51
|
Staruschenko A, Pochynyuk O, Vandewalle A, Bugaj V, Stockand JD. Acute regulation of the epithelial Na+ channel by phosphatidylinositide 3-OH kinase signaling in native collecting duct principal cells. J Am Soc Nephrol 2007; 18:1652-61. [PMID: 17442787 DOI: 10.1681/asn.2007010020] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Activity of the epithelial Na(+) channel (ENaC) is limiting for Na(+) reabsorption in the aldosterone-sensitive distal nephron. Hormones, including aldosterone and insulin, increase ENaC activity, in part by stimulating phosphatidylinositide 3-OH kinase (PI3-K) signaling. Recent studies in heterologous expression systems reveal a close spatiotemporal coupling between PI3-K signaling and ENaC activity with the phospholipid product of this kinase, PI(3,4,5)P(3), in some cases, directly binding the channel and increasing open probability (P(o)). This study tested whether this tight coupling plays a physiologic role in modulating ENaC activity in native tissue and polarized epithelial cells. IGF-I was found to increase Na(+) reabsorption across mpkCCD(c14) principal cell monolayers in a PI3-K-sensitive manner. Inhibition of PI3-K signaling, moreover, rapidly decreased Na(+) reabsorption and ENaC activity in mpkCCD(c14) cells that were treated with corticosteroids and IGF-I. These decreases paralleled changes in apical membrane PI(3,4,5)P(3) levels, demonstrating tight spatiotemporal coupling between ENaC activity and PI3-K/PI(3,4,5)P(3) signaling within this membrane. For further probing of the mechanism underpinning this coupling, cortical collecting ducts (CCD) were isolated from rat and split open to expose the apical membrane for patch-clamp analysis. Inhibition of PI3-K signaling with wortmannin and LY294002 but not its inactive analogue rapidly and markedly decreased the P(o) of ENaC. Moreover, IGF-I acutely increased P(o) of ENaC in CCD principal cells in a PI3-K-sensitive manner. Together, these observations stress the importance of tight spatiotemporal coupling between PI3-K signaling and ENaC within the apical membrane of principal cells to the physiologic control of this ion channel.
Collapse
|
52
|
Staruschenko A, Pochynyuk O, Bugaj V, Vandewalle A, Stockand JD. 220. Am J Kidney Dis 2007. [DOI: 10.1053/j.ajkd.2007.02.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
53
|
Pellé G, Vimont S, Levy PP, Hertig A, Ouali N, Chassin C, Arlet G, Rondeau E, Vandewalle A. Acute pyelonephritis represents a risk factor impairing long-term kidney graft function. Am J Transplant 2007; 7:899-907. [PMID: 17286620 DOI: 10.1111/j.1600-6143.2006.01700.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Urinary tract infections (UTIs) and acute pyelonephritis (APN) often occur after renal transplantation, but their impact on graft outcome is unclear. One hundred and seventy-seven consecutive renal transplantations were investigated to evaluate the impact of UTIs and APN on graft function. The cumulative incidence of UTIs was 75.1% and that of APN was 18.7%. UTIs occurred mainly during the first year after transplantation and Escherichia coli, Pseudomonas aeruginosa and Enteroccocus sp. were the most frequent pathogens identified. The risk of developing APN was higher in female (64%) than in male recipients, and was correlated with the frequency of recurrent UTIs (p < 0.0001) and rejection episodes (p = 0.0003). APN did not alter graft or recipient survival, however, compared to patients with uncomplicated UTIs, patients with APN exhibited both a significant increase in serum creatinine and a decrease in creatinine clearance, already detected after 1 year (aMDRD-GFR: APN: 39.5 +/- 12.5; uncomplicated UTI: 54.6 +/- 21.7 mL/min/1.73 m(2), p < 0.01) and still persistent ( approximately - 50%) 4 years after transplantation. Multivariate analysis revealed that APN represents an independent risk factor associated with the decline of renal function (p = 0.034). Therefore, APN may be associated with an enduring decrease in renal graft function.
