26
|
Orekhov PS, Klose D, Mulkidjanian AY, Shaitan KV, Engelhard M, Klare JP, Steinhoff HJ. Signaling and Adaptation Modulate the Dynamics of the Photosensoric Complex of Natronomonas pharaonis. PLoS Comput Biol 2015; 11:e1004561. [PMID: 26496122 PMCID: PMC4651059 DOI: 10.1371/journal.pcbi.1004561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/18/2015] [Indexed: 11/19/2022] Open
Abstract
Motile bacteria and archaea respond to chemical and physical stimuli seeking optimal conditions for survival. To this end transmembrane chemo- and photoreceptors organized in large arrays initiate signaling cascades and ultimately regulate the rotation of flagellar motors. To unravel the molecular mechanism of signaling in an archaeal phototaxis complex we performed coarse-grained molecular dynamics simulations of a trimer of receptor/transducer dimers, namely NpSRII/NpHtrII from Natronomonas pharaonis. Signaling is regulated by a reversible methylation mechanism called adaptation, which also influences the level of basal receptor activation. Mimicking two extreme methylation states in our simulations we found conformational changes for the transmembrane region of NpSRII/NpHtrII which resemble experimentally observed light-induced changes. Further downstream in the cytoplasmic domain of the transducer the signal propagates via distinct changes in the dynamics of HAMP1, HAMP2, the adaptation domain and the binding region for the kinase CheA, where conformational rearrangements were found to be subtle. Overall these observations suggest a signaling mechanism based on dynamic allostery resembling models previously proposed for E. coli chemoreceptors, indicating similar properties of signal transduction for archaeal photoreceptors and bacterial chemoreceptors. Achaea and bacteria can “see” and “sniffle”, they have photo- and chemosensors that measure the environment. On the cell poles, these sensor proteins form large arrays built of several thousands of different receptors. The receptors comprise extracellular or transmembrane sensory domains and elongated homodimeric coiled-coil bundles, which transduce the signals from the membrane across ~20 nm to a conserved cytoplasmic signaling subdomain in an unknown manner. In our study we performed coarse-grained molecular dynamics simulations of the phototactic receptor/transducer complex from Natronomonas pharaonis. Comparing fully methylated and demethylated complexes reveals an interconversion between states of different dynamics along the coiled-coil bundle, which might represent the essential characteristics of the signal transfer from the membrane to the binding sites of the downstream kinase CheA.
Collapse
|
27
|
Galli L, Son SK, White TA, Santra R, Chapman HN, Nanao MH. Towards RIP using free-electron laser SFX data. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:249-55. [PMID: 25723926 DOI: 10.1107/s1600577514027854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 12/21/2014] [Indexed: 05/03/2023]
Abstract
Here, it is shown that simulated native serial femtosecond crystallography (SFX) cathepsin B data can be phased by rapid ionization of sulfur atoms. Utilizing standard software adopted for radiation-damage-induced phasing (RIP), the effects on both substructure determination and phasing of the number of collected patterns and fluences are explored for experimental conditions already available at current free-electron laser facilities.
Collapse
|
28
|
Bury C, Garman EF, Ginn HM, Ravelli RBG, Carmichael I, Kneale G, McGeehan JE. Radiation damage to nucleoprotein complexes in macromolecular crystallography. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:213-24. [PMID: 25723923 PMCID: PMC4344358 DOI: 10.1107/s1600577514026289] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/30/2014] [Indexed: 05/23/2023]
Abstract
Significant progress has been made in macromolecular crystallography over recent years in both the understanding and mitigation of X-ray induced radiation damage when collecting diffraction data from crystalline proteins. In contrast, despite the large field that is productively engaged in the study of radiation chemistry of nucleic acids, particularly of DNA, there are currently very few X-ray crystallographic studies on radiation damage mechanisms in nucleic acids. Quantitative comparison of damage to protein and DNA crystals separately is challenging, but many of the issues are circumvented by studying pre-formed biological nucleoprotein complexes where direct comparison of each component can be made under the same controlled conditions. Here a model protein-DNA complex C.Esp1396I is employed to investigate specific damage mechanisms for protein and DNA in a biologically relevant complex over a large dose range (2.07-44.63 MGy). In order to allow a quantitative analysis of radiation damage sites from a complex series of macromolecular diffraction data, a computational method has been developed that is generally applicable to the field. Typical specific damage was observed for both the protein on particular amino acids and for the DNA on, for example, the cleavage of base-sugar N1-C and sugar-phosphate C-O bonds. Strikingly the DNA component was determined to be far more resistant to specific damage than the protein for the investigated dose range. At low doses the protein was observed to be susceptible to radiation damage while the DNA was far more resistant, damage only being observed at significantly higher doses.
