1
|
Yang Y, Yang J, Wu WM, Zhao J, Song Y, Gao L, Yang R, Jiang L. Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 2. Role of Gut Microorganisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12087-93. [PMID: 26390390 DOI: 10.1021/acs.est.5b02663] [Citation(s) in RCA: 325] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The role of gut bacteria of mealworms (the larvae of Tenebrio molitor Linnaeus) in polystyrene (PS) degradation was investigated. Gentamicin was the most effective inhibitor of gut bacteria among six antibiotics tested. Gut bacterial activities were essentially suppressed by feeding gentamicin food (30 mg/g) for 10 days. Gentamicin-feeding mealworms lost the ability to depolymerize PS and mineralize PS into CO2, as determined by characterizing worm fecula and feeding with (13)C-labeled PS. A PS-degrading bacterial strain was isolated from the guts of the mealworms, Exiguobacterium sp. strain YT2, which could form biofilm on PS film over a 28 day incubation period and made obvious pits and cavities (0.2-0.3 mm in width) on PS film surfaces associated with decreases in hydrophobicity and the formation of C-O polar groups. A suspension culture of strain YT2 (10(8) cells/mL) was able to degrade 7.4 ± 0.4% of the PS pieces (2500 mg/L) over a 60 day incubation period. The molecular weight of the residual PS pieces was lower, and the release of water-soluble daughter products was detected. The results indicated the essential role of gut bacteria in PS biodegradation and mineralization, confirmed the presence of PS-degrading gut bacteria, and demonstrated the biodegradation of PS by mealworms.
Collapse
|
|
10 |
325 |
2
|
Yang Y, Yang J, Wu WM, Zhao J, Song Y, Gao L, Yang R, Jiang L. Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 1. Chemical and Physical Characterization and Isotopic Tests. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12080-6. [PMID: 26390034 DOI: 10.1021/acs.est.5b02661] [Citation(s) in RCA: 296] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Polystyrene (PS) is generally considered to be durable and resistant to biodegradation. Mealworms (the larvae of Tenebrio molitor Linnaeus) from different sources chew and eat Styrofoam, a common PS product. The Styrofoam was efficiently degraded in the larval gut within a retention time of less than 24 h. Fed with Styrofoam as the sole diet, the larvae lived as well as those fed with a normal diet (bran) over a period of 1 month. The analysis of fecula egested from Styrofoam-feeding larvae, using gel permeation chromatography (GPC), solid-state (13)C cross-polarization/magic angle spinning nuclear magnetic resonance (CP/MAS NMR) spectroscopy, and thermogravimetric Fourier transform infrared (TG-FTIR) spectroscopy, substantiated that cleavage/depolymerization of long-chain PS molecules and the formation of depolymerized metabolites occurred in the larval gut. Within a 16 day test period, 47.7% of the ingested Styrofoam carbon was converted into CO2 and the residue (ca. 49.2%) was egested as fecula with a limited fraction incorporated into biomass (ca. 0.5%). Tests with α (13)C- or β (13)C-labeled PS confirmed that the (13)C-labeled PS was mineralized to (13)CO2 and incorporated into lipids. The discovery of the rapid biodegradation of PS in the larval gut reveals a new fate for plastic waste in the environment.
Collapse
|
|
10 |
296 |
3
|
Rolff J, Siva-Jothy MT. Copulation corrupts immunity: a mechanism for a cost of mating in insects. Proc Natl Acad Sci U S A 2002; 99:9916-8. [PMID: 12097648 PMCID: PMC126599 DOI: 10.1073/pnas.152271999] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There are well documented costs of mating in insects but little evidence for underlying mechanisms. Here, we provide experimental evidence for a hormone-based mechanism that reduces immunity as a result of mating. We examined the mealworm beetle Tenebrio molitor and show that (i) mating reduces a major humoral immune effector-system (phenoloxidase) in both sexes, and (ii) that this down-regulation is mediated by juvenile hormone. Because both juvenile hormone and phenoloxidase have highly conserved functions across all insects, the identified mechanism is similarly likely to be highly conserved. The positive physiological function of mating-induced juvenile hormone secretion is gamete and accessory gland production: we propose that its negative effects on immune function are the consequence of physiological antagonism. Therefore, we have identified a physiological tradeoff between mating and immunity. Our results suggest that increasing mating success can result in increasing periods of immune suppression, which in turn implies that reproductively successful individuals may be more vulnerable to infection by, and the negative fitness effects of, pathogens.