Collapse
|
54
|
Chassin C, Goujon JM, Le Bouguénec C, Buzoni-Gatel D, Vandewalle A. [A novel function for renal collecting duct intercalated cells: defense against uropathogenic Escherichia coli]. Med Sci (Paris) 2007; 23:32-4. [PMID: 17212928 DOI: 10.1051/medsci/200723132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
55
|
Chassin C, Bens M, Vandewalle A. Transimmortalized proximal tubule and collecting duct cell lines derived from the kidneys of transgenic mice. Cell Biol Toxicol 2007; 23:257-66. [PMID: 17219250 DOI: 10.1007/s10565-006-0169-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 11/29/2006] [Indexed: 01/24/2023]
Abstract
This review summarizes the strategy of cellular immortalization based on the principle of targeted oncogenesis in transgenic mice, used to establish models of transimmortalized renal proximal tubule cells, referred to as PKSV-PCT and PKSV-PR-cells, and collecting duct principal cells, referred to as mpkCCD(cl4) cells. These cell lines have maintained for long-term passages the main biochemical and functional properties of the parental cells from which they were derived. Proximal tubule PKSV-PCT and PKSV-PR cells have been proved to be suitable cell systems for toxicological and pharmacological studies. They also permitted the establishment of a model of multidrug-resistant (MDR) renal epithelial tubule cells, PKSV-PR(col50), which have served for the study of both MDR-dependent extrusion of chemotherapeutic drugs and inappropriate accumulation of weak base anthracyclines in intracellular acidic organelles. The novel collecting duct cell line mpkCCD(cl4), which has maintained the characteristics of tight epithelial cells, in particular Na(+) absorption stimulated by aldosterone, has been extensively used for pharmacological studies related to the regulation of ion transport. These cells have permitted the identification of several aldosterone-induced proteins playing a key role in the regulation of Na(+) absorption mediated by the epithelial Na(+) channel ENaC. Recent studies have also provided evidence that these cell lines represent valuable cell systems for the study of host-pathogen interactions and the analysis of the role of renal tubule epithelial cells in the induction of inflammatory response caused by uropathogens that may lead to severe renal damage.
Collapse
|
56
|
Staruschenko A, Pochynyuk O, Bugaj V, Vandewalle A, Stockand JD. Acute regulation of the epithelial Na
+
channel (ENaC) by phosphatidylinositol 3‐kinase in isolated collecting duct principal cells. FASEB J 2007. [DOI: 10.1096/fasebj.21.6.a954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
57
|
Vandewalle A. Expression and function of CLC and cystic fibrosis transmembrane conductance regulator chloride channels in renal epithelial tubule cells: pathophysiological implications. CHANG GUNG MEDICAL JOURNAL 2007; 30:17-25. [PMID: 17477025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Cl(-) channels play important roles in the regulation of a variety of functions, including electrical excitability, cell volume regulation, transepithelial transport and acidification of cellular organelles. They are expressed in plasma membranes or reside in intracellular organelles. A large number of Cl(-) channels with different functions have been identified. Some of them are highly expressed in the kidney. They include members of the CLC Cl(-) channel family: ClC-K1 (or ClC-Ka), ClC-K2 (or ClC-Kb) and ClC-5. The identification of mutations responsible for human inherited diseases (Bartter syndrome for ClC-Kb and Dent's disease for ClC-5) and studies on knockout mice models have evidenced the physiological importance of these CLC Cl(-) channels, permitting better understanding on their functions in renal tubule epithelial cells. The cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel, also expressed in renal tubule epithelial cells, is involved in the transepithelial transport of Cl(-) in the distal nephron. This short review focuses on intrarenal distribution, subcellular localization and function of the ClK(-1), ClC-K2 and ClC-5 Cl(-) channels in renal tubule epithelial cells, and the role of the CFTR Cl(-) channel in chloride fluxes elicited by vasopressin in the distal nephron.
Collapse
|
58
|
Takeda AN, Pinon GM, Bens M, Fagart J, Rafestin-Oblin ME, Vandewalle A. The synthetic androgen methyltrienolone (r1881) acts as a potent antagonist of the mineralocorticoid receptor. Mol Pharmacol 2006; 71:473-82. [PMID: 17105867 DOI: 10.1124/mol.106.031112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aldosterone binds to the mineralocorticoid receptor (MR) and exerts fine control over Na+ absorption in renal collecting duct cells (CCDs). Many natural and synthetic steroids can also bind to the MR to produce agonist or antagonist effects. Here, we investigate whether androgenic hormones act as MR agonist or antagonist ligands in CCDs. Testosterone (T), dihydrotestosterone (DHT), and methyltrienolone (R1881), a synthetic androgen agonist, all bind to the MR. R1881 displayed the same affinity for MR as aldosterone. Androgens did not activate the MR transiently expressed in human embryonic kidney 293T cells but did antagonize aldosterone-induced MR trans-activation activity (R1881>DHT>T). Short-circuit current (Isc) experiments, used to measure transepithelial Na+ transport, revealed that 10(-5) M T and DHT or R1881 prevented the increase in the amiloride-sensitive component of Isc caused by aldosterone in mouse mpkCCDcl4 collecting duct cells partially and totally, respectively. In contrast, androgens had no effect on stimulated Isc elicited by the specific glucocorticoid agonist 11beta,17beta-dihydroxy-17alpha-(1-propynyl) and rost-1,4,6-trien-3-one (RU26988). Docking of steroids within the crystal structure of the ligand-binding domain of MR, together with trans-activation studies, revealed that the contacts between the 17beta-hydroxyl group of androgens and the Asn770, Cys942, and Thr945 residues of the ligand-binding cavity stabilize ligand binding complexes but are not strong enough to keep the receptor in its active state. Altogether, these findings indicate that androgen ligands, particularly R1881, act as MR antagonists in aldosterone target cells and provide new insights into the requirements for MR activation to occur and for the designing of new selective MR antagonists.
