed on immune cells and is known to enhance immune response. Additionally, route of delivery also plays a critical role in modulating the immune response. Thus, antigen, adjuvant and route of delivery might modulate immune response if combined. Therefore in this study, we explored the immunogenicity of inactivated CHIKV-MPLA combination in mice after administration by intradermal or intramuscular route. Long term immune response study was also conducted by varying the antigen concentration and keeping the adjuvant concentration constant. Our study showed that the CHIKV-MPLA combination induced higher binding antibodies as well as neutralizing antibody titers as compared to unadjuvanted CHIKV. No difference in antibody titers was observed after delivery by either of the routes. However, difference in IFNγ and IL4 profiles was observed when a supernatant from stimulated splenocytes was analyzed. Taken together, these data show that both routes could be used for administration of the I-CHIKV-MPLA combination.
Collapse
|
50
|
Slifka DK, Raué HP, Weber WC, Andoh TF, Kreklywich CN, DeFilippis VR, Streblow DN, Slifka MK, Amanna IJ. Development of a next-generation chikungunya virus vaccine based on the HydroVax platform. PLoS Pathog 2022; 18:e1010695. [PMID: 35788221 PMCID: PMC9286250 DOI: 10.1371/journal.ppat.1010695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/15/2022] [Accepted: 06/22/2022] [Indexed: 12/02/2022] Open
Abstract
Chikungunya virus (CHIKV) is an emerging/re-emerging mosquito-borne pathogen responsible for explosive epidemics of febrile illness characterized by debilitating polyarthralgia and the risk of lethal infection among the most severe cases. Despite the public health risk posed by CHIKV, no vaccine is currently available. Using a site-directed hydrogen peroxide-based inactivation approach, we developed a new CHIKV vaccine, HydroVax-CHIKV. This vaccine technology was compared to other common virus inactivation approaches including β-propiolactone (BPL), formaldehyde, heat, and ultraviolet (UV) irradiation. Heat, UV, and BPL were efficient at inactivating CHIKV-181/25 but caused substantial damage to neutralizing epitopes and failed to induce high-titer neutralizing antibodies in vaccinated mice. HydroVax-CHIKV and formaldehyde-inactivated CHIKV retained intact neutralizing epitopes similar to live virus controls but the HydroVax-CHIKV approach demonstrated a more rapid rate of virus inactivation. HydroVax-CHIKV vaccination induced high neutralizing responses to homologous and heterologous CHIKV clades as well as to other alphaviruses including Mayaro virus, O’nyong’nyong virus, and Una virus. Following heterologous infection with CHIKV-SL15649, HydroVax-CHIKV-immunized mice were protected against viremia, CHIKV-associated arthritic disease, and lethal CHIKV infection by an antibody-dependent mechanism. In contrast, animals vaccinated with Heat- or UV-inactivated virus showed no protection against viremia in addition to demonstrating significantly exacerbated CD4+ T cell-mediated footpad swelling after CHIKV infection. Together, these results demonstrate the risks associated with using suboptimal inactivation methods that fail to elicit protective neutralizing antibody responses and show that HydroVax-CHIKV represents a promising new vaccine candidate for prevention of CHIKV-associated disease. Chikungunya virus (CHIKV) is a mosquito-borne virus that has gained significant attention due to its ability to cause large epidemics and to spread beyond endemic countries through international travelers. Despite substantial efforts over the course of many years, a licensed CHIKV vaccine remains unavailable for protecting at-risk populations. Our research group has established an advanced site-directed oxidation system, termed HydroVax, for the development of new vaccines. Here, we describe a novel CHIKV vaccine that utilizes this peroxide-based vaccine platform and demonstrates greatly improved antiviral immunity compared to other traditional virus inactivation approaches as well as complete protection against viremia, CHIKV-associated arthritic disease and lethal CHIKV infection in robust preclinical mouse models. The HydroVax-CHIKV vaccine not only induced neutralizing antibodies to geographically diverse strains of CHIKV, but also elicited neutralizing antibody responses to other clinically important alphaviruses including, Mayaro, O’nyong’nyong, and Una virus. Together, this indicates that this vaccine not only protects against CHIKV infection but may potentially provide immunity across a broader range of virulent alphaviruses as well.
Collapse
|