26
|
Hullar TE. Semicircular canal geometry, afferent sensitivity, and animal behavior. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2006; 288:466-72. [PMID: 16550591 PMCID: PMC2570000 DOI: 10.1002/ar.a.20304] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The geometry of the semicircular canals has been used in evolutionary studies to predict the behaviors of extinct animals. These predictions have relied on an assumption that the responses of the canals can be determined from their dimensions, and that an organism's behavior can be determined from these responses. However, the relationship between a canal's sensitivity and its size is not well known. An intraspecies comparison among canal responses in each of three species (cat, squirrel monkey, and pigeon) was undertaken to evaluate various models of canal function and determine how their dimensions may be related to afferent physiology. All models predicted the responses of the cat afferents, but the models performed less well for squirrel monkey and pigeon. Possible causes for this discrepancy include incorrectly assuming that afferent responses accurately represent canal function or errors in current biophysical models of the canals. These findings leave open the question as to how reliably canal anatomy can be used to estimate afferent responses and how closely afferent responses are related to behavior. Other labyrinthine features, such as orientation of the horizontal canal, which is reliably held near earth-horizontal across many species, may be better to use when extrapolating the posture and related behavior of extinct animals from labyrinthine morphology.
Collapse
|
27
|
Abstract
Three subnuclei within the inferior olive are implicated in the control of eye movement; the dorsal cap (DC), the beta-nucleus and the dorsomedial cell column (DMCC). Each of these subnuclei can be further divided into clusters of cells that encode specific parameters of optokinetic and vestibular stimulation. DC neurons respond to optokinetic stimulation in one of three planes, corresponding to the anatomical planes of the semicircular canals. Neurons in the beta-nucleus and DMCC respond to vestibular stimulation in the planes of the vertical semicircular canals and otoliths. Each these olivary nuclei receives excitatory and inhibitory signals from pre-olivary structures. The DC receives excitatory signals from the ipsilateral nucleus of the optic tract (NOT) and inhibitory signals from the contralateral nucleus prepositus hypoglossi (NPH). The beta-nucleus and DMCC receive inhibitory signals from the ipsilateral nucleus parasolitarius (Psol) and excitatory signals from the contralateral dorsal Y group. Consequently, the olivary projection to the cerebellum, although totally crossed, still represents bilateral sensory stimulation. Inputs to the inferior olive from the NOT, NPH, Psol or Y-group discharge at frequencies of 10-100 imp/s. CFRs discharge at 1-5 imp/s; a frequency reduction of an order of magnitude. Inferior olivary projections to the contralateral cerebellum are sagittally arrayed onto multiple cerebellar folia. These arrays establish coordinate systems in the flocculus and nodulus, representing head-body movement. These climbing fiber-defined spatial coordinate systems align Purkinje cell discharge onto subjacent cerebellar and vestibular nuclei. In the oculomotor system, olivo-cerebellar circuitry enhances and modifies eye movements based on movement of the head-body in space.
Collapse
|
28
|
Brettler SC, Baker JF. Anterior canal neurons in cat vestibular nuclei have large phase leads during low frequency vertical axis pitch. J Vestib Res 2006; 16:245-56. [PMID: 17726277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Vestibulo-ocular and second-order neurons in medial and superior vestibular nuclei of alert cats were identified by antidromic and orthodromic electrical stimulation, and their responses to whole body rotations were recorded in the dark. Neurons that had spatial sensitivity most closely aligned with the anterior canal (anterior canal neurons) were compared with neurons that had spatial sensitivity most closely aligned with the posterior canal (posterior canal neurons). Responses were recorded during low frequency earth-horizontal axis pitch rotations in the normal upright posture, and during earth-vertical axis pitch with the head and body lying on the left side. During upright pitch, response phases of anterior canal neurons slightly lagged those of posterior canal neurons or primary vestibular afferents, as previously reported. During on-side pitch, anterior canal neurons showed far greater phase leads with respect to head velocity than posterior canal neurons, primary vestibular afferents, or previously reported vestibulo-ocular reflex eye movements. These results provide challenges for vestibulo-ocular reflex models to incorporate central mechanisms for phase leads among the inputs to anterior canal neurons and to explain how the anterior canal neuron signals reported here combine with other signals to produce observed vestibulo-ocular reflex behavior.