Collapse
|
59
|
Chassin C, Goujon JM, Darche S, du Merle L, Bens M, Cluzeaud F, Werts C, Ogier-Denis E, Le Bouguénec C, Buzoni-Gatel D, Vandewalle A. Renal collecting duct epithelial cells react to pyelonephritis-associated Escherichia coli by activating distinct TLR4-dependent and -independent inflammatory pathways. THE JOURNAL OF IMMUNOLOGY 2006; 177:4773-84. [PMID: 16982918 DOI: 10.4049/jimmunol.177.7.4773] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
TLR4 plays a central role in resistance to pyelonephritis caused by uropathogenic Escherichia coli (UPEC). It has been suggested that renal tubule epithelial cells expressing TLRs may play a key role in inflammatory disorders and in initiating host defenses. In this study we used an experimental mouse model of ascending urinary tract infection to show that UPEC isolates preferentially adhered to the apical surface of medullary collecting duct (MCD) intercalated cells. UPEC-infected C3H/HeJ (Lps(d)) mice carrying an inactivating mutation of tlr4 failed to clear renal bacteria and exhibited a dramatic slump in proinflammatory mediators as compared with infected wild-type C3H/HeOuJ (Lps(n)) mice. However, the level of expression of the leukocyte chemoattractants MIP-2 and TNF-alpha still remained greater in UPEC-infected than in naive C3H/HeJ (Lps(d)) mice. Using primary cultures of microdissected Lps(n) MCDs that expressed TLR4 and its accessory molecules MD2, MyD88, and CD14, we also show that UPECs stimulated both a TLR4-mediated, MyD88-dependent, TIR domain-containing adaptor-inducing IFN-beta-independent pathway and a TLR4-independent pathway, leading to bipolarized secretion of MIP-2. Stimulation by UPECs of the TLR4-mediated pathway in Lps(n) MCDs leads to the activation of NF-kappaB, and MAPK p38, ERK1/2, and JNK. In addition, UPECs stimulated TLR4-independent signaling by activating a TNF receptor-associated factor 2-apoptosis signal-regulatory kinase 1-JNK pathway. These findings demonstrate that epithelial collecting duct cells are actively involved in the initiation of an immune response via several distinct signaling pathways and suggest that intercalated cells play an active role in the recognition of UPECs colonizing the kidneys.
Collapse
|
60
|
Hayes SL, Lye BR, Lye DJ, Rodgers MR, Stelma G, Malard JM, Vandewalle A, Vesper SJ. Identification by microarray of a common pattern of gene expression in intact intestine and cultured intestinal cells exposed to virulent Aeromonas hydrophila isolates. JOURNAL OF WATER AND HEALTH 2006; 4:381-8. [PMID: 17036845 DOI: 10.2166/wh.2006.521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The genus Aeromonas comprises known virulent and avirulent isolates and has been implicated in waterborne disease. A common infection model of human gastroenteritis associated with A. hydrophila uses neonatal mice. The goal of this research was to evaluate whether a murine small intestinal cell line could provide comparable results to the gene expression changes in the neonatal mouse model. Changes in mRNA expression in host cell cultures and intestinal tissues were measured after exposure to virulent Aeromonas hydrophila strains. A. hydrophila caused the up-regulation of more than 200 genes in neonates and over 50 genes in cell culture. Twenty-six genes were found to be in common between the two models, of which the majority are associated with the innate immune response.
Collapse
|
61
|
Bens M, Chassin C, Vandewalle A. Regulation of NaCl transport in the renal collecting duct: lessons from cultured cells. Pflugers Arch 2006; 453:133-46. [PMID: 16937117 DOI: 10.1007/s00424-006-0123-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 06/14/2006] [Accepted: 06/19/2006] [Indexed: 11/29/2022]
Abstract
The fine control of NaCl absorption regulated by hormones takes place in the distal nephron of the kidney. In collecting duct principal cells, the epithelial sodium channel (ENaC) mediates the apical entry of Na(+), which is extruded by the basolateral Na(+),K(+)-ATPase. Simian virus 40-transformed and "transimmortalized" collecting duct cell lines, derived from transgenic mice carrying a constitutive, conditionally, or tissue-specific promoter-regulated large T antigen, have been proven to be valuable tools for studying the mechanisms controlling the cell surface expression and trafficking of ENaC and Na(+),K(+)-ATPase. These cell lines have made it possible to identify sets of aldosterone- and vasopressin-stimulated proteins, and have provided new insights into the concerted mechanism of action of serum- and glucocorticoid-inducible kinase 1 (Sgk1), ubiquitin ligase Nedd4-2 (neural precursor cell-expressed, developmentally down-regulated protein 4-2), and 14-3-3 regulatory proteins in modulating ENaC-mediated Na(+) currents. Epidermal growth factor and induced leucine zipper protein have also been shown to repress and stimulate ENaC-dependent Na(+) absorption, respectively, by activating or repressing the mitogen-activated protein kinase externally regulated kinase(1/2). Overall, these findings have provided evidence suggesting that multiple pathways are involved in regulating NaCl absorption in the distal nephron.