Collapse
|
29
|
Lórenz-Fonfría VA, Heberle J. Proton transfer and protein conformation dynamics in photosensitive proteins by time-resolved step-scan Fourier-transform infrared spectroscopy. J Vis Exp 2014:e51622. [PMID: 24998200 PMCID: PMC4208678 DOI: 10.3791/51622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Monitoring the dynamics of protonation and protein backbone conformation changes during the function of a protein is an essential step towards understanding its mechanism. Protonation and conformational changes affect the vibration pattern of amino acid side chains and of the peptide bond, respectively, both of which can be probed by infrared (IR) difference spectroscopy. For proteins whose function can be repetitively and reproducibly triggered by light, it is possible to obtain infrared difference spectra with (sub)microsecond resolution over a broad spectral range using the step-scan Fourier transform infrared technique. With -10(2)-10(3) repetitions of the photoreaction, the minimum number to complete a scan at reasonable spectral resolution and bandwidth, the noise level in the absorption difference spectra can be as low as -10(-) (4), sufficient to follow the kinetics of protonation changes from a single amino acid. Lower noise levels can be accomplished by more data averaging and/or mathematical processing. The amount of protein required for optimal results is between 5-100 µg, depending on the sampling technique used. Regarding additional requirements, the protein needs to be first concentrated in a low ionic strength buffer and then dried to form a film. The protein film is hydrated prior to the experiment, either with little droplets of water or under controlled atmospheric humidity. The attained hydration level (g of water / g of protein) is gauged from an IR absorption spectrum. To showcase the technique, we studied the photocycle of the light-driven proton-pump bacteriorhodopsin in its native purple membrane environment, and of the light-gated ion channel channelrhodopsin-2 solubilized in detergent.
Collapse
|
30
|
Wickstrand C, Dods R, Royant A, Neutze R. Bacteriorhodopsin: Would the real structural intermediates please stand up? Biochim Biophys Acta Gen Subj 2014; 1850:536-53. [PMID: 24918316 DOI: 10.1016/j.bbagen.2014.05.021] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/23/2014] [Accepted: 05/29/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Bacteriorhodopsin (bR) is the simplest known light driven proton pump and has been heavily studied using structural methods: eighty four X-ray diffraction, six electron diffraction and three NMR structures of bR are deposited within the protein data bank. Twenty one X-ray structures report light induced structural changes and changes induced by mutation, changes in pH, thermal annealing or X-ray induced photo-reduction have also been examined. SCOPE OF REVIEW We argue that light-induced structural changes that are replicated across several studies by independent research groups are those most likely to represent what is happening in reality. We present both internal distance matrix analyses that sort deposited bR structures into hierarchal trees, and difference Fourier analysis of deposited X-ray diffraction data. MAJOR CONCLUSIONS An internal distance matrix analysis separates most wild-type bR structures according to their different crystal forms, indicating how the protein's structure is influenced by crystallization conditions. A similar analysis clusters eleven studies of illuminated bR crystals as one branch of a hierarchal tree with reproducible movements of the extracellular portion of helix C towards helix G, and of the cytoplasmic portion of helix F away from helices A, B and G. All crystallographic data deposited for illuminated crystals show negative difference density on a water molecule (Wat402) that forms H-bonds to the retinal Schiff Base and two aspartate residues (Asp85, Asp212) in the bR resting state. Other recurring difference density features indicated reproducible side-chain, backbone and water molecule displacements. X-ray induced radiation damage also disorders Wat402 but acts via cleaving the head-groups of Asp85 and Asp212. GENERAL SIGNIFICANCE A remarkable level of agreement exists when deposited structures and crystallographic observations are viewed as a whole. From this agreement a unified picture of the structural mechanism of light-induced proton pumping by bR emerges. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
|
31
|
Muders V, Kerruth S, Lórenz-Fonfría VA, Bamann C, Heberle J, Schlesinger R. Resonance Raman and FTIR spectroscopic characterization of the closed and open states of channelrhodopsin-1. FEBS Lett 2014; 588:2301-6. [PMID: 24859039 DOI: 10.1016/j.febslet.2014.05.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 11/17/2022]
Abstract
Channelrhodopsin-1 from Chlamydomonas augustae (CaChR1) is a light-activated cation channel, which is a promising optogenetic tool. We show by resonance Raman spectroscopy and retinal extraction followed by high pressure liquid chromatography (HPLC) that the isomeric ratio of all-trans to 13-cis of solubilized channelrhodopsin-1 is with 70:30 identical to channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Critical frequency shifts in the retinal vibrations are identified in the Raman spectrum upon transition to the open (conductive P2(380)) state. Fourier transform infrared spectroscopy (FTIR) spectra indicate different structures of the open states in the two channelrhodopsins as reflected by the amide I bands and the protonation pattern of acidic amino acids.