Collapse
|
29
|
Abstract
The vestibular portion of the eighth cranial nerve informs the brain about the linear and angular movements of the head in space and the position of the head with respect to gravity. The termination sites of these eighth nerve afferents define the territory of the vestibular nuclei in the brainstem. (There is also a subset of afferents that project directly to the cerebellum.) This chapter reviews the anatomical organization of the vestibular nuclei, and the anatomy of the pathways from the nuclei to various target areas in the brain. The cytoarchitectonics of the vestibular brainstem are discussed, since these features have been used to distinguish the individual nuclei. The neurochemical phenotype of vestibular neurons and pathways are also summarized because the chemical anatomy of the system contributes to its signal-processing capabilities. Similarly, the morphologic features of short-axon local circuit neurons and long-axon cells with extrinsic projections are described in detail, since these structural attributes of the neurons are critical to their functional potential. Finally, the composition and hodology of the afferent and efferent pathways of the vestibular nuclei are discussed. In sum, this chapter reviews the morphology, chemoanatomy, connectivity, and synaptology of the vestibular nuclei.
Collapse
|
30
|
Takenouchi T, Suzuki M, Furuya M, Otsuka K, Ogawa Y. Contribution of Endolymphatic Fluid Shift to Caloric Response in Plugged Semicircular Canals. ORL J Otorhinolaryngol Relat Spec 2005; 67:266-71. [PMID: 16374058 DOI: 10.1159/000089406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to clarify the role of endolymphatic fluid shift in caloric response, using frog posterior semicircular canals (PSCs). PSCs were sutured using 10-0 nylon thread and were used as a model of canal plugging. Compound action potentials (CAPs) of the PSC nerve evoked by a cooling stimulus were recorded. The CAPs after suturing the PSCs were found to be greater than those before suturing. This indicates that the fluid shift effect increases after canal suturing. Additionally, we present a clinical case in which caloric nystagmus was observed after lateral canal plugging. In this case MRI revealed the fluid space from the plugged portion toward the ampulla to be intact. There was another case with lateral canal plugging that showed the same findings on MRI. The above findings support the hypothesis that fluid shift is responsible for the caloric response without the convective flow of endolymph in the plugged canal.
Collapse
|
31
|
Chávez H, Vega R, Soto E. Histamine (H3) receptors modulate the excitatory amino acid receptor response of the vestibular afferents. Brain Res 2005; 1064:1-9. [PMID: 16310756 DOI: 10.1016/j.brainres.2005.10.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 10/10/2005] [Accepted: 10/15/2005] [Indexed: 11/23/2022]
Abstract
Although the effectiveness of histamine-related drugs in the treatment of peripheral and central vestibular disorders may be explained by their action on the vestibular nuclei, it has also been shown that antivertigo effects can take place at the peripheral level. In this work, we examined the actions of H3 histaminergic agonists and antagonists on the afferent neuron electrical discharge in the isolated inner ear of the axolotl. Our results indicate that H3 antagonists such as thioperamide, clobenpropit, and betahistine (BH) decreased the electrical discharge of afferent neurons by interfering with the postsynaptic response to excitatory amino acid agonists. These results lend further support to the idea that the antivertigo action of histamine-related drugs may be caused, at least in part, by a decrease in the sensory input from the vestibular endorgans. The present data show that the inhibitory action of the afferent neurons discharge previously described for BH is not restricted to this molecule but is also shared by other H3 antagonists.
Collapse
MESH Headings
- Afferent Pathways/drug effects
- Afferent Pathways/physiology
- Ambystoma
- Animals
- Betahistine/administration & dosage
- Dose-Response Relationship, Drug
- Hair Cells, Auditory/cytology
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/physiology
- Histamine Agents/pharmacology
- Histamine Agonists/administration & dosage
- Histamine Antagonists/administration & dosage
- Imidazoles/administration & dosage
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Piperidines/administration & dosage
- Receptors, Glutamate/drug effects
- Receptors, Glutamate/physiology
- Receptors, Histamine H3/drug effects
- Receptors, Histamine H3/physiology
- Semicircular Canals/cytology
- Semicircular Canals/drug effects
- Semicircular Canals/innervation
- Semicircular Canals/physiology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Thiourea/administration & dosage
- Thiourea/analogs & derivatives
- Vestibular Nerve/physiology
- Vestibule, Labyrinth/cytology
- Vestibule, Labyrinth/drug effects
- Vestibule, Labyrinth/innervation
- Vestibule, Labyrinth/physiology
Collapse
|
32
|
Andrianov GN, Puyal J, Raymond J, Ventéo S, Demêmes D, Ryzhova IV. Immunocytochemical and pharmacological characterization of metabotropic glutamate receptors of the vestibular end organs in the frog. Hear Res 2005; 204:200-9. [PMID: 15925205 DOI: 10.1016/j.heares.2005.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 02/08/2005] [Indexed: 11/24/2022]
Abstract
Using immunocytochemistry and multiunit recording of afferent activity of the whole vestibular nerve, we investigated the role of metabotropic glutamate receptors (mGluR) in the afferent neurotransmission in the frog semicircular canals (SCC). Group I (mGluR1alpha) and group II (mGluR2/3) mGluR immunoreactivities were distributed to the vestibular ganglion neurons, and this can be attributed to a postsynaptic locus of metabotropic regulation of rapid excitatory transmission. The effects of group I/II mGluR agonist (1S,3R)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (ACPD) and antagonist (R,S)-alpha-methyl-4-carboxyphenylglycine (MCPG) on resting and chemically induced afferent activity were studied. ACPD (10-100 microM) enhanced the resting discharge frequency. MCPG (5-100 microM) led to a concentration-dependent decrease of both resting activity and ACPD-induced responses. If the discharge frequency had previously been restored by L-glutamate (L-Glu) in high-Mg2+ solution, ACPD elicited a transient increase in the firing rate in the afferent nerve suggesting that ACPD acts on postsynaptic receptors. The L-Glu agonists, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA), were tested during application of ACPD. AMPA- and NMDA-induced responses were higher in the presence than absence of ACPD, implicating mGluR in the modulation of ionotropic glutamate receptors. These results indicate that activation of mGluR potentiates AMPA and NMDA responses through a postsynaptic interaction. We conclude that ACPD may exert modulating postsynaptic effects on vestibular afferents and that this process is activity-dependent.
