601
|
Fincham VJ, Chudleigh A, Frame MC. Regulation of p190 Rho-GAP by v-Src is linked to cytoskeletal disruption during transformation. J Cell Sci 1999; 112 ( Pt 6):947-56. [PMID: 10036244 DOI: 10.1242/jcs.112.6.947] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The v-Src oncoprotein perturbs the dynamic regulation of the cellular cytoskeletal and adhesion network by a mechanism that is poorly understood. Here, we have examined in detail the effects of a temperature-dependent v-Src protein on the regulation of p190 RhoGAP, a GTPase activating protein (GAP) that has been implicated in disruption of the organised actin cytoskeleton, and addressed the dependence of v-Src-induced stress fibre loss on inhibition of Rho activity. We found that activation of v-Src induced association of tyrosine phosphorylated p190 with p120(RasGAP) and stimulation of p120(RasGAP)-associated RhoGAP activity, although p120(RasGAP) itself was not a target for phosphorylation by v-Src in chicken embryo cells. These events required the catalytic activity of v-Src and were linked to loss of actin stress fibres during morphological transformation and not mitogenic signalling. Furthermore, these effects were rapidly reversible since switching off v-Src led to dissociation of the p190/p120(RasGAP) complex, inactivation of p120(RasGAP)-associated RhoGAP activity and re-induction of actin stress fibres. In addition, transient transfection of Val14-RhoA, a constitutively active Rho protein that is insensitive to RhoGAPs, suppressed v-Src-induced stress fibre loss and cell transformation. Thus, we show here for the first time that an activated Src kinase requires the inactivation of Rho-mediated actin stress fibre assembly to induce its effects on actin disorganisation. Moreover, our work supports p190 as a strong candidate effector of v-Src-induced cytoskeletal disruption, most likely mediated by antagonism of the cellular function of Rho.
Collapse
|
602
|
Asano K, Krishnamoorthy T, Phan L, Pavitt GD, Hinnebusch AG. Conserved bipartite motifs in yeast eIF5 and eIF2Bepsilon, GTPase-activating and GDP-GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2. EMBO J 1999; 18:1673-88. [PMID: 10075937 PMCID: PMC1171254 DOI: 10.1093/emboj/18.6.1673] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the initiation phase of eukaryotic translation, eIF5 stimulates the hydrolysis of GTP bound to eIF2 in the 40S ribosomal pre-initiation complex, and the resultant GDP on eIF2 is replaced with GTP by the complex nucleotide exchange factor, eIF2B. Bipartite motifs rich in aromatic and acidic residues are conserved at the C-termini of eIF5 and the catalytic (epsilon) subunit of eIF2B. Here we show that these bipartite motifs are important for the binding of these factors, both in vitro and in vivo, to the beta subunit of their common substrate eIF2. We also find that three lysine-rich boxes in the N-terminal segment of eIF2beta mediate the binding of eIF2 to both eIF5 and eIF2B. Thus, eIF5 and eIF2Bepsilon employ the same sequence motif to facilitate interaction with the same segment of their common substrate. In agreement with this, archaea appear to lack eIF5, eIF2B and the lysine-rich binding domain for these factors in their eIF2beta homolog. The eIF5 bipartite motif is also important for its interaction with the eIF3 complex through the NIP1-encoded subunit of eIF3. Thus, the bipartite motif in eIF5 appears to be multifunctional, stimulating its recruitment to the 40S pre-initiation complex through interaction with eIF3 in addition to binding of its substrate eIF2.
Collapse
|
603
|
Franco M, Peters PJ, Boretto J, van Donselaar E, Neri A, D'Souza-Schorey C, Chavrier P. EFA6, a sec7 domain-containing exchange factor for ARF6, coordinates membrane recycling and actin cytoskeleton organization. EMBO J 1999; 18:1480-91. [PMID: 10075920 PMCID: PMC1171237 DOI: 10.1093/emboj/18.6.1480] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have identified a human cDNA encoding a novel protein, exchange factor for ARF6 (EFA6), which contains Sec7 and pleckstrin homology domains. EFA6 promotes efficient guanine nucleotide exchange on ARF6 and is distinct from the ARNO family of ARF1 exchange factors. The protein localizes to a dense matrix on the cytoplasmic face of plasma membrane invaginations, induced on its expression. We show that EFA6 regulates endosomal membrane recycling and promotes the redistribution of transferrin receptors to the cell surface. Furthermore, expression of EFA6 induces actin-based membrane ruffles that are inhibited by co-expression of dominant-inhibitory mutant forms of ARF6 or Rac1. Our results demonstrate that by catalyzing nucleotide exchange on ARF6 at the plasma membrane and by regulating Rac1 activation, EFA6 coordinates endocytosis with cytoskeletal rearrangements.