Collapse
|
32
|
Sridharan V, Aykin-Burns N, Tripathi P, Krager KJ, Sharma SK, Moros EG, Corry PM, Nowak G, Hauer-Jensen M, Boerma M. Radiation-induced alterations in mitochondria of the rat heart. Radiat Res 2014; 181:324-34. [PMID: 24568130 PMCID: PMC4029615 DOI: 10.1667/rr13452.1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation therapy for the treatment of thoracic cancers may be associated with radiation-induced heart disease (RIHD), especially in long-term cancer survivors. Mechanisms by which radiation causes heart disease are largely unknown. To identify potential long-term contributions of mitochondria in the development of radiation-induced heart disease, we examined the time course of effects of irradiation on cardiac mitochondria. In this study, Sprague-Dawley male rats received image-guided local X irradiation of the heart with a single dose ranging from 3-21 Gy. Two weeks after irradiation, left ventricular mitochondria were isolated to assess the dose-dependency of the mitochondrial permeability transition pore (mPTP) opening in a mitochondrial swelling assay. At time points from 6 h to 9 months after a cardiac dose of 21 Gy, the following analyses were performed: left ventricular Bax and Bcl-2 protein levels; apoptosis; mitochondrial inner membrane potential and mPTP opening; mitochondrial mass and expression of mitophagy mediators Parkin and PTEN induced putative kinase-1 (PINK-1); mitochondrial respiration and protein levels of succinate dehydrogenase A (SDHA); and the 70 kDa subunit of complex II. Local heart irradiation caused a prolonged increase in Bax/Bcl-2 ratio and induced apoptosis between 6 h and 2 weeks. The mitochondrial membrane potential was reduced until 2 weeks, and the calcium-induced mPTP opening was increased from 6 h up to 9 months. An increased mitochondrial mass together with unaltered levels of Parkin suggested that mitophagy did not occur. Lastly, we detected a significant decrease in succinate-driven state 2 respiration in isolated mitochondria from 2 weeks up to 9 months after irradiation, coinciding with reduced mitochondrial levels of succinate dehydrogenase A. Our results suggest that local heart irradiation induces long-term changes in cardiac mitochondrial membrane functions, levels of SDH and state 2 respiration. At any time after exposure to radiation, cardiac mitochondria are more prone to mPTP opening. Future studies will determine whether this makes the heart more susceptible to secondary stressors such as calcium overload or ischemia/reperfusion.
Collapse
|
33
|
Duan C, Adam V, Byrdin M, Bourgeois D. Structural basis of photoswitching in fluorescent proteins. Methods Mol Biol 2014; 1148:177-202. [PMID: 24718802 DOI: 10.1007/978-1-4939-0470-9_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fluorescent proteins have revolutionized life sciences because they allow noninvasive and highly specific labeling of biological samples. The subset of "phototransformable" fluorescent proteins recently attracted a widespread interest, as their fluorescence state can be modified upon excitation at defined wavelengths. The fluorescence emission of Reversibly Switchable Fluorescent Proteins (RSFPs), in particular, can be repeatedly switched on and off. RSFPs enable many new exciting modalities in fluorescence microscopy and biotechnology, including protein tracking, photochromic Förster Resonance Energy Transfer, super-resolution microscopy, optogenetics, and ultra-high-density optical data storage. Photoswitching in RSFPs typically results from chromophore cis-trans isomerization accompanied by a protonation change, but other switching schemes based on, e.g., chromophore hydration/dehydration have also been discovered. In this chapter, we review the main structural features at the basis of photoswitching in RSFPs.
Collapse
|
34
|
Sutton KA, Black PJ, Mercer KR, Garman EF, Owen RL, Snell EH, Bernhard WA. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2381-94. [PMID: 24311579 PMCID: PMC3852651 DOI: 10.1107/s0907444913022117] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/07/2013] [Indexed: 11/24/2022]
Abstract
Electron paramagnetic resonance (EPR) and online UV-visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV-visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5-0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.