Collapse
|
research-article |
23 |
214 |
4
|
|
|
53 |
201 |
5
|
Barnes AI, Siva-Jothy MT. Density-dependent prophylaxis in the mealworm beetle Tenebrio molitor L. (Coleoptera: Tenebrionidae): cuticular melanization is an indicator of investment in immunity. Proc Biol Sci 2000; 267:177-82. [PMID: 10687824 PMCID: PMC1690519 DOI: 10.1098/rspb.2000.0984] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
If there are costs involved with the maintenance of pathogen resistance, then higher investment in this trait is expected when the risk of pathogenesis is high. One situation in which the risk of pathogenesis is elevated is at increased conspecific density. This paper reports the results of a study of density-dependent polyphenism in pathogen resistance and immune function in the mealworm beetle Tenebrio molitor. Beetles reared at high larval densities showed lower mortality when exposed to a generalist entomopathogenic fungus and a higher degree of cuticular melanization than those reared solitarily. The degree of cuticular melanization was a strong indicator of resistance, with darker beetles being more resistant than lighter ones regardless of rearing density. No differences were found between rearing densities in the levels of phenoloxidase, an enzyme key to the insect immune response. The results show that pathogen resistance is phenotypically plastic in T. molitor, suggesting that the maintenance of this trait is costly.
Collapse
|
research-article |
25 |
194 |
6
|
van Broekhoven S, Oonincx DGAB, van Huis A, van Loon JJA. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. JOURNAL OF INSECT PHYSIOLOGY 2015; 73:1-10. [PMID: 25576652 DOI: 10.1016/j.jinsphys.2014.12.005] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/29/2014] [Accepted: 12/31/2014] [Indexed: 05/13/2023]
Abstract
Insects receive increasing attention as an alternative protein-rich food source for humans. Producing edible insects on diets composed of organic by-products could increase sustainability. In addition, insect growth rate and body composition, and hence nutritional quality, can be altered by diet. Three edible mealworm species Tenebrio molitor L., Zophobas atratus Fab. and Alphitobius diaperinus Panzer were grown on diets composed of organic by-products originating from beer brewing, bread/cookie baking, potato processing and bioethanol production. Experimental diets differed with respect to protein and starch content. Larval growth and survival was monitored. Moreover, effects of dietary composition on feed conversion efficiency and mealworm crude protein and fatty acid profile were assessed. Diet affected mealworm development and feed conversion efficiency such that diets high in yeast-derived protein appear favourable, compared to diets used by commercial breeders, with respect to shortening larval development time, reducing mortality and increasing weight gain. Diet also affected the chemical composition of mealworms. Larval protein content was stable on diets that differed 2-3-fold in protein content, whereas dietary fat did have an effect on larval fat content and fatty acid profile. However, larval fatty acid profile did not necessarily follow the same trend as dietary fatty acid composition. Diets that allowed for fast larval growth and low mortality in this study led to a comparable or less favourable n6/n3 fatty acid ratio compared to control diets used by commercial breeders. In conclusion, the mealworm species used in this study can be grown successfully on diets composed of organic by-products. Diet composition did not influence larval protein content, but did alter larval fat composition to a certain extent.