Collapse
|
604
|
Murakami-Mori K, Mori S, Bonavida B, Nakamura S. Implication of TNF receptor-I-mediated extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation in growth of AIDS-associated Kaposi's sarcoma cells: a possible role of a novel death domain protein MADD in TNF-alpha-induced ERK1/2 activation in Kaposi's sarcoma cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 1999; 162:3672-9. [PMID: 10092829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
TNF-alpha is a key pathogenic mediator of infectious and inflammatory diseases. HIV infection stimulates and dysregulates the immune system, leading to abnormal production of TNF-alpha. Despite its cytotoxic effect on some tumor cell lines, TNF-alpha functions as a growth stimulator for Kaposi's sarcoma (KS), a common malignancy in HIV-infected patients. However, signaling pathways linked to TNF-alpha-induced mitogenic responses are not well understood. We found that extracellular signal-regulated kinases 1 and 2 (ERK1/2) in KS cells were significantly activated by TNF-alpha through tyrosine/threonine phosphorylation. Using neutralizing anti-TNFR-I and TNFR-II mAbs, we have now obtained evidence that TNF-alpha-induced KS cell growth and ERK1/2 activation are mediated exclusively by TNFR-I, not by TNFR-II. A selective inhibitor for ERK1/2 activator kinases, PD98059, profoundly inhibited not only the activation of ERK1/2, but also the TNF-alpha-induced KS cell proliferation. We therefore propose that the TNFR-I-ERK1/2 pathway plays a pivotal role in transmitting to KS cells the mitogenic signals of TNF-alpha. TNFR-I possesses no intrinsic kinase activity, suggesting that TNFR-I-associated proteins may provide a link between TNFR-I and ERK1/2 activation. We found that actinomycin D treatment of KS cells selectively abolished expression of mitogen-activated protein kinase-activating death domain protein (MADD), a novel TNFR-I-associated death domain protein. TNF-alpha failed to induce ERK1/2 activation in the actinomycin D-treated cells. MADD may couple TNFR-I with the ERK1/2 signaling pathway required for KS cell proliferation.
Collapse
MESH Headings
- Acquired Immunodeficiency Syndrome/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/immunology
- Antigens, CD/physiology
- Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/biosynthesis
- Carrier Proteins/physiology
- Cell Division/immunology
- Dactinomycin/pharmacology
- Death Domain Receptor Signaling Adaptor Proteins
- Enzyme Activation/immunology
- Enzyme Inhibitors/pharmacology
- Flavonoids/pharmacology
- Growth Inhibitors/pharmacology
- Growth Substances/pharmacology
- Guanine Nucleotide Exchange Factors
- Humans
- MAP Kinase Kinase 1
- MAP Kinase Kinase 2
- Mitogen-Activated Protein Kinase 1
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinase Kinases
- Mitogen-Activated Protein Kinases
- Phosphorylation
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor/immunology
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type I
- Sarcoma, Kaposi/enzymology
- Sarcoma, Kaposi/immunology
- Sarcoma, Kaposi/pathology
- Threonine/metabolism
- Tumor Cells, Cultured
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/pharmacology
- Tyrosine/metabolism
Collapse
|
605
|
Daniels RH, Zenke FT, Bokoch GM. alphaPix stimulates p21-activated kinase activity through exchange factor-dependent and -independent mechanisms. J Biol Chem 1999; 274:6047-50. [PMID: 10037684 DOI: 10.1074/jbc.274.10.6047] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of p21-activated kinases (Paks) is achieved through binding of the GTPases Rac or Cdc42 to a conserved domain in the N-terminal regulatory region of Pak. Additional signaling components are also likely to be important in regulating Pak activation. Recently, a family of Pak-interacting guanine nucleotide exchange factors (Pix) have been identified and which are good candidates for regulating Pak activity. Using an active, truncated form of alphaPix (amino acids 155-545), we observe stimulation of Pak1 kinase activity when alphaPix155-545 is co-expressed with Cdc42 and wild-type Pak1 in COS-1 cells. This activation does not occur when we co-express a Pak1 mutant unable to bind alphaPix. The activation of wild-type Pak1 by alphaPix155-545 also requires that alphaPix155-545 retain functional exchange factor activity. However, the Pak1(H83,86L) mutant that does not bind Rac or Cdc42 is activated in the absence of GTPase by alphaPix155-545 and by a mutant of alphaPix155-545 that no longer has exchange factor activity. Pak1 activity stimulated in vitro using GTPgammaS-loaded Cdc42 was also enhanced by recombinant alphaPix155-545 in a binding-dependent manner. These data suggest that Pak activity can be modulated by physical interaction with alphaPix and that this specific effect involves both exchange factor-dependent and -independent mechanisms.