Collapse
|
35
|
Zou M, Zhang L, Wang J, Wang Q, Gao J, Fan P. Investigation on interaction and sonodynamic damage of fluorescein derivants to bovine serum albumin (BSA) under ultrasonic irradiation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 110:364-376. [PMID: 23583854 DOI: 10.1016/j.saa.2013.03.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 02/13/2013] [Accepted: 03/17/2013] [Indexed: 06/02/2023]
Abstract
The fluorescein derivants (Fluorescein: (2-(6-Hydroxy-3-oxo-(3H)-xanthen-9-yl) benzoic acid), Fluorescein-DA: (Bis [N,N-bis (carboxymethyl) aminomethyl] fluorescein) and Fluorescein-DA-Fe(III): (Bis [N,N-bis (carboxymethyl) aminomethyl] fluorescein-Ferrous(III)) with a tricyclic plane structure were used to study the interaction and sonodynamic damage to bovine serum albumin (BSA) under ultrasonic irradiation through fluorospectrometry and UV-vis spectrophotometry. Besides, because of the existence of Fe(III) ion in Fluorescein-DA-Fe(III), under ultrasonic irradiation the sonocatalytic activity in the damage of BSA molecules was also found. Three-dimensional fluorescence spectra and three-dimensional fluorescence contour profile spectra were mentioned to determine the fluorescence quenching and the conformation change of BSA in the absence and presence of these fluorescein derivants. As judged from the experimental results, the fluorescence quenching of BSA in aqueous solution caused by these fluorescein derivants were all attributed to static quenching process. The damage degree and mode were related to some factors such as ultrasonic irradiation time, fluorescein derivant concentration and ionic strength. Finally, several quenchers were used to determine the amount and kind of generated reactive oxygen species (ROS) during sonodynamic and sonocatalytic reaction processes. It suggests that these fluorescein derivants induce protein damage via various ROS, at least, including singlet oxygen ((1)O2) and hydroxyl radicals (OH). Perhaps, this paper may offer some important subjects for broadening the application of these fluorescein derivants in sonodynamic therapy (SDT) and sonocatalytic therapy (SCT) technologies for tumor treatment.
Collapse
|
36
|
Chen Y, Cruz-Chu ER, Woodard J, Gartia MR, Schulten K, Liu L. Electrically induced conformational change of peptides on metallic nanosurfaces. ACS NANO 2012; 6:8847-8856. [PMID: 22897498 PMCID: PMC3482133 DOI: 10.1021/nn3027408] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Surface immobilized biomolecular probes are used in many areas of biomedical research, such as genomics, proteomics, immunology, and pathology. Although the structural conformations of small DNA and peptide molecules in free solution are well studied both theoretically and experimentally, the conformation of small biomolecules bound on surfaces, especially under the influence of external electric fields, is poorly understood. Using a combination of molecular dynamics simulation and surface-enhanced Raman spectroscopy, we study the external electric field-induced conformational change of dodecapeptide probes tethered to a nanostructured metallic surface. Surface-tethered peptides with and without phosphorylated tyrosine residues are compared to show that peptide conformational change under electric field is sensitive to biochemical modification. Our study proposes a highly sensitive in vitro nanoscale electro-optical detection and manipulation method for biomolecule conformation and charge at bio-nano interfaces.
Collapse
|
37
|
De la Mora E, Lovett JE, Blanford CF, Garman EF, Valderrama B, Rudino-Pinera E. Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:564-77. [PMID: 22525754 PMCID: PMC3335286 DOI: 10.1107/s0907444912005343] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/07/2012] [Indexed: 02/20/2023]
Abstract
X-ray radiation induces two main effects at metal centres contained in protein crystals: radiation-induced reduction and radiolysis and a resulting decrease in metal occupancy. In blue multicopper oxidases (BMCOs), the geometry of the active centres and the metal-to-ligand distances change depending on the oxidation states of the Cu atoms, suggesting that these alterations are catalytically relevant to the binding, activation and reduction of O(2). In this work, the X-ray-determined three-dimensional structure of laccase from the basidiomycete Coriolopsis gallica (Cg L), a high catalytic potential BMCO, is described. By combining spectroscopic techniques (UV-Vis, EPR and XAS) and X-ray crystallography, structural changes at and around the active copper centres were related to pH and absorbed X-ray dose (energy deposited per unit mass). Depletion of two of the four active Cu atoms as well as low occupancies of the remaining Cu atoms, together with different conformations of the metal centres, were observed at both acidic pH and high absorbed dose, correlating with more reduced states of the active coppers. These observations provide additional evidence to support the role of flexibility of copper sites during O(2) reduction. This study supports previous observations indicating that interpretations regarding redox state and metal coordination need to take radiation effects explicitly into account.