Collapse
|
33
|
Abstract
We used galvanic vestibular stimulation (GVS) to identify human balance reflexes of the semicircular canals and otolith organs. The experiment used a model of vestibular signals arising from GVS modulation of the net signal from vestibular afferents. With the head upright, the model predicts that the GVS-evoked canal signal indicates lateral head rotation while the otolith signal indicates lateral tilt or acceleration. Both signify body sway transverse to the head. With the head bent forward, the model predicts that the canal signal indicates body spin about a vertical axis but the otolith signal still signifies lateral body motion. Thus, we compared electromyograms (EMG) in the leg muscles and body sway evoked by GVS when subjects stood with the head upright or bent forward. With the head upright, GVS evoked a large sway in the direction of the anodal electrode. This response was abolished with the head bent forward leaving only small, oppositely directed, transient responses at the start and end of the stimulus. With the head upright, GVS evoked short-latency (60-70 ms), followed by medium-latency (120 ms) EMG responses, of opposite polarity. Bending the head forward abolished the medium-latency but preserved the short-latency response. This is compatible with GVS evoking separate otolithic and canal reflexes, indicating that balance is controlled by independent canal and otolith reflexes, probably through different pathways. We propose that the short-latency reflex and small transient sway are driven by the otolith organs and the medium-latency response and the large sway are driven by the semicircular canals.
Collapse
|
34
|
Carey JP, Hirvonen TP, Hullar TE, Minor LB. Acoustic Responses of Vestibular Afferents in a Model of Superior Canal Dehiscence. Otol Neurotol 2004; 25:345-52. [PMID: 15129116 DOI: 10.1097/00129492-200405000-00024] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Afferents innervating the superior semicircular canal are rendered especially sensitive to acoustic stimulation when there is a dehiscence of the superior canal. Other vestibular end organs are also more sensitive to acoustic stimulation. BACKGROUND Dehiscence of the superior semicircular canal is associated with vertigo and nystagmus caused by loud sounds (Tullio phenomenon) or changes in middle ear or intracranial pressures. The mechanisms by which acoustic stimuli act on the vestibular end organs are unclear. The nystagmus caused by acoustic stimuli generally aligns with the affected superior canal. METHODS Responses to acoustic stimuli in the superior vestibular nerves of anesthetized chinchillas were recorded before and after fenestration of the superior canal. RESULTS Two acoustic response patterns were seen: rapid phase locking and slow tonic changes in firing rate. Phasic responses principally occurred in irregular afferents and tonic responses in regular afferents. Afferents from all of the vestibular end organs encountered could respond to acoustic stimuli, even before fenestration. However, fenestration lowered the thresholds for acoustic stimulation in superior canal afferents with phasic responses and increased the magnitude of tonic responses. CONCLUSIONS Superior canal dehiscence may render the irregular afferents innervating the superior canal particularly sensitive to loud sounds. Rapid phase-locking responses may explain the short latency of nystagmus seen in patients with superior canal dehiscence syndrome. The mechanisms by which acoustic stimuli activate the vestibular end organs may differ from the damped endolymph motion associated with head acceleration.