Collapse
|
606
|
Rojas JM, Subleski M, Coque JJ, Guerrero C, Saez R, Li BQ, Lopez E, Zarich N, Aroca P, Kamata T, Santos E. Isoform-specific insertion near the Grb2-binding domain modulates the intrinsic guanine nucleotide exchange activity of hSos1. Oncogene 1999; 18:1651-61. [PMID: 10208427 DOI: 10.1038/sj.onc.1202483] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two human hSos1 isoforms (Isf I and Isf II; Rojas et al., Oncogene 12, 2291-2300, 1996) defined by the presence of a distinct 15 amino acid stretch in one of them, were compared biologically and biochemically using representative NIH3T3 transfectants overexpressing either one. We showed that hSos1-Isf II is significantly more effective than hSos1-Isf I to induce proliferation or malignant transformation of rodent fibroblasts when transfected alone or in conjunction with normal H-Ras (Gly12). The hSos1-Isf II-Ras cotransfectants consistently exhibited higher saturation density, lower cell-doubling times, increased focus-forming activity and higher ability to grow on semisolid medium and at low serum concentration than their hSos1-Isf I-Ras counterparts. Furthermore, the ratio of GTP/GDP bound to cellular p21ras was consistently higher in the hSos1-Isf II-transfected clones, both under basal and stimulated conditions. However, no significant differences were detected in vivo between Isf I- and Isf II-transfected clones regarding the amount, stability and subcellular localization of Sos1-Grb2 complex, or the level of hSos1 phosphorylation upon cellular stimulation. Interestingly, direct Ras guanine nucleotide exchange activity assays in cellular lysates showed that Isf II transfectants consistently exhibited about threefold higher activity than Isf I transfectants under basal, unstimulated conditions. Microinjection into Xenopus oocytes of purified peptides corresponding to the C-terminal region of both isoforms (encompassing the 15 amino acid insertion area and the first Grb2-binding motif) showed that only the Isf II peptide, but not its corresponding Isf I peptide, was able to induce measurable rates of meiotic maturation, and synergyzed with insulin, but not progesterone, in induction of GVBD. Our results suggest that the increased biological potency displayed by hSos1-Isf II is due to higher intrinsic guanine nucleotide exchange activity conferred upon this isoform by the 15 a.a. insertion located in proximity to its Grb2 binding region.
Collapse
|
607
|
Peyroche A, Antonny B, Robineau S, Acker J, Cherfils J, Jackson CL. Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Mol Cell 1999; 3:275-85. [PMID: 10198630 DOI: 10.1016/s1097-2765(00)80455-4] [Citation(s) in RCA: 350] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrate that the major in vivo targets of brefeldin A (BFA) in the secretory pathway of budding yeast are the three members of the Sec7 domain family of ARF exchange factors: Gea1p and Gea2p (functionally interchangeable) and Sec7p. Specific residues within the Sec7 domain are important for BFA inhibition of ARF exchange activity, since mutations in these residues of Gea1p (sensitive to BFA) and of ARNO (resistant to BFA) reverse the sensitivity of each to BFA in vivo and in vitro. We show that the target of BFA inhibition of ARF exchange activity is an ARF-GDP-Sec7 domain protein complex, and that BFA acts to stabilize this complex to a greater extent for a BFA-sensitive Sec7 domain than for a resistant one.
Collapse
|
608
|
Goi T, Rusanescu G, Urano T, Feig LA. Ral-specific guanine nucleotide exchange factor activity opposes other Ras effectors in PC12 cells by inhibiting neurite outgrowth. Mol Cell Biol 1999; 19:1731-41. [PMID: 10022860 PMCID: PMC83966 DOI: 10.1128/mcb.19.3.1731] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ras proteins can activate at least three classes of downstream target proteins: Raf kinases, phosphatidylinositol-3 phosphate (PI3) kinase, and Ral-specific guanine nucleotide exchange factors (Ral-GEFs). In NIH 3T3 cells, activated Ral-GEFs contribute to Ras-induced cell proliferation and oncogenic transformation by complementing the activities of Raf and PI3 kinases. In PC12 cells, activated Raf and PI3 kinases mediate Ras-induced cell cycle arrest and differentiation into a neuronal phenotype. Here, we show that in PC12 cells, Ral-GEF activity acts opposite to other Ras effectors. Elevation of Ral-GEF activity induced by transfection of a mutant Ras protein that preferentially activates Ral-GEFs, or by transfection of the catalytic domain of the Ral-GEF Rgr, suppressed cell cycle arrest and neurite outgrowth induced by nerve growth factor (NGF) treatment. In addition, Rgr reduced neurite outgrowth induced by a mutant Ras protein that preferentially activates Raf kinases. Furthermore, inhibition of Ral-GEF activity by expression of a dominant negative Ral mutant accelerated cell cycle arrest and enhanced neurite outgrowth in response to NGF treatment. Ral-GEF activity may function, at least in part, through inhibition of the Rho family GTPases, CDC42 and Rac. In contrast to Ras, which was activated for hours by NGF treatment, Ral was activated for only approximately 20 min. These findings suggest that one function of Ral-GEF signaling induced by NGF is to delay the onset of cell cycle arrest and neurite outgrowth induced by other Ras effectors. They also demonstrate that Ras has the potential to promote both antidifferentiation and prodifferentiation signaling pathways through activation of distinct effector proteins. Thus, in some cell types the ratio of activities among Ras effectors and their temporal regulation may be important determinants for cell fate decisions between proliferation and differentiation.