Collapse
|
Comparative Study |
10 |
180 |
7
|
Moret Y. "Trans-generational immune priming": specific enhancement of the antimicrobial immune response in the mealworm beetle, Tenebrio molitor. Proc Biol Sci 2006; 273:1399-405. [PMID: 16777729 PMCID: PMC1560290 DOI: 10.1098/rspb.2006.3465] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Encounters with parasites and pathogens are often unpredictable in time. However, experience of an infection may provide the host with reliable cues about the future risk of infection for the host itself or for its progeny. If the parental environment predicts the quality of the progeny's environment, then parents may further enhance their net reproductive success by differentially providing their offspring with phenotypes to cope with potential hazards such as pathogen infection. Here, I test for the occurrence of such an adaptive transgenerational phenotypic plasticity in the mealworm beetle, Tenebrio molitor. A pathogenic environment was mimicked by injection of bacterial lipopolysaccharides for two generations of insects. I found that parental challenge enhanced offspring immunity through the inducible production of antimicrobial peptides in the haemolymph.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
174 |
8
|
Rantala MJ, Vainikka A, Kortet R. The role of juvenile hormone in immune function and pheromone production trade-offs: a test of the immunocompetence handicap principle. Proc Biol Sci 2003; 270:2257-61. [PMID: 14613612 PMCID: PMC1691508 DOI: 10.1098/rspb.2003.2472] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The immunocompetence handicap hypothesis postulates that secondary sexual traits are honest signals of mate quality because the hormones (e.g. testosterone) needed to develop secondary sexual traits have immunosuppressive effects. The best support for predictions arising from the immunocompetence handicap hypothesis so far comes from studies of insects, although they lack male-specific hormones such as testosterone. In our previous studies, we found that female mealworm beetles prefer pheromones of immunocompetent males. Here, we tested how juvenile hormone (JH) affects male investment in secondary sexual characteristics and immune functions in the mealworm beetle, Tenebrio molitor. We injected male mealworm beetles with JH (type III) and found that injection increased the attractiveness of male pheromones but simultaneously suppressed immune functions (phenoloxidase activity and encapsulation). Our results suggest that JH, which is involved in the control of reproduction and morphogenesis, also plays a central role in the regulation of a trade-off between the immune system and sexual advertisement in insects. Thus, the results reflect a general mechanism by which the immunocompetence handicap hypothesis may work in insects.
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
132 |
9
|
Genta FA, Dillon RJ, Terra WR, Ferreira C. Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:593-601. [PMID: 16600286 DOI: 10.1016/j.jinsphys.2006.02.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 01/27/2006] [Accepted: 02/15/2006] [Indexed: 05/08/2023]
Abstract
Tenebrio molitor larvae were successfully reared free of cultivatable gut lumen bacteria, yeasts and fungi using two approaches; aseptic rearing from surface sterilized eggs and by feeding larvae with antibiotic-containing food. Insects were reared on a rich-nutrient complete diet or a nutrient-poor refractory diet. A comparison of digestive enzyme activities in germ free and conventional insects containing a gut microbiota did not reveal gross differences in enzymes that degrade cell walls from bacteria (lysozyme), fungi (chitinase and laminarinase) and plants (cellulase and licheninase). This suggested that microbial-derived enzymes are not an essential component of the digestive process in this insect. However, more detailed analysis of T. molitor midgut proteins using an electrophoretic separation approach showed that some digestive enzymes were absent and others were newly expressed in microbiota-free larvae. Larvae reared in antibiotic-containing refractory wheat bran diet performed poorly in comparison with controls. The addition of saligenin, the aglycone of the plant glucoside salicin, has more deleterious effects on microbiota-free larvae than on the conventionally reared larvae, suggesting a detoxifying role of midgut microbiota. Analysis of the volatile organic compounds released from the faecal pellets of the larvae shows key differences in the profiles from conventionally reared and aseptically reared larvae. Pentadecene is a semiochemical commonly found in other beetle species. Here we demonstrate the absence of pentadecene from aseptically reared larvae in contrast to its presence in conventionally reared larvae. The results are discussed in the light of the hypothesis that microbial products play subtle roles in the life of the insect, they are involved in the digestion of refractory food, detoxification of secondary plant compounds and modify the volatile profiles of the insect host.