Collapse
|
35
|
Sugita A, Bai R, Imagawa M, Sato H, Sasaki M, Kitajima N, Koizuka I, Uchino Y. Properties of horizontal semicircular canal nerve-activated vestibulospinal neurons in cats. Exp Brain Res 2004; 156:478-86. [PMID: 15007578 DOI: 10.1007/s00221-003-1805-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Accepted: 11/26/2003] [Indexed: 10/26/2022]
Abstract
Axonal pathways, projection levels, and locations of horizontal semicircular canal (HC) nerve-activated vestibulospinal neurons were studied. The HC nerve was selectively stimulated. Vestibulospinal neurons were activated antidromically with four stimulating electrodes, inserted bilaterally into the lateral vestibulospinal tracts (LVST) and medial vestibulospinal tracts (MVST) at the C1/C2 junction. Stimulating electrodes were also positioned in the C3, T1, and L3 segments and in the oculomotor nuclei. Most HC nerve-activated vestibulospinal neurons were located in the ventral portion of the medial, lateral, and the descending nuclei. Among the 157 HC nerve-activated vestibular neurons, 83 were antidromically activated by stimulation at the C1/C2 junction. Of these 83 neurons, axonal pathways of 56 HC nerve-activated vestibulospinal neurons were determined. Most (48/56) of these had axons that descended through the MVST, with the remainder (8 neurons) having axons that descended through the ipsilateral (i-) LVST. Laterality of the axons' trajectories through the MVST was investigated. The majority of vestibulospinal neurons (24/28) with axons descending through the contralateral MVST were also antidromically activated from the oculomotor nucleus, whereas almost all vestibulospinal neurons (19/20) with axons descending through the i-MVST were not. Most HC nerve-activated vestibulospinal neurons were activated antidromically only from the C1/C2 or C3 segments. Only one neuron that was antidromically activated from the T1 segment had an axon that descended through the i-LVST. None of the HC nerve-activated vestibulospinal neurons were antidromically activated from the L3 segment. It is likely that the majority of HC nerve-activated vestibulospinal neurons terminate in the cervical cord and have strong connections with neck motoneurons.
Collapse
|
36
|
Kevetter GA, Leonard RB, Newlands SD, Perachio AA. Central distribution of vestibular afferents that innervate the anterior or lateral semicircular canal in the mongolian gerbil. J Vestib Res 2004; 14:1-15. [PMID: 15156092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The central distribution of afferents that innervate the crista ampullaris of the anterior or lateral semicircular canals was determined in gerbils following the direct injection of tracers into one sensory neuroepithelia. Labeled somata were scattered throughout the superior ganglion. The central distribution of fibers demonstrated extensive overlap. The central branch of afferents innervating either canal was located in the rostral part of the nerve. Nerve fibers divided into ascending and descending branches. Ascending branch ramifications terminated in the superior vestibular nucleus, the magnocellular and parvicellular medial vestibular nuclei, and the cerebellum. Cerebellar terminal areas include the flocculus, nodulus and uvula. Descending branch ramifications terminated in the caudal medial, parvicellular medial and descending vestibular nuclei, and the nucleus prepositus hypoglossi. Lateral canal afferents terminated sparsely in nucleus cuneatus. The anterior canal had sparse innervation in the paratrigeminal and gigantocellular reticular formation. This study has shown many similarities in the central distribution of fibers that innervate the anterior and lateral canals and a few areas of segregated input. Projections outside the vestibular nuclei are more extensive than previously determined, including afferents to prepositus hypoglossi, cochlear nuclei, and reticular formation. Projections to the flocculus appear as numerous as those to the vermis.
Collapse
|
37
|
Tomchik SM, Lu Z. Octavolateral projections and organization in the medulla of a teleost fish, the sleeper goby (Dormitator latifrons). J Comp Neurol 2004; 481:96-117. [PMID: 15558734 DOI: 10.1002/cne.20363] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study is the first to employ simultaneous labeling with different colored fluorescent dyes and confocal microscopy to investigate the central projections of the octavolateral nerves in any fish. Three-dimensional reconstructions of the hindbrain octavolateral nuclei were made and overlap of octavolateral projections was assessed in a teleost, the sleeper goby (Dormitator latifrons). The octavolateral nerves, which innervate the otolithic organs, semicircular canals, and lateral lines, project to seven hindbrain nuclei in diverse, complex patterns. The medulla is generally organized with auditory regions dorsal to vestibular regions. The intermediate subdivision of the descending octaval nucleus (DON) receives interdigitating projections from the otolithic organs, and the dorsomedial DON likely integrates multiple auditory inputs. Afferents from the three otolithic organs (the utricle, saccule, and lagena) project to the intermediate DON in approximately equal proportion, supporting physiological evidence that suggests auditory roles for all three otolithic organs in the sleeper goby. The anterior octaval nucleus receives partially segregated inputs from the octavolateral organs. The dorsal division of the magnocellular octaval nucleus (MgON) receives highly overlapping otolithic organ and semicircular canal input, and we propose that this region is a major octaval integration center. Regions in the ventral medulla (the tangential octaval nucleus, ventral DON, and ventral MgON) receive mainly utricular and semicircular canal inputs, suggesting vestibular roles. Each semicircular canal nerve projects to distinct regions of the hindbrain, with little overlap in most octaval nuclei. Efferent neurons receive bilateral input and project unilaterally to the octavolateral organs.