Collapse
|
609
|
Tonini R, Mancinelli E, Balestrini M, Mazzanti M, Martegani E, Ferroni A, Sturani E, Zippel R. Expression of Ras-GRF in the SK-N-BE neuroblastoma accelerates retinoic-acid-induced neuronal differentiation and increases the functional expression of the IRK1 potassium channel. Eur J Neurosci 1999; 11:959-66. [PMID: 10103089 DOI: 10.1046/j.1460-9568.1999.00504.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ras-GRF, a neuron-specific Ras exchange factor of the central nervous system, was transfected in the SK-N-BE neuroblastoma cell line and stable clones were obtained. When exposed to retinoic acid, these clones showed a remarkable enhancement of Ras-GRF expression with a concomitant high increase in the level of active (GTP-bound) Ras already after 24 h of treatment. In the presence of retinoic acid, the transfected cells stopped growing and acquired a differentiated neuronal-like phenotype more rapidly than the parental ones. Cells expressing Ras-GRF also exhibited a more hyperpolarized membrane potential. Moreover, treatment with retinoic acid led to the appearance of an inward rectifying potassium channel with electrophysiological properties similar to IRK1. This current was present in a large number of cells expressing Ras-GRF, while only a small percentage of parental cells exhibited this current. However, Northern analysis with a murine cDNA probe indicated that IRK1 mRNA was induced by retinoic acid at a similar level in both kinds of cells. Brief treatment with a specific inhibitor of the mitogen-activated protein kinase (MAPK) pathway reduced the number of transfected cells showing IRK1 activity. These findings suggest that activation of the Ras pathway accelerates neuronal differentiation of this cell line. In addition, our results suggest that Ras-GRF and/or Ras-pathway may have a modulatory effect on IRK1 channel activity.
Collapse
|
610
|
Walden U, Weissörtel R, Corria Z, Yu D, Weinstein L, Kruse K, Dörr HG. Stimulatory guanine nucleotide binding protein subunit 1 mutation in two siblings with pseudohypoparathyroidism type 1a and mother with pseudopseudohypoparathyroidism. Eur J Pediatr 1999; 158:200-3. [PMID: 10094437 DOI: 10.1007/s004310051048] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
UNLABELLED Pseudohypoparathyroidism (PHP) type la is characterized by multihormone resistance and a constellation of somatic features referred to as Albright hereditary osteodystrophy. Several mutations in the gene coding for the Gs alpha subunit (GNAS1) have been described. Clinical symptoms are heterogeneous and initially laboratory parameters may be normal. We identified a 4 base pair deletion within GNAS1 in two affected siblings with PHP type la and their mother with presumed pseudo PHP. The female proband was diagnosed after an episode of apnoea and seizures. The younger brother was asymptomatic during infancy and had normal plasma parameters. PHP was diagnosed at the age of 4.4 years. Regular check-ups of siblings in families with index cases are therefore important. Molecular genetic analyses or biochemical screening for stimulatory guanine nucleotide binding protein defects should be performed. CONCLUSION Different symptoms may be seen in patients with the same mutation causing pseudohypoparathyroidism or pseudopseudohypoparathyroidism. Therefore, clinical and biochemical investigations should be performed in all family members with an index patient.
Collapse
|
611
|
Moss J, Vaughan M. Activation of toxin ADP-ribosyltransferases by eukaryotic ADP-ribosylation factors. Mol Cell Biochem 1999; 193:153-7. [PMID: 10331652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
ADP-ribosylation factors (ARFs) are members of a multigene family of 20-kDa guanine nucleotide-binding proteins that are regulatory components in several pathways of intracellular vesicular trafficking. The relatively small (approximately 180-amino acids) ARF proteins interact with a variety of molecules (in addition to GTP/GDP, of course). Cholera toxin was the first to be recognized, hence the name. Later it was shown that ARF also activates phospholipase D. Different parts of the molecule are responsible for activation of the two enzymes. In vesicular trafficking, ARF must interact with coatomer to recruit it to a membrane and thereby initiate vesicle budding. ARF function requires that it alternate between GTP- and GDP-bound forms, which involves interaction with regulatory proteins. Inactivation of ARF-GTP depends on a GTPase-activating protein or GAP. A guanine nucleotide-exchange protein or GEP accelerates release of bound GDP from inactive ARF-GDP to permit GTP binding. Inhibition of GEP by brefeldin A (BFA) blocks ARF activation and thereby vesicular transport. In cells, it causes apparent disintegration of Golgi structure. Both BFA-sensitive and insensitive GEPs are known. Sequences of peptides from a BFA-sensitive GEP purified in our laboratory revealed the presence of a Sec7 domain, a sequence of approximately 200 amino acids that resembles a region in the yeast Sec7 gene product, which is involved in Golgi vesicular transport. Other proteins of unknown function also contain Sec7 domains, among them a lymphocyte protein called cytohesin-1. To determine whether it had GEP activity, recombinant cytohesin-1 was synthesized in E. coli. It preferentially activated class I ARFs 1 and 3 and was not inhibited by BFA but failed to activate ARF5 (class II). There are now five Sec7 domain proteins known to have GEP activity toward class I ARFs. It remains to be determined whether there are other Sec7 domain proteins that are GEPs for ARFs 4, 5, or 6.