Collapse
|
62
|
Umenishi F, Narikiyo T, Vandewalle A, Schrier RW. cAMP regulates vasopressin-induced AQP2 expression via protein kinase A-independent pathway. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1100-5. [PMID: 16844078 DOI: 10.1016/j.bbamem.2006.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 05/31/2006] [Accepted: 06/01/2006] [Indexed: 11/29/2022]
Abstract
The regulation of AVP-induced AQP2 expression was investigated in the present study. AVP administration induced AQP2 expression in a dose-dependent manner in association with an increase in intracellular cAMP concentration. PKA activity was stimulated by AVP but PKA inhibitors did not block the upregulation of AQP2 expression. However, AVP also activated both ERK and CREB pathways, and ERK inhibitor attenuated the upregulation of AQP2 expression. These results therefore indicate that the effect of AVP stimulation to upregulate AQP2 expression involves a PKA-independent pathway.
Collapse
|
63
|
Vandewalle A. [Regulation by vasopressin of NaCl absorption in the renal collecting duct]. ACTA ACUST UNITED AC 2006; 199:361-8. [PMID: 16738531 DOI: 10.1051/jbio:2005038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In the kidney, the fine control of NaCl absorption takes place in the distal nephron and is controlled by aldosterone and vasopressin. This review summarizes the effects of vasopressin on Na+ transport mediated by the amiloride-sensitive epithelial sodium channel (ENaC) and the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel in immortalized or primary cultured cortical collecting duct cells, expressing either the wild-type ENaC subunits, or mutations, or deletions of the PY domain of the beta- or gamma-ENaC subunits responsible for Liddle's syndrome, an inherited form of hypertension due to excessive salt absorption.
Collapse
|
64
|
Godiwala NT, Vandewalle A, Ward HD, Leav BA. Quantification of in vitro and in vivo Cryptosporidium parvum infection by using real-time PCR. Appl Environ Microbiol 2006; 72:4484-8. [PMID: 16751574 PMCID: PMC1489663 DOI: 10.1128/aem.00189-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 04/09/2006] [Indexed: 11/20/2022] Open
Abstract
Established methods for quantifying experimental Cryptosporidium infection are highly variable and subjective. We describe a new technique using quantitative real-time PCR (qPCR) that can be used to measure in vitro and in vivo laboratory infections with Cryptosporidium. We show for the first time that qPCR permits absolute quantification of the parasite while simultaneously controlling for the amount of host tissue and correlates significantly with established methods of quantification in in vitro and in vivo laboratory models of infection.
Collapse
|
65
|
Yang CW, Hung CC, Wu MS, Tian YC, Chang CT, Pan MJ, Vandewalle A. Toll-like receptor 2 mediates early inflammation by leptospiral outer membrane proteins in proximal tubule cells. Kidney Int 2006; 69:815-22. [PMID: 16437059 DOI: 10.1038/sj.ki.5000119] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tubulointerstitial nephritis is a cardinal renal manifestation in leptospirosis and LipL32, the major lipoprotein component of leptospiral outer membrane proteins (OMPs), induces a robust inflammatory response in cultured renal proximal tubule cells through a nuclear factor-kappaB-related pathway. Here, we investigated whether Toll-like receptor (TLR), known to play a pivotal role in innate immunity, could mediate the inflammatory response induced by leptospiral OMPs in renal proximal tubule cells. TLR expression was analyzed by flow cytometry and indirect immunofluorescence in cultured mouse proximal tubule (pyruvate kinase simian virus 40-proximal straight (PKSV-PR)) cells. Reverse transcription-competitive polymerase chain reaction and enzyme-linked immunosorbent assay were undertaken to analyze the inducible effects of inducible nitric oxide synthase (iNOS) and monocyte chemoattractant protein-1 (MCP-1 also termed CCL2) by pathogenic and non-pathogenic leptospiral OMPs and recombinant lipoproteins in either PKSV-PR cells or TLR-transfected human embryonic kidney (HEK) 293 cells. Anti-TLR antibodies were used for blocking experiments. Leptospira santarosai serovar Shermani OMPs and LipL32 induced a significant increase in TLR2 but not TLR4 expression in PKSV-PR cells. The increase in iNOS and CCL2/MCP-1 mRNA expressions could be prevented by an anti-TLR2 antibody, but not by an anti-TLR4 antibody. Furthermore, leptospiral OMPs stimulated both CCL2/MCP-1 mRNA and secreted protein in transfected HEK 293 cells with a TLR2-expressing plasmid, but had no effect in cells with a TLR4-expressing plasmid. In conclusion, these findings indicate that the stimulation of iNOS and CCL2/MCP-1 caused by pathogenic leptospiral OMPs, in particular LipL32, in proximal tubule cells requires TLR2 for the early inflammatory response.