Collapse
|
38
|
Liu B, Zhang Y, Sage JT, Soltis SM, Doukov T, Chen Y, Stout CD, Fee JA. Structural changes that occur upon photolysis of the Fe(II)(a3)-CO complex in the cytochrome ba(3)-oxidase of Thermus thermophilus: a combined X-ray crystallographic and infrared spectral study demonstrates CO binding to Cu(B). BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1817:658-65. [PMID: 22226917 PMCID: PMC3294259 DOI: 10.1016/j.bbabio.2011.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 12/09/2011] [Accepted: 12/09/2011] [Indexed: 11/30/2022]
Abstract
The purpose of the work was to provide a crystallographic demonstration of the venerable idea that CO photolyzed from ferrous heme-a(3) moves to the nearby cuprous ion in the cytochrome c oxidases. Crystal structures of CO-bound cytochrome ba(3)-oxidase from Thermus thermophilus, determined at ~2.8-3.2Å resolution, reveal a Fe-C distance of ~2.0Å, a Cu-O distance of 2.4Å and a Fe-C-O angle of ~126°. Upon photodissociation at 100K, X-ray structures indicate loss of Fe(a3)-CO and appearance of Cu(B)-CO having a Cu-C distance of ~1.9Å and an O-Fe distance of ~2.3Å. Absolute FTIR spectra recorded from single crystals of reduced ba(3)-CO that had not been exposed to X-ray radiation, showed several peaks around 1975cm(-1); after photolysis at 100K, the absolute FTIR spectra also showed a significant peak at 2050cm(-1). Analysis of the 'light' minus 'dark' difference spectra showed four very sharp CO stretching bands at 1970cm(-1), 1977cm(-1), 1981cm(-1), and 1985cm(-1), previously assigned to the Fe(a3)-CO complex, and a significantly broader CO stretching band centered at ~2050cm(-1), previously assigned to the CO stretching frequency of Cu(B) bound CO. As expected for light propagating along the tetragonal axis of the P4(3)2(1)2 space group, the single crystal spectra exhibit negligible dichroism. Absolute FTIR spectrometry of a CO-laden ba(3) crystal, exposed to an amount of X-ray radiation required to obtain structural data sets before FTIR characterization, showed a significant signal due to photogenerated CO(2) at 2337cm(-1) and one from traces of CO at 2133cm(-1); while bands associated with CO bound to either Fe(a3) or to Cu(B) in "light" minus "dark" FTIR difference spectra shifted and broadened in response to X-ray exposure. In spite of considerable radiation damage to the crystals, both X-ray analysis at 2.8 and 3.2Å and FTIR spectra support the long-held position that photolysis of Fe(a3)-CO in cytochrome c oxidases leads to significant trapping of the CO on the Cu(B) atom; Fe(a3) and Cu(B) ligation, at the resolutions reported here, are otherwise unaltered.
Collapse
|
39
|
Koopmann R, Cupelli K, Redecke L, Nass K, Deponte DP, White TA, Stellato F, Rehders D, Liang M, Andreasson J, Aquila A, Bajt S, Barthelmess M, Barty A, Bogan MJ, Bostedt C, Boutet S, Bozek JD, Caleman C, Coppola N, Davidsson J, Doak RB, Ekeberg T, Epp SW, Erk B, Fleckenstein H, Foucar L, Graafsma H, Gumprecht L, Hajdu J, Hampton CY, Hartmann A, Hartmann R, Hauser G, Hirsemann H, Holl P, Hunter MS, Kassemeyer S, Kirian RA, Lomb L, Maia FRNC, Kimmel N, Martin AV, Messerschmidt M, Reich C, Rolles D, Rudek B, Rudenko A, Schlichting I, Schulz J, Seibert MM, Shoeman RL, Sierra RG, Soltau H, Stern S, Strüder L, Timneanu N, Ullrich J, Wang X, Weidenspointner G, Weierstall U, Williams GJ, Wunderer CB, Fromme P, Spence JCH, Stehle T, Chapman HN, Betzel C, Duszenko M. In vivo protein crystallization opens new routes in structural biology. Nat Methods 2012; 9:259-62. [PMID: 22286384 PMCID: PMC3429599 DOI: 10.1038/nmeth.1859] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 12/21/2011] [Indexed: 11/08/2022]
Abstract
Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo-grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology.