Collapse
|
|
19 |
91 |
10
|
Sadd B, Holman L, Armitage H, Lock F, Marland R, Siva-Jothy MT. Modulation of sexual signalling by immune challenged male mealworm beetles (Tenebrio molitor, L.): evidence for terminal investment and dishonesty. J Evol Biol 2006; 19:321-5. [PMID: 16599907 DOI: 10.1111/j.1420-9101.2005.01062.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organisms partition resources into life-history traits in order to maximise fitness over their expected lifespan. For the males of many species fitness is determined by qualitative and quantitative aspects of costly sexual signals: The notion that epigamic traits are costly forms the cornerstone of those theories that propose parasites drive sexual selection. Consequently studies examining this notion assume sexual signalling is honest (i.e. driven by cost) when they seek to identify correlations or causal links between male immune function and attractiveness. We demonstrate that immune challenged males of the mealworm beetle, Tenebrio molitor, increased their investment in epigamic pheromone signals: these males became significantly more attractive to females whilst increasing the activity of a key immune effector system. In other words males increase terminal reproductive effort (invest in attractiveness) in response to a survival threat (immune insult). Consequently the signal preferred by the female is dishonest when considering the male's condition.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
86 |
11
|
Roller L, Žitňanová I, Dai L, Šimo L, Park Y, Satake H, Tanaka Y, Adams ME, Žitňan D. Ecdysis triggering hormone signaling in arthropods. Peptides 2010; 31:429-41. [PMID: 19951734 PMCID: PMC2854297 DOI: 10.1016/j.peptides.2009.11.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 11/22/2009] [Accepted: 11/23/2009] [Indexed: 11/26/2022]
Abstract
Ecdysis triggering hormones (ETHs) from endocrine Inka cells initiate the ecdysis sequence through action on central neurons expressing ETH receptors (ETHR) in model moth and dipteran species. We used various biochemical, molecular and BLAST search techniques to detect these signaling molecules in representatives of diverse arthropods. Using peptide isolation from tracheal extracts, cDNA cloning or homology searches, we identified ETHs in a variety of hemimetabolous and holometabolous insects. Most insects produce two related ETHs, but only a single active peptide was isolated from the cricket and one peptide is encoded by the eth gene of the honeybee, parasitic wasp and aphid. Immunohistochemical staining with antiserum to Manduca PETH revealed Inka cells on tracheal surface of diverse insects. In spite of conserved ETH sequences, comparison of natural and the ETH-induced ecdysis sequence in the honeybee and beetle revealed considerable species-specific differences in pre-ecdysis and ecdysis behaviors. DNA sequences coding for putative ETHR were deduced from available genomes of several hemimetabolous and holometabolous insects. In all insects examined, the ethr gene encodes two subtypes of the receptor (ETHR-A and ETHR-B). Phylogenetic analysis showed that these receptors fall into a family of closely related GPCRs. We report for the first time the presence of putative ETHs and ETHRs in genomes of other arthropods, including the tick (Arachnida) and water flea (Crustacea). The possible source of ETH in ticks was detected in paired cells located in all pedal segments. Our results provide further evidence of structural and functional conservation of ETH-ETHR signaling.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
72 |
12
|
Delbecque JP, Hirn M, Delachambre J, De Regg M. Cuticular cycle and molting hormone levels during the metamorphosis of Tenebrio molitor (Insecta Coleoptera). Dev Biol 1978; 64:11-30. [PMID: 658589 DOI: 10.1016/0012-1606(78)90057-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
|
47 |
68 |
13
|
Roberts PE, Willis JH. The cuticular proteins of Tenebrio molitor. I. Electrophoretic banding patterns during postembryonic development. Dev Biol 1980; 75:59-69. [PMID: 7371995 DOI: 10.1016/0012-1606(80)90143-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
|
45 |
67 |
14
|
Varju D. Stationary and dynamic responses during visual edge fixation by walking insects. Nature 1975; 255:330-2. [PMID: 1128691 DOI: 10.1038/255330a0] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
|
50 |
64 |
15
|
Cristofoletti PT, Ribeiro AF, Terra WR. The cathepsin L-like proteinases from the midgut of Tenebrio molitor larvae: sequence, properties, immunocytochemical localization and function. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:883-901. [PMID: 15944084 DOI: 10.1016/j.ibmb.2005.03.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 03/23/2005] [Accepted: 03/23/2005] [Indexed: 05/02/2023]
Abstract
CDNAs coding for five procathepsin L-like proteinases (pCALs) were cloned and sequenced from a cDNA library prepared from Tenebrio molitor larval midguts: pCAL1a (with the isoforms pCAL1b and pCAL1c), pCAL2, and pCAL3. All the pCALs have the active residues Cys 25, His 169, Asn 175, and Gln 19 (papain numbering), the ERFNIN motif of papain-like enzymes and their sequences are homologous to cathepsin L enzymes. pCAL1a was expressed in bacterial systems. It is auto-catalytically activated at low pH, has kinetic properties and N-terminal sequence identical to hemocyte cathepsin L-like proteinase (CAL) and was used to raise antibodies. Semi-quantitative RT-PCR data showed that mRNAs for pCAL2 and pCAL3 were transcribed in midgut and in lesser amounts in hemolymph, whereas that for pCAL1a was transcribed in these tissues and also in fat body, Malpighian tubules, and carcass. Imunochemical detection recognized pCAL1a translation in all tissue homogenates, except anterior midgut. At this region, the presence of pCAL2 is suggested on the grounds of electrophoretical migration and high recovery of CAL2 activity from anterior midgut cells and from isolated midgut contents. Immunocytochemical localization data revealed that pCAL1a occurs in lysosome-like vesicles in all tissues, except anterior midgut, where a labelling considered to correspond to pCAL2 is found in large acidic granules being released by apocrine secretion. Putative pCAL2 was also detected in midgut contents, probably in the form of CAL2, the major luminal CAL, which was purified to homogeneity. A cladogram of insect CALs result in a monophyletic branch with lysosomal T. molitor enzymes and enzymes from five insect orders and in a polyphyletic array of coleopteran sequences, including digestive CALs from T. molitor. The data suggest that only Coleoptera have digestive CALs that may originate by gene duplication and independent evolution relative to the gene encoding the lysosomal enzyme.