Collapse
|
612
|
Ji Y, Walkowicz MJ, Buiting K, Johnson DK, Tarvin RE, Rinchik EM, Horsthemke B, Stubbs L, Nicholls RD. The ancestral gene for transcribed, low-copy repeats in the Prader-Willi/Angelman region encodes a large protein implicated in protein trafficking, which is deficient in mice with neuromuscular and spermiogenic abnormalities. Hum Mol Genet 1999; 8:533-42. [PMID: 9949213 DOI: 10.1093/hmg/8.3.533] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcribed, low-copy repeat elements are associated with the breakpoint regions of common deletions in Prader-Willi and Angelman syndromes. We report here the identification of the ancestral gene ( HERC2 ) and a family of duplicated, truncated copies that comprise these low-copy repeats. This gene encodes a highly conserved giant protein, HERC2, that is distantly related to p532 (HERC1), a guanine nucleotide exchange factor (GEF) implicated in vesicular trafficking. The mouse genome contains a single Herc2 locus, located in the jdf2 (juvenile development and fertility-2) interval of chromosome 7C. We have identified single nucleotide splice junction mutations in Herc2 in three independent N-ethyl-N-nitrosourea-induced jdf2 mutant alleles, each leading to exon skipping with premature termination of translation and/or deletion of conserved amino acids. Therefore, mutations in Herc2 lead to the neuromuscular secretory vesicle and sperm acrosome defects, other developmental abnormalities and juvenile lethality of jdf2 mice. Combined, these findings suggest that HERC2 is an important gene encoding a GEF involved in protein trafficking and degradation pathways in the cell.
Collapse
|
613
|
Scholich K, Mullenix JB, Wittpoth C, Poppleton HM, Pierre SC, Lindorfer MA, Garrison JC, Patel TB. Facilitation of signal onset and termination by adenylyl cyclase. Science 1999; 283:1328-31. [PMID: 10037603 DOI: 10.1126/science.283.5406.1328] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The alpha subunit (Gsalpha) of the stimulatory heterotrimeric guanosine triphosphate binding protein (G protein) Gs activates all isoforms of mammalian adenylyl cyclase. Adenylyl cyclase (Type V) and its subdomains, which interact with Gsalpha, promoted inactivation of the G protein by increasing its guanosine triphosphatase (GTPase) activity. Adenylyl cyclase and its subdomains also augmented the receptor-mediated activation of heterotrimeric Gs and thereby facilitated the rapid onset of signaling. These findings demonstrate that adenylyl cyclase functions as a GTPase activating protein (GAP) for the monomeric Gsalpha and enhances the GTP/GDP exchange factor (GEF) activity of receptors.
Collapse
|
614
|
Fukuhara S, Murga C, Zohar M, Igishi T, Gutkind JS. A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. J Biol Chem 1999; 274:5868-79. [PMID: 10026210 DOI: 10.1074/jbc.274.9.5868] [Citation(s) in RCA: 310] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small GTP-binding proteins of the Rho family play a critical role in signal transduction. However, there is still very limited information on how they are activated by cell surface receptors. Here, we used a consensus sequence for Dbl domains of Rho guanine nucleotide exchange factors (GEFs) to search DNA data bases, and identified a novel human GEF for Rho-related GTPases harboring structural features indicative of its possible regulatory mechanism(s). This protein contained a tandem DH/PH domain closely related to those of Rho-specific GEFs, a PDZ domain, a proline-rich domain, and an area of homology to Lsc, p115-RhoGEF, and a Drosophila RhoGEF that was termed Lsc-homology (LH) domain. This novel molecule, designated PDZ-RhoGEF, activated biological and biochemical pathways specific for Rho, and activation of these pathways required an intact DH and PH domain. However, the PDZ domain was dispensable for these functions, and mutants lacking the LH domain were more active, suggesting a negative regulatory role for the LH domain. A search for additional molecules exhibiting an LH domain revealed a limited homology with the catalytic region of a newly identified GTPase-activating protein for heterotrimeric G proteins, RGS14. This prompted us to investigate whether PDZ-RhoGEF could interact with representative members of each G protein family. We found that PDZ-RhoGEF was able to form, in vivo, stable complexes with two members of the Galpha12 family, Galpha12 and Galpha13, and that this interaction was mediated by the LH domain. Furthermore, we obtained evidence to suggest that PDZ-RhoGEF mediates the activation of Rho by Galpha12 and Galpha13. Together, these findings suggest the existence of a novel mechanism whereby the large family of cell surface receptors that transmit signals through heterotrimeric G proteins activate Rho-dependent pathways: by stimulating the activity of members of the Galpha12 family which, in turn, activate an exchange factor acting on Rho.