Collapse
|
40
|
Chandrapala J, Zisu B, Palmer M, Kentish S, Ashokkumar M. Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. ULTRASONICS SONOCHEMISTRY 2011; 18:951-7. [PMID: 21262585 DOI: 10.1016/j.ultsonch.2010.12.016] [Citation(s) in RCA: 402] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/24/2010] [Accepted: 12/27/2010] [Indexed: 05/22/2023]
Abstract
The sonication-induced changes in the structural and thermal properties of proteins in reconstituted whey protein concentrate (WPC) solutions were examined. Differential scanning calorimetry, UV-vis, fluorescence and circular dichroism spectroscopic techniques were used to determine the thermal properties of proteins, measure thiol groups and monitor changes to protein hydrophobicity and secondary structure, respectively. The enthalpy of denaturation decreased when WPC solutions were sonicated for up to 5 min. Prolonged sonication increased the enthalpy of denaturation due to protein aggregation. Sonication did not alter the thiol content but resulted in minor changes to the secondary structure and hydrophobicity of the protein. Overall, the sonication process had little effect on the structure of proteins in WPC solutions which is critical to preserving functional properties during the ultrasonic processing of whey protein based dairy products.
Collapse
|
41
|
Kondoh M, Shiraishi C, Müller P, Ahmad M, Hitomi K, Getzoff ED, Terazima M. Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome. J Mol Biol 2011; 413:128-37. [PMID: 21875594 DOI: 10.1016/j.jmb.2011.08.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 11/17/2022]
Abstract
Cryptochromes (CRYs) are widespread flavoproteins with homology to photolyases (PHRs), a class of blue-light-activated DNA repair enzymes. Unlike PHRs, both plant and animal CRYs have a C-terminal domain. This cryptochrome C-terminal (CCT) domain mediates interactions with other proteins, while the PHR-like domain converts light energy into a signal via reduction and radical formation of the flavin adenine dinucleotide cofactor. However, the mechanism by which the PHR-like domain regulates the CCT domain is not known. Here, we applied the pulsed-laser-induced transient grating method to detect conformational changes induced by blue-light excitation of full-length Arabidopsis thaliana cryptochrome 1 (AtCRY1). A significant reduction in the diffusion coefficient of AtCRY1 was observed upon photoexcitation, indicating that a large conformational change occurs in this monomeric protein. AtCRY1 containing a single mutation (W324F) that abolishes an intra-protein electron transfer cascade did not exhibit this conformational change. Moreover, the conformational change was much reduced in protein lacking the CCT domain. Thus, we conclude that the observed large conformational changes triggered by light excitation of the PHR-like domain result from C-terminal domain rearrangement. This inter-domain modulation would be critical for CRYs' ability to transduce a blue-light signal into altered protein-protein interactions for biological activity. Lastly, we demonstrate that the transient grating technique provides a powerful method for the direct observation and understanding of photoreceptor dynamics.
Collapse
|
42
|
Dean K, Lubbeck J, Binder J, Schwall L, Jimenez R, Palmer A. Analysis of red-fluorescent proteins provides insight into dark-state conversion and photodegradation. Biophys J 2011; 101:961-9. [PMID: 21843488 PMCID: PMC3175071 DOI: 10.1016/j.bpj.2011.06.055] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/03/2011] [Accepted: 06/28/2011] [Indexed: 01/30/2023] Open
Abstract
Fluorescent proteins (FPs) are powerful tools that permit real-time visualization of cellular processes. The utility of a given FP for a specific experiment depends strongly on its effective brightness and overall photostability. However, the brightness of FPs is limited by dark-state conversion (DSC) and irreversible photobleaching, which occur on different timescales. Here, we present in vivo ensemble assays for measuring DSC and irreversible photobleaching under continuous and pulsed illumination. An analysis of closely related red FPs reveals that DSC and irreversible photobleaching are not always connected by the same mechanistic pathway. DSC occurs out of the first-excited singlet state, and its magnitude depends predominantly on the kinetics for recovery out of the dark state. The experimental results can be replicated through kinetic simulations of a four-state model of the electronic states. The methodology presented here allows light-driven dynamics to be studied at the ensemble level over six orders of magnitude in time (microsecond to second timescales).