Collapse
|
38
|
Holstein GR, Martinelli GP, Boyle R, Rabbitt RD, Highstein SM. Ultrastructural observations of efferent terminals in the crista Ampullaris of the toadfish, opsanus tau. Exp Brain Res 2003; 155:265-73. [PMID: 14689144 DOI: 10.1007/s00221-003-1734-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2003] [Accepted: 09/25/2003] [Indexed: 10/26/2022]
Abstract
The present study was conducted to visualize the ultrastructural features of vestibular efferent boutons in the oyster toadfish, Opsanus tau. The crista ampullaris of the horizontal semicircular canal was processed for and examined by routine transmission electron microscopy. The results demonstrate that such boutons vary in size and shape, and contain a heterogeneous population of lucent vesicles with scattered dense core vesicles. Efferent contacts with hair cells are characterized by local vesicle accumulations in the presynaptic terminal and a subsynaptic cistern in the postsynaptic region of the hair cell. Serial efferent to hair cell to afferent synaptic arrangements are common, particularly in the central portion of the crista. However, direct contacts between efferent terminals and afferent neurites were not observed in our specimens. The existence of serial synaptic contacts, often with a row of vesicles in the efferent boutons lining the efferent-afferent membrane apposition, suggests that the efferent influence on the crista may involve both synaptic and nonsynaptic, secretory mechanisms. Further, it is suggested that differences in more subtle aspects of synaptic architecture and/or transmitter and receptor localization and interaction may render the efferent innervation of the peripheral crista less effective in influencing sensory processing.
Collapse
|
39
|
Andrianov IN, Ryzhova IV, Tobias TB. [Absence of the effect of opioid peptides on muscarine receptors in the frog vestibular apparatus]. ROSSIISKII FIZIOLOGICHESKII ZHURNAL IMENI I.M. SECHENOVA 2003; 89:1431-7. [PMID: 14758669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
We studied the effects of opioid peptide leu-enkephaline, a specific antagonist of acetylcholine receptors atropine, and non-selective opiate antagonist naloxone on synaptic transmission and responses evoked by acetylcholine in semicircular organs of the frog. A decrease in frequency of acetylcholine (0.1-5.0 microM) responses under leu-enkephaline (10 nM) id not differ from the frequency decline induced by leu-enkephaline alone. Atropine (1 microM) left the response to leu-enkephaline intact while blocking the excitatory effect of acetylcholine. No modification of the acetylcholine response under leu-enkephaline was observed in the presence of naloxone (1 microM). The findings suggest that no interaction exists between the acetylcholine-mediated excitatory action on resting activity in the isolated semicircular canal preparation and the suppressive action of leu-enkephaline.
Collapse
|
40
|
Dickman JD, Angelaki DE. Vestibular convergence patterns in vestibular nuclei neurons of alert primates. J Neurophysiol 2002; 88:3518-33. [PMID: 12466465 DOI: 10.1152/jn.00518.2002] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory signal convergence is a fundamental and important aspect of brain function. Such convergence may often involve complex multidimensional interactions as those proposed for the processing of otolith and semicircular canal (SCC) information for the detection of translational head movements and the effective discrimination from physically congruent gravity signals. In the present study, we have examined the responses of primate rostral vestibular nuclei (VN) neurons that do not exhibit any eye movement-related activity using 0.5-Hz translational and three-dimensional (3D) rotational motion. Three distinct neural populations were identified. Approximately one-fourth of the cells exclusively encoded rotational movements (canal-only neurons) and were unresponsive to translation. The canal-only central neurons encoded head rotation in SCC coordinates, exhibited little orthogonal canal convergence, and were characterized with significantly higher sensitivities to rotation as compared to primary SCC afferents. Another fourth of the neurons modulated their firing rates during translation (otolith-only cells). During rotations, these neurons only responded when the axis of rotation was earth-horizontal and the head was changing orientation relative to gravity. The remaining one-half of VN neurons were sensitive to both rotations and translations (otolith + canal neurons). Unlike primary otolith afferents, however, central neurons often exhibited significant spatiotemporal (noncosine) tuning properties and a wide variety of response dynamics to translation. To characterize the pattern of SCC inputs to otolith + canal neurons, their rotational maximum sensitivity vectors were computed using exclusively responses during earth-vertical axis rotations (EVA). Maximum sensitivity vectors were distributed throughout the 3D space, suggesting strong convergence from multiple SCCs. These neurons were also tested with earth-horizontal axis rotations (EHA), which would activate both vertical canals and otolith organs. However, the recorded responses could not be predicted from a linear combination of EVA rotational and translational responses. In contrast, one-third of the neurons responded similarly during EVA and EHA rotations, although a significant response modulation was present during translation. Thus this subpopulation of otolith + canal cells, which included neurons with either high- or low-pass dynamics to translation, appear to selectively ignore the component of otolith-selective activation that is due to changes in the orientation of the head relative to gravity. Thus contrary to primary otolith afferents and otolith-only central neurons that respond equivalently to tilts relative to gravity and translational movements, approximately one-third of the otolith + canal cells seem to encode a true estimate of the translational component of the imposed passive head and body movement.