Collapse
|
66
|
Hung CC, Chang CT, Chen KH, Tian YC, Wu MS, Pan MJ, Vandewalle A, Yang CW. Upregulation of chemokine CXCL1/KC by leptospiral membrane lipoprotein preparation in renal tubule epithelial cells. Kidney Int 2006; 69:1814-22. [PMID: 16625148 DOI: 10.1038/sj.ki.5000362] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have previously shown that leptospiral membrane lipoprotein preparation (LMLP) extracted from pathogenic Leptospira santarosai serovar Shermani stimulates the secretion of pro-inflammatory mediators in renal tubule epithelial cells, and implicated its role in the initiation of tubulointerstitial nephritis. Renal tubulointerstitial injury is characterized by inflammatory cell infiltrate; however, the stimuli for leukocyte recruitment are not fully understood. Initial studies by cytokine protein array analysis revealed significant upregulation of neutrophil-chemoattractant keratinocyte-derived chemokine (CXCL1/KC) at nanogram range of LMLP stimulation in cultured murine proximal tubule cells (PTCs). As PTCs express Toll-like receptors (TLRs), this study investigated the roles of TLR signaling pathways in PTCs stimulated by LMLP and its relation to CXCL1/KC secretion. The LMLP stimulated the early secretion of CXCL1/KC and enhanced the level of TLR2 mRNA expression in PTCs through time- and dose-dependent effect. The LMLP-stimulated secretion of human growth-related oncogene alpha, a functional homolog to murine KC, in TLR-defective human embryonic kidney 293 cells transiently transfected with TLR2-expressing plasmids and the response was augmented by coexpression of TLR1 and TLR2. Moreover, silencing of TLR2, myeloid differentiation factor 88, and TNF receptor-associated factor 6 with specific small interfering RNA significantly reduces the response caused by LMLP in PTCs. The LMLP-stimulated CXCL1/KC secretion was also significantly reduced by pre-incubating PTCs with a specific p38 inhibitor. These results indicate that LMLP stimulates the production of CXCL1/KC to recruit polymorphonuclear neutrophils at the site of inflammation through a TLR2-mediated pathway in renal tubule cells.
Collapse
MESH Headings
- Animals
- Bacterial Outer Membrane Proteins/immunology
- Cell Line
- Cells, Cultured
- Chemokines, CXC/analysis
- Chemokines, CXC/genetics
- Chemokines, CXC/metabolism
- Dose-Response Relationship, Drug
- Epithelial Cells/drug effects
- Epithelial Cells/immunology
- Epithelial Cells/metabolism
- Humans
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/immunology
- Kidney Tubules, Proximal/parasitology
- Kinetics
- Leptospira/chemistry
- Lipoproteins/immunology
- Lipoproteins/pharmacology
- Mice
- Mice, Transgenic
- RNA, Messenger/analysis
- Toll-Like Receptor 2/analysis
- Toll-Like Receptor 2/metabolism
- Up-Regulation
Collapse
|
67
|
Guichard C, Pedruzzi E, Fay M, Marie JC, Braut-Boucher F, Daniel F, Grodet A, Gougerot-Pocidalo MA, Chastre E, Kotelevets L, Lizard G, Vandewalle A, Driss F, Ogier-Denis E. Dihydroxyphenylethanol induces apoptosis by activating serine/threonine protein phosphatase PP2A and promotes the endoplasmic reticulum stress response in human colon carcinoma cells. Carcinogenesis 2006; 27:1812-27. [PMID: 16524888 DOI: 10.1093/carcin/bgl009] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The search for effective chemopreventive compounds is a major challenge facing research into preventing the progression of cancer cells. The naturally occurring polyphenol antioxidants look very promising, but their mechanism of action still remains poorly understood. Here, we show that 2-(3,4-dihydroxyphenyl)ethanol (DPE), a phenol antioxidant derived from olive oil, induces growth arrest and apoptosis in human colon carcinoma HT-29 cells. The mechanisms involve prolonged stress of the endoplasmic reticulum (ER) leading to the activation of the two main branches of the unfolded protein response (UPR), including the Ire1/XBP-1/GRP78/Bip and PERK/eIF2alpha arms. DPE treatment led to overexpression of the pro-apoptotic factor CHOP/GADD153 and persistent activation of the Jun-NH2-terminal kinase/activator protein-1 signaling pathway. DPE concomitantly modulated the extracellular signal-regulated kinase 1/2 and Akt/PKB pro-survival factors by altering their phosphorylation status as well as inhibiting tumor necrosis factor-alpha-induced nuclear factor-kappaB activation by inactivating the phosphorylation of nuclear factor inhibitor-kappaB kinase. These findings prompted us to investigate the possible involvement of phosphatases in DPE-mediated action. Using phosphatase inhibitors and RNA interference to silence the Ser/Thr phosphatase 2A (PP2A) prevented DPE-induced cell death. These findings demonstrate that DPE specifically activates PP2A, which plays a key initiating role in various pathways that lead to apoptosis in colon cancer cells.