Collapse
|
43
|
Dalsgaard TK, Nielsen JH, Brown BE, Stadler N, Davies MJ. Dityrosine, 3,4-dihydroxyphenylalanine (DOPA), and radical formation from tyrosine residues on milk proteins with globular and flexible structures as a result of riboflavin-mediated photo-oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:7939-7947. [PMID: 21696221 DOI: 10.1021/jf200277r] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Riboflavin-mediated photo-oxidative damage to protein Tyr residues has been examined to determine whether protein structure influences competing protein oxidation pathways in single proteins and protein mixtures. EPR studies resulted in the detection of Tyr-derived o-semiquione radicals, with this species suggested to arise from oxidation of 3,4-dihydroxyphenylalanine (DOPA). The yield of this radical was lower in samples containing β-casein than in samples containing only globular proteins. Consistent with this observation, the yield of DOPA detected on β-casein was lower than that on two globular proteins, BSA and β-lactoglobulin. In contrast, samples with β-casein gave higher yields of dityrosine than samples containing BSA and β-lactoglobulin. These results indicate that the flexible structure of β-casein favors radical-radical termination of tyrosyl radicals to give dityrosine, whereas the less flexible structure of globular proteins decreases the propensity for tyrosyl radicals to dimerize, with this resulting in higher yields of DOPA and its secondary radical.
Collapse
|
44
|
Ibrahimkutty S, Kim J, Cammarata M, Ewald F, Choi J, Ihee H, Plech A. Ultrafast structural dynamics of the photocleavage of protein hybrid nanoparticles. ACS NANO 2011; 5:3788-94. [PMID: 21504177 DOI: 10.1021/nn200120e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Protein-coated gold nanoparticles in suspension are excited by intense laser pulses to mimic the light-induced effect on biomolecules that occur in photothermal laser therapy with nanoparticles as photosensitizer. Ultrafast X-ray scattering employed to access the nanoscale structural modifications of the protein-nanoparticle hybrid reveals that the protein shell is expelled as a whole without denaturation at a laser fluence that coincides with the bubble formation threshold. In this ultrafast heating mediated by the nanoparticles, time-resolved scattering data show that proteins are not denatured in terms of secondary structure even at much higher temperatures than the static thermal denaturation temperature, probably because time is too short for the proteins to unfold and the temperature stimulus has vanished before this motion sets in. Consequently the laser pulse length has a strong influence on whether the end result is the ligand detachment (for example drug delivery) or biomaterial degradation.
Collapse
|
45
|
Liu B, Wang DJ, Wang X, Liu BM, Kong YM, He LL, Wang J, Xu SK. Spectroscopic investigation on protein damage by ciprofloxacin under ultrasonic irradiation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 78:712-717. [PMID: 21177138 DOI: 10.1016/j.saa.2010.11.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 11/16/2010] [Accepted: 11/30/2010] [Indexed: 05/30/2023]
Abstract
In recent years, sonodynamic activities of many drugs have attracted more and more attention of researchers. The correlative study will promote the development of sonodynamic therapy (SDT) in anti-tumor treatment. In this work, bovine serum albumin (BSA) was used as a protein model to investigate the intensifying effects of ciprofloxacin (CPFX) ultrasonically induced protein damage by UV-vis and fluorescence spectra. Meanwhile, the conformation of BSA is changed upon the addition of CPFX and metal ions under ultrasound (US) so that the damaging site of BSA is considered. Various influencing factors, such as US irradiation time, metal ions, solution temperature and ionic strength, on the ultrasonically induced BSA damage are discussed. It was showed that CPFX could enhance ultrasonically induced BSA damage. The damage degree of BSA was aggravated with the increasing of US irradiation time, solution temperature, ionic strength as well as the addition of metal ions. Furthermore, the reactive oxygen species (ROS) in reaction system were detected by oxidation-extraction photometry (OEP). Experimental results also showed that US could activate CPFX to produce ROS, which were mainly determined as superoxide radical anion (.O2-) and hydroxyl radical (.OH).
Collapse
|
46
|
Estey T, Chen Y, Carpenter JF, Vasiliou V. Structural and functional modifications of corneal crystallin ALDH3A1 by UVB light. PLoS One 2010; 5:e15218. [PMID: 21203538 PMCID: PMC3006428 DOI: 10.1371/journal.pone.0015218] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 10/29/2010] [Indexed: 11/18/2022] Open
Abstract
As one of the most abundantly expressed proteins in the mammalian corneal epithelium, aldehyde dehydrogenase 3A1 (ALDH3A1) plays critical and multifaceted roles in protecting the cornea from oxidative stress. Recent studies have demonstrated that one protective mechanism of ALDH3A1 is the direct absorption of UV-energy, which reduces damage to other corneal proteins such as glucose-6-phosphate dehydrogenase through a competition mechanism. UV-exposure, however, leads to the inactivation of ALDH3A1 in such cases. In the current study, we demonstrate that UV-light caused soluble, non-native aggregation of ALDH3A1 due to both covalent and non-covalent interactions, and that the formation of the aggregates was responsible for the loss of ALDH3A1 enzymatic activity. Spectroscopic studies revealed that as a result of aggregation, the secondary and tertiary structure of ALDH3A1 were perturbed. LysC peptide mapping using MALDI-TOF mass spectrometry shows that UV-induced damage to ALDH3A1 also includes chemical modifications to Trp, Met, and Cys residues. Surprisingly, the conserved active site Cys of ALDH3A1 does not appear to be affected by UV-exposure; this residue remained intact after exposure to UV-light that rendered the enzyme completely inactive. Collectively, our data suggest that the UV-induced inactivation of ALDH3A1 is a result of non-native aggregation and associated structural changes rather than specific damage to the active site Cys.