Collapse
|
41
|
Zhang X, Sasaki M, Sato H, Meng H, Bai RS, Imagawa M, Uchino Y. Convergence of the anterior semicircular canal and otolith afferents on cat single vestibular neurons. Exp Brain Res 2002; 147:407-17. [PMID: 12428148 DOI: 10.1007/s00221-002-1273-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2002] [Accepted: 09/03/2002] [Indexed: 11/25/2022]
Abstract
The convergence between the anterior semicircular canal (AC) and utricular (UT) inputs, as well as the convergence between the AC and saccular (SAC) inputs in single vestibular neurons of decerebrated cats were investigated. Postsynaptic potentials were recorded intracellularly after selective stimulation of each pair of vestibular nerves AC/UT or AC/SAC. Neurons were recorded from the central parts of the vestibular nuclei, where the otolith afferents mainly terminate. Of a total of 105 neurons that were activated after stimulation of the AC and UT nerves, 42 received convergent inputs. Thirty-eight of these neurons received excitatory inputs from both afferents. Convergent neurons were further classified into vestibulospinal (n=28) and vestibulooculospinal (n=6) neurons by antidromic activation from the border between the C1 and C2 spinal cord and the oculomotor or trochlear nucleus. Eight neurons that were not antidromically activated from either site were classified as vestibular neurons. Forty three percent of the convergent vestibulospinal neurons and most of the convergent vestibulooculospinal neurons projected to the spinal cord through the medial vestibulospinal tract. The remaining vestibulospinal and vestibulooculospinal neurons descended through the ipsilateral lateral vestibulospinal tract. Of a total of 118 neurons that were activated after stimulation of the AC and/or SAC nerves, 51 received convergent inputs (27 vestibulospinal, 4 vestibulooculospinal, 5 vestibuloocular and 15 vestibular neurons). Forty-two of the convergent neurons received excitatory inputs from both afferents. Thirty seven percent of the convergent vestibulospinal neurons and all of the convergent vestibulooculospinal neurons projected to the spinal cord through the medial vestibulospinal tract. The remaining vestibulospinal and vestibulooculospinal neurons descended through the ipsilateral lateral vestibulospinal tract.
Collapse
|
42
|
Gacek RR, Gacek MR. Results of singular neurectomy in the posterior ampullary recess. ORL J Otorhinolaryngol Relat Spec 2002; 64:397-402. [PMID: 12499762 DOI: 10.1159/000067572] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To determine the effect on hearing and balance symptoms following singular neurectomy (SN) for benign paroxysmal positional vertigo (BPPV) in the ampullary recess of the posterior semicircular canal. RESEARCH DESIGN The charts of 242 patients with chronic disabling BPPV who were treated with SN over a 29-year period (1972-2001) were reviewed. The results on relief of BPPV and hearing function were recorded. A subset of 16 patients where the posterior ampullary recess was entered to expose the SN is described in detail with regard to an effect on hearing and balance. RESULTS A total of 252 SN were performed in 242 patients. Ten patients underwent bilateral SN sequentially; the remaining 232 patients had unilateral SN. The ages of the patients ranged from 21 to 86 years, with a mean at 57 years. The female:male ratio was 174:68. Complete relief of BPPV was achieved in 244 patients (96.8%), incomplete relief in 3 (1%), and no relief in 5 (2%). Sensorineural hearing loss (SNHL) occurred in 9 patients (3.7%). A subset of 16 patients in whom the ampullary recess was opened during SN ranged in age from 21 to 79 years, with a mean at 56 years. The female:male ratio was 12:4, with right and left sides divided almost equally. Relief of BPPV was achieved in all 16 patients with no loss of hearing function. Five patients complained of a fistula response postoperatively (31%). The fistula response resolved by 6 months postoperatively in all 5 patients. CONCLUSIONS SN is effective in relief of BPPV with little risk of SNHL (3.7%). The risk of SNHL is not increased when the posterior ampullary recess must be entered in order to transect the singular nerve. A positive fistula response may be present temporarily in almost one third of these patients.