Collapse
|
|
20 |
61 |
16
|
Abstract
Tenebrio molitor is an intermediate host for the rat tapeworm, Hymenolepis diminuta. Parasite oncospheres hatch in the beetle midgut and burrow through into the haemocoel, where they rapidly grow and mature into metacestodes. Repair of damage incurred during invasion and the nutritional demands of the parasites are likely to impose costs on the host. Despite these costs, there is an overall very highly significant difference in survival time (p < 0.001) between infected and control populations of beetles, with a hazard ratio of 2.35 (control versus infected). Infected females showed a 40% increase in survival time to 50% mortality and males showed a 25% increase in survival time to 50% mortality. This parasite-induced increase in host longevity is discussed in the light of changes in resource allocation that may occur in infected beetles. Previous findings have demonstrated that reproductive success is significantly reduced in infected females. The outcome of changes in the reproductive effort made by male beetles is less clear. We suggest that the optimum trade-off between reproduction and longevity may be altered to favour longer host survivorship, which is likely to enhance parasite transmission.
Collapse
|
research-article |
24 |
57 |
17
|
Lee KH, Hong SY, Oh JE, Kwon M, Yoon JH, Lee J, Lee BL, Moon HM. Identification and characterization of the antimicrobial peptide corresponding to C-terminal beta-sheet domain of tenecin 1, an antibacterial protein of larvae of Tenebrio molitor. Biochem J 1998; 334 ( Pt 1):99-105. [PMID: 9693108 PMCID: PMC1219667 DOI: 10.1042/bj3340099] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An active fragment was identified from tenecin 1, an antibacterial protein belonging to the insect defensin family, by synthesizing the peptides corresponding to the three regions of tenecin 1. Only the fragment corresponding to the C-terminal beta-sheet domain showed activity against fungi as well as Gram-positive and Gram-negative bacteria, whereas tenecin 1, the native protein, showed activity only against Gram-positive bacteria. CD spectra indicated that each fragment in a membrane-mimetic environment might adopt a secondary structure corresponding to its region in the protein. The leakage of dye from liposomes induced by this fragment suggested that this fragment acts on the membrane of pathogens as a primary mode of action. A comparison between the structure and the activity of each fragment indicated that a net positive charge was a prerequisite factor for activity. To the best of our knowledge this is the first report in which the fragment corresponding to the beta-sheet region in antibacterial proteins, which consists of alpha-helical and beta-sheet regions, has been identified as a primary active fragment.