Collapse
|
68
|
Li Y, Shaw S, Kamsteeg EJ, Vandewalle A, Deen PMT. Development of lithium-induced nephrogenic diabetes insipidus is dissociated from adenylyl cyclase activity. J Am Soc Nephrol 2006; 17:1063-72. [PMID: 16495377 DOI: 10.1681/asn.2005080884] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In antidiuresis, vasopressin (AVP) occupation of V2 receptors in renal collecting ducts activates adenylyl cyclase, resulting in increased intracellular cAMP levels, which activates protein kinase A (PKA). PKA phosphorylates both the cAMP responsive element binding protein, which induces aquaporin-2 (AQP2) transcription, and AQP2, which then is translocated to the apical membrane, allowing urine concentration. Lithium treatment often causes nephrogenic diabetes insipidus (NDI), which coincides with decreased AQP2 expression and which generally is ascribed to reduced adenylyl cyclase activity. However, the underlying mechanism by which lithium causes NDI is poorly understood. This study demonstrated that the mouse cortical collecting duct mpkCCD(c14) cells are a good model; the deamino-8 D-arginine vasopressin (dDAVP)-induced endogenous AQP2 expression and plasma membrane localization was time-dependently reduced by treatment with clinically relevant lithium concentrations. Lithium did not affect AQP2 stability but decreased its mRNA levels. Surprising, the effect of lithium was cAMP independent; it did not alter AVP-stimulated cAMP production or PKA-dependent phosphorylation of AQP2 or cAMP responsive element binding protein. In vivo, kidney tissue of rats with lithium-induced NDI indeed generated less dDAVP-induced cAMP than that of controls, but this could be due to elevated blood AVP levels in rats with lithium-induced NDI. Indeed, Brattleboro rats, which lack endogenous AVP, with clamped blood dDAVP levels, showed no difference in dDAVP-generated cAMP generation between kidneys of rats with lithium-induced NDI and control rats. In conclusion, the first proper cell model to study lithium-induced NDI was developed, and it was demonstrated that the lithium-induced downregulation of AQP2 and development of NDI occur independent of adenylyl cyclase activity in vitro and in vivo.
Collapse
|
69
|
Khouri N, de Beauregard MAC, Tassart M, Callard P, Verdet C, Rossier A, Elbim C, Gougerot-Pocidalo MA, Le Bouguénec C, Rondeau E, Vandewalle A. An unusual case of dramatic acute bilateral pyelonephritis with systemic bacterial dissemination caused by uropathogenic Escherichia coli. Nephrol Dial Transplant 2006; 21:1423-6. [PMID: 16431892 DOI: 10.1093/ndt/gfk059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
70
|
Vinciguerra M, Mordasini D, Vandewalle A, Feraille E. Hormonal and nonhormonal mechanisms of regulation of the NA,K-pump in collecting duct principal cells. Semin Nephrol 2005; 25:312-21. [PMID: 16139686 DOI: 10.1016/j.semnephrol.2005.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the kidney, the collecting duct (CD) is the site of final Na+ reabsorption, according to Na+ balance requirements. In this segment of the renal tubule, principal cells may reabsorb up to 5% of the filtered sodium. The driving force for this process is provided by the basolateral Na,K-adenosine triphosphatase (ATPase) (sodium pump). Na,K-ATPase activity and expression in the CD are modulated physiologically by hormones (aldosterone, vasopressin, and insulin) and nonhormonal factors including intracellular [Na+] and extracellular osmolality. In this article, we review the short- and long-term hormonal regulation of Na,K-ATPase in CD principal cells, and we analyze the integrated network of implicated signaling pathways with an emphasis on the latest findings.