Collapse
|
43
|
Abstract
A morphometric study of the chinchilla's ampullary nerves was conducted to produce an unbiased accounting of the diameter distribution of their constituent fibers. Diameter analyses were determined from 1 microm plastic-embedded nerve sections taken at a plane immediately proximal to the sensory epithelium. We found these nerves to be composed of 2094+/-573 fibers, having diameters that ranged from 0.5 to 8 microm. The distributions of diameters were positively skewed, where approximately 75% of the fibers were found to have diameters less than 3.5 microm. An analysis of the spatial distribution of diameters within the nerve section revealed that the lateralmost areas of the nerve contained larger fractions of fibers within the smallest diameter quintiles, and the central area harbored greater proportions of the larger diameter quintiles. However, significant fractions of all quintiles were found in all areas. These data were integrated with available data of Fernandez et al. (1998) to produce diameter estimates of calyx, dimorphic, and bouton morphology subpopulations. In view of a general relationship between diameter, innervation locus, and an afferent's physiologic characteristics, these data provide the basis for developing a perspective for the in situ distribution of afferent response dynamics.
Collapse
|
44
|
Gulya AJ. Two lessons on slang. Otol Neurotol 2002; 23:815. [PMID: 12218641 DOI: 10.1097/00129492-200209000-00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Sato H, Imagawa M, Meng H, Zhang X, Bai R, Uchino Y. Convergence of ipsilateral semicircular canal inputs onto single vestibular nucleus neurons in cats. Exp Brain Res 2002; 145:351-64. [PMID: 12136385 DOI: 10.1007/s00221-002-1119-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2001] [Accepted: 03/21/2002] [Indexed: 10/27/2022]
Abstract
Convergent inputs from the ipsilateral semicircular canal nerves onto single vestibular nucleus neurons were investigated in decerebrate cats using intracellular recording after selective stimulation of each ampullar nerve. One hundred and seventy-four neurons were activated by stimulating the anterior semicircular (AC) and/or posterior semicircular canal (PC) nerves. These neurons were also antidromically stimulated and classified according to the pattern of their collateral projections to the oculomotor complex and the spinal cord. Four types were found: vestibulo-ocular (VO), vestibulospinal (VS), vestibulo-oculospinal (VOS), and vestibular (V) neurons, the latter of which were not activated by stimulation of either the oculomotor complex or the spinal cord. Of 174 AC- and/or PC-activated vestibular nucleus neurons, 32 (18%) received convergent inputs from both nerves. These convergent neurons included 11 VS, 6 VOS, and 15 V neurons. We found no VO neurons with convergent input. The vast majority (82%) of AC/PC-activated VS and VOS convergent neurons received excitatory inputs from both nerves, 12% received reciprocal inputs (i.e., excitatory from one and inhibitory from the other), and the remaining neurons received inhibitory inputs from both nerves. By stimulating the horizontal semicircular (HC) and/or PC nerves, 183 neurons were activated. Of these, 44 (24%) received convergent inputs from both nerves. These convergent neurons included 19 VS, 5 VOS, 2 VO, and 18 V neurons. Approximately one-half (46%) of HC/PC-activated VS and VOS convergent neurons received excitatory inputs from both nerves and 42% received reciprocal inputs, and the remaining neurons received inhibitory inputs from both nerves. In both nerve pairs, the percentage of VS neurons was higher (AC/PC, 34%; HC/PC, 43%) than that of VOS or VO neurons. Approximately half of these convergent neurons were located in the lateral nucleus. These results suggest that, during mixed angular head accelerations, the vestibulocollic reflex may be partly accomplished by VS and VOS convergent neurons.
Collapse
|
46
|
Boyle R, Highstein SM, Carey JP, Xu J. Functional recovery of anterior semicircular canal afferents following hair cell regeneration in birds. J Assoc Res Otolaryngol 2002; 3:149-66. [PMID: 12162365 PMCID: PMC3202401 DOI: 10.1007/s101620020018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Streptomycin sulfate (1.2 g/kg i.m.) was administered for 5 consecutive days to 5-7-day-old white Leghorn chicks; this causes damage to semicircular canal hair cells that ultimately regenerate to reform the sensory epithelium. During the recovery period, electrophysiological recordings were taken sequentially from anterior semicircular canal primary afferents using an indentation stimulus of the canal that has been shown to mimic rotational stimulation. Chicks were assigned to an early (14-18 days; n = 8), intermediate (28-34 days; n = 5), and late (38-58 days; n = 4) period based on days after treatment. Seven untreated chicks, 15-67 days old, provided control data. An absence of background and indent-induced discharge was the prominent feature of afferents in the early period: only "silent" afferents were encountered in 5/8 experiments. In several of these chicks, fascicles of afferent fibers were seen extending up to the epithelium that was void of hair cells, and intra- and extracellular biocytin labeling revealed afferent processes penetrating into the supporting cell layer of the crista. In 3/8 chicks 74 afferents could be characterized, and they significantly differed from controls (n = 130) by having a lower discharge rate and a negligible response to canal stimulation. In the intermediate period there was considerable variability in discharge properties of 121 afferents, but as a whole the number of "silent" fibers in the canal nerve diminished, the background rate increased, and a response to canal stimulation detected. Individually biocytin-labeled afferents had normal-appearing terminal specializations in the sensory epithelium by 28 days poststreptomycin. In the late period, afferents (n = 58) remained significantly different from controls in background discharge properties and response gain. The evidence suggests that a considerable amount of variability exists between chicks in the return of vestibular afferent function following ototoxic injury and that the secretory function of regenerating hair cells might become functional before their transducer function.