Collapse
|
research-article |
27 |
52 |
18
|
Allen JL, Clusella-Trullas S, Chown SL. The effects of acclimation and rates of temperature change on critical thermal limits in Tenebrio molitor (Tenebrionidae) and Cyrtobagous salviniae (Curculionidae). JOURNAL OF INSECT PHYSIOLOGY 2012; 58:669-678. [PMID: 22342317 DOI: 10.1016/j.jinsphys.2012.01.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 01/28/2012] [Accepted: 01/30/2012] [Indexed: 05/31/2023]
Abstract
Critical thermal limits provide an indication of the range of temperatures across which organisms may survive, and the extent of the lability of these limits offers insights into the likely impacts of changing thermal environments on such survival. However, investigations of these limits may be affected by the circumstances under which trials are undertaken. Only a few studies have examined these effects, and typically not for beetles. This group has also not been considered in the context of the time courses of acclimation and its reversal, both of which are important for estimating the responses of species to transient temperature changes. Here we therefore examine the effects of rate of temperature change on critical thermal maxima (CT(max)) and minima (CT(min)), as well as the time course of the acclimation response and its reversal in two beetle species, Tenebrio molitor and Cyrtobagous salviniae. Increasing rates of temperature change had opposite effects on T. molitor and C. salviniae. In T. molitor, faster rates of change reduced both CT(max) (c. 2°C) and CT(min) (c. 3°C), while in C. salviniae faster rates of change increased both CT(max) (c. 6°C) and CT(min) (c. 4°C). CT(max) in T. molitor showed little response to acclimation, while the response to acclimation of CT(min) was most pronounced following exposure to 35°C (from 25°C) and was complete within 24 h. The time course of acclimation of CT(max) in C. salviniae was 2 days when exposed to 36°C (from c. 26°C), while that of CT(min) was less than 3 days when exposed to 18°C. In T. molitor, the time course of reacclimation to 25°C after treatments at 15°C and 35°C at 75% RH was longer than the time course of acclimation, and varied from 3-6 days for CT(max) and 6 days for CT(min). In C. salviniae, little change in CT(max) and CT(min) (<0.5°C) took place in all treatments suggesting that reacclimation may only occur after the 7 day period used in this study. These results indicate that both T. molitor and C. salviniae may be restricted in their ability to respond to transient temperature changes at short-time scales, and instead may have to rely on behavioral adjustments to avoid deleterious effects at high temperatures.
Collapse
|
|
13 |
51 |
19
|
Yang SS, Chen YD, Zhang Y, Zhou HM, Ji XY, He L, Xing DF, Ren NQ, Ho SH, Wu WM. A novel clean production approach to utilize crop waste residues as co-diet for mealworm (Tenebrio molitor) biomass production with biochar as byproduct for heavy metal removal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1142-1153. [PMID: 31252112 DOI: 10.1016/j.envpol.2019.06.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/26/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
Proper management of waste crop residues has been an environmental concern for years. Yellow mealworms (larvae of Tenebrio molitor Linnaeus, 1758) are major insect protein source. In comparison with normal feed wheat bran (WB), we tested five common lignocellulose-rich crop residues as feedstock to rear mealworms, including wheat straw (WS), rice straw (RS), rice bran (RB), rice husk (RH), and corn straw (CS). We then used egested frass for the production of biochar in order to achieve clean production. Except for WS and RH, the crop residues supported mealworms' life activity and growth with consumption of the residues by 90% or higher and degraded lignin, hemicellulose and cellulose over 32 day period. The sequence of degradability of the feedstocks is RS > RB > CS > WS > RH. Egested frass was converted to biochar which was tested for metal removal including Pb(II), Cd(II), Cu(II), Zn(II), and Cr(VI). Biochar via pyrolysis at 600 °C from RS fed frass (FRSBC) showed the best adsorption performance. The adsorption isotherm fits the Langmuir model, and kinetic analysis fits the Pseudo-Second Order Reaction. The heavy metal adsorption process was well-described using the Intra-Particle Diffusion model. Complexation, cation exchange, precipitation, reduction, deposition, and chelation dominated the adsorption of the metals onto FRSBC. The results indicated that crop residues (WS, RS, RB, and CS) can be utilized as supplementary feedstock along with biochar generated from egested frass to rear mealworms and achieve clean production while generating high-quality bioadsorbent for environment remediation and soil conditioning.