Collapse
|
71
|
Hung CC, Chang CT, Tian YC, Wu MS, Yu CC, Pan MJ, Vandewalle A, Yang CW. Leptospiral membrane proteins stimulate pro-inflammatory chemokines secretion by renal tubule epithelial cells through toll-like receptor 2 and p38 mitogen activated protein kinase. Nephrol Dial Transplant 2005; 21:898-910. [PMID: 16339163 DOI: 10.1093/ndt/gfi316] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Leptospiral membrane proteins extracted from pathogenic Leptospira santarosai serovar Shermani (LMPS) stimulated pro-inflammatory chemokines production in cultured mouse proximal tubule epithelial cells (PTECs) and implicated its role in the pathogenesis of leptospira-induced tubulointerstitial nephritis. PTECs express the functional TLR2 and TLR4, which have been shown to play essential roles in innate immunity. This study investigated the roles of Toll-like receptors (TLRs) and mitogen-activated protein kinases (MAPKs) signalling pathways in the pathogenesis of leptospira-induced tubulointerstitial nephritis. METHODS The immortalized mouse PKSV-PR late PTECs were used as the model system. The genes expression and secretion of CCL2/monocyte chemoattractant protein-1 (CCL2/MCP-1) and CXCL2/macrophage inflammatory protein-2 (CXCL2/MIP-2) were measured by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme linked immunosorbent assay (ELISA). We investigated MAPKs signalling pathways by Western blot and their reciprocal roles by specific inhibitors. A specific TLR2 neutralizing antibody was applied to evaluate the crosstalk between TLR2 and MAPKs. RESULTS The LMPS stimulated extracellular signal-regulated kinases (ERK1/2), c-Jun N-terminal kinases (JNKs) and p38 mitogen-activated protein kinase (p38 MAPK), initiated the nuclear transcription factor kappaB (NF-kappaB), and enhanced the secretion of CCL2/MCP-1 and CXCL2/MIP-2. The LMPS also unregulated the level of TLR2 mRNA expression in PTECs through time- and dose-dependent effects. The LMPS enhanced the secretion of CCL2/MCP-1 and CXCL8/interleukin-8 (CXCL8/IL-8) in TLR-defective human embryonic kidney (HEK) 293 cells only when transfected with a TLR2 expressing plasmid. The secretions of CCL2/MCP-1 and CXCL2/MIP-2 stimulated by LMPS were significantly reduced by incubating PTECs with SB203580, an inhibitor of p38 MAPK. Furthermore, a neutralizing anti-mouse TLR2 antibody hindered the phosphorylation of p38 and LMPS-stimulated secretion of CCL2/MCP-1 and CXCL2/MIP-2. CONCLUSION These findings demonstrate that activation of p38 MAPK and release of chemokines by LMPS are mediated by TLR2 in renal proximal tubule cells. These results also implicate the crucial role of innate immunity in leptospira-induced tubulointerstitial nephritis.
Collapse
|
72
|
Helms MN, Liu L, Liang YY, Al-Khalili O, Vandewalle A, Saxena S, Eaton DC, Ma HP. Phosphatidylinositol 3,4,5-Trisphosphate Mediates Aldosterone Stimulation of Epithelial Sodium Channel (ENaC) and Interacts with γ-ENaC. J Biol Chem 2005; 280:40885-91. [PMID: 16204229 DOI: 10.1074/jbc.m509646200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Whole cell voltage clamp experiments were performed in a mouse cortical collecting duct principal cell line using patch pipettes back-filled with a solution containing phosphatidylinositol 3,4,5-trisphosphate (PIP(3)). PIP(3) significantly increased amiloridesensitive current in control cells but not in the cells prestimulated by aldosterone. Additionally, aldosterone stimulated amiloridesensitive current in control cells, but not in the cells that expressed a PIP(3)-binding protein (Grp1-PH), which sequestered intracellular PIP(3). 12 amino acids from the N-terminal tail (APGEKIKAKIKK) of gamma-epithelial sodium channel (gamma-ENaC) were truncated by PCRbased mutagenesis (gammaT-ENaC). Whole cell and confocal microscopy experiments were conducted in Madin-Darby canine kidney cells co-expressing alpha- and beta-ENaC only or with either gamma-ENaC or gamma(T)-ENaC. The data demonstrated that the N-terminal tail truncation significantly decreased amiloride-sensitive current and that both the N-terminal tail truncation and LY-294002 (a PI3K inhibitor) prevented ENaC translocation to the plasmamembrane. These data suggest that PIP(3) mediates aldosterone-induced ENaC activity and trafficking and that the N-terminal tail of gamma-ENaC is necessary for channel trafficking, probably channel gating as well. Additionally, we demonstrated a novel interaction between gamma-ENaC and PIP(3).