Collapse
|
615
|
Rapoport MJ, Mor A, Amit M, Rosenberg R, Ramot Y, Mizrachi A, Wysenbeek AJ. Decreased expression of the p21ras stimulatory factor hSOS in PBMC from inactive SLE patients. Lupus 1999; 8:24-8. [PMID: 10025596 DOI: 10.1191/096120399678847362] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Expression of the p21 ras protooncogene is reported to be increased in animal models and in patients with SLE. However, the expression of p21ras regulatory elements has not been determined. We determined the expression of p21ras, and its regulatory elements p120-ras-GAP and hSOS, in PBMC of 10 patients with inactive SLE (mean SLEDAI score 1.8+/-0.53) and 10 age- and sex-matched healthy controls. No difference was found between the two groups in the levels of p21 ras (3760+/-513 and 3367+/-335, P=0.25) and ras-GAP (1048+/-261 and 1534+/-247, P=0.11) in patients and controls, respectively. In contrast, levels of hSOS were significantly decreased in patients as compared to controls: 955+/-218 and 2306+/-327, P = 0.002, respectively. The mitogen-induced proliferative response was comparable in the two groups: SI 20.8+/-4.2 and 15.03+/-4.9, P=0.135, in patients and controls, respectively. Taken together, our data demonstrate that nonactive SLE patients are characterized by reduced hSOS expression and underscore the need for a comprehensive evaluation of p21ras pathway in these patients.
Collapse
|
616
|
Kawai T, Sanjo H, Akira S. Duet is a novel serine/threonine kinase with Dbl-Homology (DH) and Pleckstrin-Homology (PH) domains. Gene 1999; 227:249-55. [PMID: 10023074 DOI: 10.1016/s0378-1119(98)00605-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We show here the identification of Duet, a novel molecule bearing serine/threonine kinase, Dbl-Homology (DH), and Pleckstrin-Homology (PH) domains. The kinase domain of Duet shows a homology to that of DAP kinase that is involved in apoptosis, and Duet is autophosphorylated by an in-vitro kinase assay. The DH- and PH-domains are closely related to those of Trio and Kalirin. Trad mRNA is specifically expressed in skeletal muscle. Duet protein was localized to actin-associated cytoskeletal elements. These data suggest a role of Duet in the cytoskeleton-dependent cell function.
Collapse
|
617
|
Pérez JM, Siegal G, Kriek J, Hård K, Dijk J, Canters GW, Möller W. The solution structure of the guanine nucleotide exchange domain of human elongation factor 1beta reveals a striking resemblance to that of EF-Ts from Escherichia coli. Structure 1999; 7:217-26. [PMID: 10368288 DOI: 10.1016/s0969-2126(99)80027-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In eukaryotic protein synthesis, the multi-subunit elongation factor 1 (EF-1) plays an important role in ensuring the fidelity and regulating the rate of translation. EF-1alpha, which transports the aminoacyl tRNA to the ribosome, is a member of the G-protein superfamily. EF-1beta regulates the activity of EF-1alpha by catalyzing the exchange of GDP for GTP and thereby regenerating the active form of EF-1alpha. The structure of the bacterial analog of EF-1alpha, EF-Tu has been solved in complex with its GDP exchange factor, EF-Ts. These structures indicate a mechanism for GDP-GTP exchange in prokaryotes. Although there is good sequence conservation between EF-1alpha and EF-Tu, there is essentially no sequence similarity between EF-1beta and EF-Ts. We wished to explore whether the prokaryotic exchange mechanism could shed any light on the mechanism of eukaryotic translation elongation. RESULTS Here, we report the structure of the guanine-nucleotide exchange factor (GEF) domain of human EF-1beta (hEF-1beta, residues 135-224); hEF-1beta[135-224], determined by nuclear magnetic resonance spectroscopy. Sequence conservation analysis of the GEF domains of EF-1 subunits beta and delta from widely divergent organisms indicates that the most highly conserved residues are in two loop regions. Intriguingly, hEF-1beta[135-224] shares structural homology with the GEF domain of EF-Ts despite their different primary sequences. CONCLUSIONS On the basis of both the structural homology between EF-Ts and hEF-1beta[135-224] and the sequence conservation analysis, we propose that the mechanism of guanine-nucleotide exchange in protein synthesis has been conserved in prokaryotes and eukaryotes. In particular, Tyr181 of hEF-1beta[135-224] appears to be analogous to Phe81 of Escherichia coli EF-Ts.
Collapse
|
618
|
Chiorini JA, Miyamoto S, Harkin SJ, Safer B. Genomic cloning and characterization of the human eukaryotic initiation factor-2beta promoter. J Biol Chem 1999; 274:4195-201. [PMID: 9933616 DOI: 10.1074/jbc.274.7.4195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The translation initiation factor eIF2 consists of three subunits that are present in equal molar amounts. The genomic DNA containing the gene for eIF2beta and its promoter were cloned and sequenced to characterize further the mechanism of their regulated synthesis. Whereas Southern blot analysis indicated that a number of copies of the gene may exist, only one full-length intron-containing copy was identified. Similar to the eIF2alpha promoter, the eIF2beta promoter is TATA-less, CAAT-less, and GC-rich and contains an alpha-Pal binding motif. Mutation of the alpha-Pal binding sequence resulted in an 8-fold decrease in activity when assayed by the luciferase reporter gene constructs. The data suggest a common mechanism of transcriptional control for the two cloned subunits of eIF2.