Collapse
|
|
6 |
47 |
20
|
Furuya K, Schegg KM, Wang H, King DS, Schooley DA. Isolation and identification of a diuretic hormone from the mealworm Tenebrio molitor. Proc Natl Acad Sci U S A 1995; 92:12323-7. [PMID: 8618894 PMCID: PMC40349 DOI: 10.1073/pnas.92.26.12323] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A diuretic hormone of unusual structure was isolated from extracts of whole heads of the mealworm Tenebrio molitor. The hormone is a 37-aa peptide of 4371 Da, with the sequence SPTISITAPIDVLRKTWEQERARKQMVKNREFLNSLN. This peptide increases cAMP production in Malpighian tubules of T. molitor. The amino acid sequence reveals that this peptide is a member of the family of sauvagine/corticotropin-releasing factor/urotensin I-related insect diuretic hormones. The C-terminal sequence of this peptide is quite different from other members of this family, which have a hydrophobic C terminus (isoleucinamide or valinamide). When aligned comparably, T. molitor diuretic hormone has a more hydrophilic C terminus, leucylasparagine (free acid). In contrast to all other known diuretic hormones of this family, this peptide has exceptionally low stimulatory activity on cAMP production in Malpighian tubules of Manduca sexta. However, at nanomolar concentrations it stimulates cAMP production in Malpighian tubules of T. molitor. Diuretic hormones of this family have been isolated previously from Lepidoptera, Orthoptera, Dictyoptera, and Diptera. This appears to be the first diuretic hormone isolated from a coleopteran insect.
Collapse
|
research-article |
30 |
43 |
21
|
Wiehart UIM, Nicolson SW, Eigenheer RA, Schooley DA. Antagonistic control of fluid secretion by the Malpighian tubules ofTenebrio molitor: effects of diuretic and antidiuretic peptides and their second messengers. J Exp Biol 2002; 205:493-501. [PMID: 11893763 DOI: 10.1242/jeb.205.4.493] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYFluid secretion by insect Malpighian tubules is controlled by haemolymph-borne factors. The mealworm Tenebrio molitor provides the first known example of antagonistic interactions between endogenous neuropeptides acting on Malpighian tubules. The two corticotropin-releasing-factor (CRF)-related diuretic peptides previously isolated from Tenebrio molitor, Tenmo-DH37 and Tenmo-DH47, were found to stimulate Tenebrio molitor tubules in vitro in a dose-dependent manner with EC50 values of 0.12 nmol l–1 and 26 nmol l–1 respectively. However, no synergistic or additive effect was observed when these two peptides were tested simultaneously. We then investigated antagonism between second messengers: dose–response curves were constructed for stimulation of Tenebrio molitor tubules by cyclic AMP and their inhibition by cyclic GMP. When both cyclic nucleotides were included in the bathing Ringer, the stimulatory effect of cyclic AMP was neutralised by cyclic GMP. Similarly, the stimulatory effect of Tenmo-DH37 was reversed on addition of an antidiuretic peptide (Tenmo-ADF), which was recently isolated from Tenebrio molitor and acts via cyclic GMP. The cardioacceleratory peptide CAP2b, originally isolated from Manduca sexta, also increases intracellular cyclic GMP levels and inhibited fluid secretion by Tenebrio molitor tubules, with an EC50 value of 85 nmol l–1. This inhibitory effect was reversed by Tenmo-DH37. Endogenous diuretic and antidiuretic peptides, effective at low concentrations and acting via antagonistic second messengers, have the potential for fine control of secretion rates in the Malpighian tubules of Tenebrio molitor.