Collapse
|
47
|
Ma WLD, Fay RR. Neural representations of the axis of acoustic particle motion in nucleus centralis of the torus semicircularis of the goldfish, Carassius auratus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2002; 188:301-13. [PMID: 12012101 DOI: 10.1007/s00359-002-0304-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2002] [Indexed: 10/27/2022]
Abstract
Experiments examined differential coding of acoustic particle motion axis in the auditory midbrain of goldfish. Animals were exposed to vibratory stimuli varying in axis orientation as action potentials were recorded from single units in the central neuropil of nucleus centralis in the torus semicircularis. Response magnitudes as a function of stimulation axis were visualized in three dimensional plots called directional response profiles. These are generally comparable to directional responses observed among primary saccular afferents in having substantially vertical orientations. Distortions in shape from the peripheral patterns indicate neural information processing. A three-dimensional model was used to evaluate the hypothesis that responses in the auditory midbrain reflect the convergence of excitatory and inhibitory primary afferent-like responses. Model afferent inputs were generated and combined arithmetically. This analysis gives insight into the mechanisms of information processing that appear to occur in brainstem nuclei. The lack of diversity in best axis directions suggests that this mechanism alone cannot account for directional hearing abilities in this species. The roles that this directional representation and processing may play in directional hearing and sound source localization are not yet clear. Implications of these data on current models of fish directional hearing are discussed.
Collapse
|
48
|
Yamauchi A, Rabbitt RD, Boyle R, Highstein SM. Relationship between inner-ear fluid pressure and semicircular canal afferent nerve discharge. J Assoc Res Otolaryngol 2002; 3:26-44. [PMID: 12083722 PMCID: PMC3202362 DOI: 10.1007/s101620010088] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The present study was designed to determine (1) the transcupular fluid pressure (deltaP) generated across the semicircular canal cupula in response to sinusoidal head rotation, (2) the translabyrinthine dilational pressure (P0) generated across the membranous labyrinth in response to an increase in endolymph fluid volume (hydrops), (3) afferent nerve discharge patterns generated by these distinct pressure stimuli and, (4) threshold values of deltaP and P0 required to elicit afferent neural responses. The experimental model was the oyster toadfish, Opsanus tau. Micromechanical indentation of the horizontal canal (HC) duct and utricular vestibule was used to simulate sinusoidal head rotation and fluid volume injection. Single-unit neural spike trains and endolymph pressure within the ampulla, on both sides of the cupula, were recorded simultaneously. deltaP averaged 0.013 Pa per 1 degrees/s of sinusoidal angular head velocity and P0 averaged 0.2 Pa per 1 nL of endolymph volume injection. The most responsive afferents had a threshold sensitivity to deltaP of 10(-3) Pa and to P0 of 5 x 10(-2) Pa based on a discharge modulation criterion of 1 impulse/s per cycle for 2 Hz pressure stimuli. Neural sensitivity to AP was expected on the basis of transverse cupular and hair bundle deflections. Analysis of mechanics of the end organ, neuronal projections into the crista, and individual neural firing patterns indicates that P0 sensitivity resulted from pressure-induced distension of the ampulla that led to a nonuniform cupular deformation pattern and hair bundle deflections. This explanation is consistent with predictions of a finite element model of the end organ. Results have implications regarding the role of deltaP in angular motion transduction and the role of P0 under transient hydropic conditions.
Collapse
|
49
|
Abstract
Physiology of the semicircular canal (sc) was studied by applying different manipulations to the isolated frog sc. Function of the cupula was investigated by mapping out the mechanical sensitivity on the cupular surface and by removing and replacing the cupula. The cupula was found to be most essential for effective activation of sc receptors. Responses of sc receptors to direct temperature change were studied. The sc nerve discharge increased and decreased due to cool and warm temperature change respectively. This suggests a possibility of direct temperature effect as one of the mechanisms of caloric response.
Collapse
|
50
|
Uchino Y. Otolith and semicircular canal inputs to single vestibular neurons in cats. UCHU SEIBUTSU KAGAKU 2001; 15:375-81. [PMID: 12101362 DOI: 10.2187/bss.15.375] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|