Collapse
|
619
|
Murakami A, Kimura K, Nakano A. The inactive form of a yeast casein kinase I suppresses the secretory defect of the sec12 mutant. Implication of negative regulation by the Hrr25 kinase in the vesicle budding from the endoplasmic reticulum. J Biol Chem 1999; 274:3804-10. [PMID: 9920934 DOI: 10.1074/jbc.274.6.3804] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sec12p is the guanine nucleotide exchange factor of Sar1 GTPase and functions at the very upstream in the vesicle budding reactions from the endoplasmic reticulum (ER). We previously identified three yeast loci, RST1, RST2, and RST3, whose mutations suppressed the temperature-sensitive growth of the sec12-4 mutant (Nakano, A. (1996) J. Biochem. (Tokyo) 120, 642-646). In the present study, we cloned the wild-type RST2 gene by complementation of the cold-sensitive phenotype of the rst2-1 mutant. RST2 turned out to be identical to HRR25, a gene encoding a dual-specificity casein kinase I in yeast. The rst2-1 mutation, which is now renamed hrr25-2, was due to the T176I amino acid replacement in the kinase domain. This mutation remedied not only the temperature-sensitive growth but also the defect of ER-to-Golgi protein transport of sec12. Immunoprecipitation of the hemagglutinin-tagged Hrr25-2 protein and a subsequent protein kinase assay showed that the kinase activity of the mutant protein was markedly reduced. The overproduction of another kinase-minus mutant of Hrr25p (Hrr25p K38A) slightly suppressed the growth defect of sec12-4 as well. These observations suggest that the reduction of the kinase activity in the mutant protein is important for the suppression of sec12. We propose that Hrr25p negatively regulates the vesicle budding from the ER.
Collapse
|
620
|
Ashery U, Koch H, Scheuss V, Brose N, Rettig J. A presynaptic role for the ADP ribosylation factor (ARF)-specific GDP/GTP exchange factor msec7-1. Proc Natl Acad Sci U S A 1999; 96:1094-9. [PMID: 9927699 PMCID: PMC15356 DOI: 10.1073/pnas.96.3.1094] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ADP ribosylation factors (ARFs) represent a family of small monomeric G proteins that switch from an inactive, GDP-bound state to an active, GTP-bound state. One member of this family, ARF6, translocates on activation from intracellular compartments to the plasma membrane and has been implicated in regulated exocytosis in neuroendocrine cells. Because GDP release in vivo is rather slow, ARF activation is facilitated by specific guanine nucleotide exchange factors like cytohesin-1 or ARNO. Here we show that msec7-1, a rat homologue of cytohesin-1, translocates ARF6 to the plasma membrane in living cells. Overexpression of msec7-1 leads to an increase in basal synaptic transmission at the Xenopus neuromuscular junction. msec7-1-containing synapses have a 5-fold higher frequency of spontaneous synaptic currents than control synapses. On stimulation, the amplitudes of the resulting evoked postsynaptic currents of msec7-1-overexpressing neurons are increased as well. However, further stimulation leads to a decline in amplitudes approaching the values of control synapses. This transient effect on amplitude is strongly reduced on overexpression of msec7-1E157K, a mutant incapable of translocating ARFs. Our results provide evidence that small G proteins of the ARF family and activating factors like msec7-1 play an important role in synaptic transmission, most likely by making more vesicles available for fusion at the plasma membrane.
Collapse
|
621
|
Abstract
The Ral guanine nucleotide exchange factors are direct targets of Ras, providing a mechanism for Ral activation by extracellular signals. In addition, Ral can be activated by a Ras-independent pathway. Ral guanine nucleotide exchange factors contribute to cellular transformation induced by oncogenic Ras through an Erk-independent mechanism which may involve activation of transcription.