Collapse
|
|
23 |
37 |
22
|
Delbecque JP, Delachambre J, Hirn M, De Reggi M. Abdominal production of ecdysterone and pupal-adult development in Tenebrio molitor (Insecta, Coleoptera). Gen Comp Endocrinol 1978; 35:436-44. [PMID: 720815 DOI: 10.1016/0016-6480(78)90138-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
|
47 |
36 |
23
|
Mun S, Noh MY, Kramer KJ, Muthukrishnan S, Arakane Y. Gene functions in adult cuticle pigmentation of the yellow mealworm, Tenebrio molitor. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 117:103291. [PMID: 31812474 DOI: 10.1016/j.ibmb.2019.103291] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
In many arthropod species including insects, the cuticle tanning pathway for both pigmentation and sclerotization begins with tyrosine and is responsible for production of both melanin- and quinoid-type pigments, some of which are major pigments for body coloration. In this study we identified and cloned cDNAs of the yellow mealworm, Tenebrio molitor, encoding seven key enzymes involved in this pathway including tyrosine hydroxylase (TmTH), DOPA decarboxylase (TmDDC), laccase 2 (TmLac2), Yellow-y (TmY-y), arylalkylamine N-acetyltransferase (TmAANAT1), aspartate 1-decarboxylase (TmADC) and N-β-alanyldopamine synthase (Tmebony). Expression profiles of these genes during development were analyzed by real-time PCR, revealing development-specific patterns of expression. Loss of function mediated by RNAi of either 1) TmTH or TmLac2, 2) TmDDC or TmY-y, and 3) TmAANAT1, TmADC or Tmebony resulted in pale/white, light yellow/brown and dark/black adult body coloration, respectively. In addition, there are three distinct layer/regional pigmentation differences in rigid types of adult cuticle, a brownish outer exocuticle (EX), a dark pigmented middle mesocuticle (ME) and a transparent inner endocuticle (EN). Decreases in pigmentation of the EX and/or ME layers were observed after RNAi of TmDDC or TmY-y. In TmADC- or Tmebony-deficient adults, a darker pigmented EX layer was observed. In TmAANAT1-deficient adults, trabeculae formed between the dorsal and ventral elytral cuticles as well as the transparent EN layer became highly pigmented. These results demonstrate that knocking down the level of gene expression of specific enzymes of this tyrosine metabolic pathway leads to abnormal pigmentation in individual layers and substructure of the rigid adult exoskeleton of T. molitor.
Collapse
|
|
5 |
36 |
24
|
Hurd H, Parry G. Metacestode-induced depression of the production of, and response to, sex pheromone in the intermediate host Tenebrio molitor. J Invertebr Pathol 1991; 58:82-7. [PMID: 1885925 DOI: 10.1016/0022-2011(91)90165-m] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hymenolepis diminuta infection of Tenebrio molitor is associated with an impairment of vitellogenesis and a reduction in host fecundity. In this communication the effect of infection upon an additional aspect of host reproduction, the initiation of mating behavior, has been examined. Copulatory release pheromone, extracted from control virgin females 6-7 days old, was shown to stimulate a positive mating response in 88% of 5- to 6-day-old control males; however, only a 56% response was elicited by pheromone from infected females. In addition, parasitization adversely effected male response to pheromone from control females. A significant (P less than 0.001) depression of copulatory response occurred in infected 6- to 7-day-old males (age of peak response) although this effect was not sustained in older beetles. The possibility that an endocrine interaction between metacestodes and host may mediate these effects is discussed in the light of our knowledge of the role of host juvenile hormone in controlling both pheromone production and vitellogenesis in T. molitor.
Collapse
|
|
34 |
35 |
25
|
Carazo P, Font E, Alfthan B. Chemosensory assessment of sperm competition levels and the evolution of internal spermatophore guarding. Proc Biol Sci 2007; 274:261-7. [PMID: 17148255 PMCID: PMC1685850 DOI: 10.1098/rspb.2006.3714] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 08/22/2006] [Indexed: 11/12/2022] Open
Abstract
Males of many species adjust their reproductive behaviour according to the perceived risk of sperm competition. Although this phenomenon is widespread in insects and other animals, the mechanisms that allow mates to assess sperm competition levels remain largely unexplored. In this study, we analysed the mating behaviour of pairs of Tenebrio molitor beetles under three odour treatments representing increasing levels of sperm competition risk (SCR) and sperm competition intensity (SCI). Copula duration and male and female post-copulatory behaviour varied significantly with odour treatment. Both copula duration and post-copulatory associations (PCAs) increased significantly in odour treatments reflecting high male density. To our knowledge, this is the first study to report that insects may assess the actual density of potential competitors at the time of mating, a cue to SCR and SCI, on the basis of chemical cues. In T. molitor, males inhibit sperm release from the spermatophore of a rival male when remating takes place at short intervals. We show that, when sperm competition levels are high, PCAs increase female remating interval just above that necessary to prevent spermatophore inhibition by rival males. This finding strongly suggests that strategic male behaviour plays a 'spermatophore guarding' role in this species. Although common in insects with external spermatophore transfer, spermatophore guarding is not expected in species with rapid ejaculate transfer and internal spermatophore delivery. Our results reveal that spermatophore guarding may evolve, even under these circumstances, as an evolutionary response to short-term spermatophore inhibition or displacement mechanisms.
Collapse
|
Comparative Study |
18 |
34 |