Collapse
|
47
|
Warkentin M, Thorne RE. Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:1092-100. [PMID: 20944242 PMCID: PMC2954455 DOI: 10.1107/s0907444910035523] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 09/03/2010] [Indexed: 11/10/2022]
Abstract
The temperature-dependence of radiation damage to thaumatin crystals between T = 300 and 100 K is reported. The amount of damage for a given dose decreases sharply as the temperature decreases from 300 to 220 K and then decreases more gradually on further cooling below the protein-solvent glass transition. Two regimes of temperature-activated behavior were observed. At temperatures above ∼200 K the activation energy of 18.0 kJ mol(-1) indicates that radiation damage is dominated by diffusive motions in the protein and solvent. At temperatures below ∼200 K the activation energy is only 1.00 kJ mol(-1), which is of the order of the thermal energy. Similar activation energies describe the temperature-dependence of radiation damage to a variety of solvent-free small-molecule organic crystals over the temperature range T = 300-80 K. It is suggested that radiation damage in this regime is vibrationally assisted and that the freezing-out of amino-acid scale vibrations contributes to the very weak temperature-dependence of radiation damage below ∼80 K. Analysis using the radiation-damage model of Blake and Phillips [Blake & Phillips (1962), Biological Effects of Ionizing Radiation at the Molecular Level, pp. 183-191] indicates that large-scale conformational and molecular motions are frozen out below T = 200 K but become increasingly prevalent and make an increasing contribution to damage at higher temperatures. Possible alternative mechanisms for radiation damage involving the formation of hydrogen-gas bubbles are discussed and discounted. These results have implications for mechanistic studies of proteins and for studies of the protein glass transition. They also suggest that data collection at T ≃ 220 K may provide a viable alternative for structure determination when cooling-induced disorder at T = 100 is excessive.
Collapse
|
48
|
Vreede J, Juraszek J, Bolhuis PG. Predicting the reaction coordinates of millisecond light-induced conformational changes in photoactive yellow protein. Proc Natl Acad Sci U S A 2010; 107:2397-402. [PMID: 20133754 PMCID: PMC2823881 DOI: 10.1073/pnas.0908754107] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the dynamics of large-scale conformational changes in proteins still poses a challenge for molecular simulations. We employ transition path sampling of explicit solvent molecular dynamics trajectories to obtain atomistic insight in the reaction network of the millisecond timescale partial unfolding transition in the photocycle of the bacterial sensor photoactive yellow protein. Likelihood maximization analysis predicts the best model for the reaction coordinates of each substep as well as tentative transition states, without further simulation. We find that the unfolding of the alpha-helical region 43-51 is followed by sequential solvent exposure of both Glu46 and the chromophore. Which of these two residues is exposed first is correlated with the presence of a salt bridge that is part of the N-terminal domain. Additional molecular dynamics simulations indicate that the exposure of the chromophore does not result in a productive pathway. We discuss several possibilities for experimental validation of these predictions. Our results open the way for studying millisecond conformational changes in other medium-sized (signaling) proteins.
Collapse
|
49
|
Hayashi T. JSCTR-CTR commentary. What is the function of proline in the collagen molecule? Connect Tissue Res 2010; 51:81. [PMID: 20067421 DOI: 10.3109/03008200903471776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
50
|
Orlova MA, Kuznetsov DA, Latysheva AV, Orlov AP. [The study of the creatine kinase radiation stability in 25Mg-enzyme enrichment experiment]. RADIATSIONNAIA BIOLOGIIA, RADIOECOLOGIIA 2009; 49:580-584. [PMID: 19947522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The radiation inactivation technique was applied to conduct the study on catalytic activity changes of creatine kinase species isolated from the Mid-Asian Death Adder venom. Both intact and the 25Mg-enriched enzyme samples were separately tested. Some differences in radiation stability levels were found to be indicating to a shift in conformational condition (a so called "conformational distribution") of the native enzyme that had happen in the presence of the magnetic nuclei excess.
Collapse
|