Collapse
|
622
|
Tanaka H, Tanaka K, Murakami H, Okayama H. Fission yeast cdc24 is a replication factor C- and proliferating cell nuclear antigen-interacting factor essential for S-phase completion. Mol Cell Biol 1999; 19:1038-48. [PMID: 9891039 PMCID: PMC116034 DOI: 10.1128/mcb.19.2.1038] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
At the nonpermissive temperature the fission yeast cdc24-M38 mutant arrests in the cell cycle with incomplete DNA replication as indicated by pulsed-field gel electrophoresis. The cdc24(+) gene encodes a 501-amino-acid protein with no significant homology to any known proteins. The temperature-sensitive cdc24 mutant is effectively rescued by pcn1(+), rfc1(+) (a fission yeast homologue of RFC1), and hhp1(+), which encode the proliferating cell nuclear antigen (PCNA), the large subunit of replication factor C (RFC), and a casein kinase I involved in DNA damage repair, respectively. The Cdc24 protein binds PCNA and RFC1 in vivo, and the domains essential for Cdc24 function and for RFC1 and PCNA binding colocalize in the N-terminal two-thirds of the molecule. In addition, cdc24(+) genetically interacts with the gene encoding the catalytic subunit of DNA polymerase epsilon, which is stimulated by PCNA and RFC, and with those encoding the fission yeast counterparts of Mcm2, Mcm4, and Mcm10. These results indicate that Cdc24 is an RFC- and PCNA-interacting factor required for DNA replication and might serve as a target for regulation.
Collapse
|
623
|
Lynn K, Fernandez A, Aida M, Sedbrook J, Tasaka M, Masson P, Barton MK. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development 1999; 126:469-81. [PMID: 9876176 DOI: 10.1242/dev.126.3.469] [Citation(s) in RCA: 285] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several lines of evidence indicate that the adaxial leaf domain possesses a unique competence to form shoot apical meristems. Factors required for this competence are expected to cause a defect in shoot apical meristem formation when inactivated and to be expressed or active preferentially in the adaxial leaf domain. PINHEAD, a member of a family of proteins that includes the translation factor eIF2C, is required for reliable formation of primary and axillary shoot apical meristems. In addition to high-level expression in the vasculature, we find that low-level PINHEAD expression defines a novel domain of positional identity in the plant. This domain consists of adaxial leaf primordia and the meristem. These findings suggest that the PINHEAD gene product may be a component of a hypothetical meristem forming competence factor. We also describe defects in floral organ number and shape, as well as aberrant embryo and ovule development associated with pinhead mutants, thus elaborating on the role of PINHEAD in Arabidopsis development. In addition, we find that embryos doubly mutant for PINHEAD and ARGONAUTE1, a related, ubiquitously expressed family member, fail to progress to bilateral symmetry and do not accumulate the SHOOT MERISTEMLESS protein. Therefore PINHEAD and ARGONAUTE1 together act to allow wild-type growth and gene expression patterns during embryogenesis.
Collapse
|
624
|
Baldari CT, Telford JL. Lymphocyte antigen receptor signal integration and regulation by the SHC adaptor. Biol Chem 1999; 380:129-34. [PMID: 10195419 DOI: 10.1515/bc.1999.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Shc adaptor protein transduces signals from transmembrane receptors to the Ras pathway of cell activation by providing binding sites for the recruitment to the submembrane compartment of the Grb2/Sos G-nucleotide exchange complex. The need for Shc in this process is however unclear since Grb2 can be recruited directly to phosphotyrosine containing membrane receptors through its src-homology-2 domain. Evidence from studies in lymphocytes indicates that Shc is multifunctional and is involved in the integration of independent signals to the Ras pathway. Furthermore, Shc may be a key control point at which signaling can be modulated both by interfering signals and by feedback mechanisms. Here we review recent literature to support these functions for Shc.
Collapse
|
625
|
Mains RE, Alam MR, Johnson RC, Darlington DN, Bäck N, Hand TA, Eipper BA. Kalirin, a multifunctional PAM COOH-terminal domain interactor protein, affects cytoskeletal organization and ACTH secretion from AtT-20 cells. J Biol Chem 1999; 274:2929-37. [PMID: 9915831 DOI: 10.1074/jbc.274.5.2929] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The production and regulated secretion of bioactive peptides require a series of lumenal enzymes to convert inactive precursors into bioactive peptides plus several cytosolic proteins to govern granule formation, maturation, translocation, and exocytosis. Peptidylglycine alpha-amidating monooxygenase (PAM), an enzyme essential for biosynthesis of many peptides, is an integral membrane protein with trafficking information in both its lumenal and cytosolic domains. Kalirin, a PAM cytosolic domain interactor protein with spectrin-like repeats and GDP/GTP exchange factor activity for Rac1, is expressed with PAM in neurons but is not expressed in the anterior pituitary or AtT-20 corticotrope cells. Expression of Kalirin alters the cytoskeletal organization of Chinese hamster ovary and AtT-20 cells expressing membrane PAM. Expression of membrane PAM also alters cytoskeletal organization, demonstrating the presence of endogenous proteins that can mediate this effect. Significant amounts of both PAM and Kalirin fractionate with cytoskeletal elements. Since cytoskeletal organization is critical for exocytosis, constitutive-like and regulated secretions were evaluated. Whereas the constitutive-like secretion of adrenocorticotropic hormone (ACTH) is increased by expression of membrane PAM, regulated secretion is eliminated. Expression of Kalirin in AtT-20 cells expressing membrane PAM restores stimulated secretion of ACTH. Thus, Kalirin or its homologue may be essential for regulated secretion, and the PAM-Kalirin interaction may coordinate intragranular with cytosolic events.
Collapse
|