Collapse
|
73
|
Guichard C, Pedruzzi E, Dewas C, Fay M, Pouzet C, Bens M, Vandewalle A, Ogier-Denis E, Gougerot-Pocidalo MA, Elbim C. Interleukin-8-induced priming of neutrophil oxidative burst requires sequential recruitment of NADPH oxidase components into lipid rafts. J Biol Chem 2005; 280:37021-32. [PMID: 16115878 DOI: 10.1074/jbc.m506594200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The superoxide-producing phagocyte NADPH oxidase consists of a membrane-bound flavocytochrome b(558), the cytosol factors p47(phox), p67(phox), p40(phox), and the small GTPase Rac2, which translocate to the membrane to assemble the active complex following neutrophil activation. Interleukin-8 (IL-8) does not activate NADPH oxidase, but potentiates the oxidative burst induced by stimuli such as formyl-methionyl-leucyl-phenylalanine (fMLP) via a priming mechanism. The effect of IL-8 on the components of NADPH oxidase during the priming process has never been investigated in human neutrophils. Here we showed that within 3 min, IL-8 treatment enhanced the Btk- and ERK1/2-dependent phosphorylation of p47(phox), as well as the recruitment of flavocytochrome b(558), p47(phox), and Rac2 into cholesterol-enriched detergent-resistant microdomains (or lipid rafts). Conversely, IL-8 treatment lasting 15 min failed to recruit flavocytochrome b(558), p47(phox), or Rac2, but did enhance the Btk- and p38 MAPK-dependent phosphorylation and the translocation of p67(phox) into detergent-resistant microdomains. Moreover, methyl-beta-cyclodextrin, which disrupts lipid rafts, inhibited IL-8-induced priming in response to fMLP. Our findings indicate that IL-8-induced priming of the oxidative burst in response to fMLP involves a sequential assembly of the NADPH oxidase components in the lipid rafts of neutrophils.
Collapse
|
74
|
Soundararajan R, Zhang TT, Wang J, Vandewalle A, Pearce D. A novel role for glucocorticoid-induced leucine zipper protein in epithelial sodium channel-mediated sodium transport. J Biol Chem 2005; 280:39970-81. [PMID: 16216878 DOI: 10.1074/jbc.m508658200] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The steroid hormone aldosterone stimulates sodium (Na+) transport in tight epithelia by altering the expression of target genes that regulate the activity and trafficking of the epithelial sodium channel (ENaC). We performed microarray analysis to identify aldosterone-regulated transcripts in mammalian kidney epithelial cells (mpkC-CD(c14)). One target, glucocorticoid-induced leucine zipper protein (GILZ), was previously identified by serial analysis of gene expression (SAGE); however, its function in epithelial ion transport was unknown. Here we show that GILZ expression is rapidly stimulated by aldosterone in mpkCCD(c14) and that GILZ, in turn, strongly stimulates ENaC-mediated Na+ transport by inhibiting extracellular signal-regulated kinase (ERK) signaling. In Xenopus oocytes with activated ERK, heterologous GILZ expression consistently inhibited phospho-ERK expression and markedly stimulated ENaC-mediated Na+ current, in a manner similar to that of U0126 (a pharmacologic inhibitor of ERK signaling). In mpkCCD(c14) cells, GILZ transfection similarly consistently inhibited phospho-ERK expression and stimulated transepithelial Na+ transport. Furthermore, aldosterone treatment of mpkCCD(c14) cells suppressed phospho-ERK levels with a time course that paralleled their increase of Na+ transport. Finally, GILZ expression markedly increased cell surface ENaC expression in epidermal growth factor-treated mammalian kidney epithelial cells, HEK 293. These observations suggest a novel link between GILZ and regulation of epithelial sodium transport through modulation of ERK signaling and could represent an important pathway for mediating aldosterone actions in health and disease.
Collapse
|
75
|
Bhalla V, Daidié D, Li H, Pao AC, LaGrange LP, Wang J, Vandewalle A, Stockand JD, Staub O, Pearce D. Serum- and glucocorticoid-regulated kinase 1 regulates ubiquitin ligase neural precursor cell-expressed, developmentally down-regulated protein 4-2 by inducing interaction with 14-3-3. Mol Endocrinol 2005; 19:3073-84. [PMID: 16099816 DOI: 10.1210/me.2005-0193] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Serum- and glucocorticoid-regulated kinase 1 (SGK1) is an aldosterone-regulated early response gene product that regulates the activity of several ion transport proteins, most notably that of the epithelial sodium channel (ENaC). Recent evidence has established that SGK1 phosphorylates and inhibits Nedd4-2 (neural precursor cell-expressed, developmentally down-regulated protein 4-2), a ubiquitin ligase that decreases cell surface expression of the channel and possibly stimulates its degradation. The mechanistic basis for this SGK1-induced Nedd4-2 inhibition is currently unknown. In this study we show that SGK1-mediated phosphorylation of Nedd4-2 induces its interaction with members of the 14-3-3 family of regulatory proteins. Through functional characterization of Nedd4-2-mutant proteins, we demonstrate that this interaction is required for SGK1-mediated inhibition of Nedd4-2. The concerted action of SGK1 and 14-3-3 appears to disrupt Nedd4-2-mediated ubiquitination of ENaC, thus providing a mechanism by which SGK1 modulates the ENaC-mediated Na(+) current. Finally, the expression pattern of 14-3-3 is also consistent with a functional role in distal nephron Na(+) transport. These results demonstrate a novel, physiologically significant role for 14-3-3 proteins in modulating ubiquitin ligase-dependent pathways in the control of epithelial ion transport.
Collapse
|