51
|
Bodicoat DH, Schoemaker MJ, Jones ME, McFadden E, Griffin J, Ashworth A, Swerdlow AJ. Correction to: Timing of pubertal stages and breast cancer risk: the Breakthrough Generations Study. Breast Cancer Res 2020; 22:19. [PMID: 32046759 PMCID: PMC7014730 DOI: 10.1186/s13058-020-1257-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
52
|
Escala-Garcia M, Abraham J, Andrulis IL, Anton-Culver H, Arndt V, Ashworth A, Auer PL, Auvinen P, Beckmann MW, Beesley J, Behrens S, Benitez J, Bermisheva M, Blomqvist C, Blot W, Bogdanova NV, Bojesen SE, Bolla MK, Børresen-Dale AL, Brauch H, Brenner H, Brucker SY, Burwinkel B, Caldas C, Canzian F, Chang-Claude J, Chanock SJ, Chin SF, Clarke CL, Couch FJ, Cox A, Cross SS, Czene K, Daly MB, Dennis J, Devilee P, Dunn JA, Dunning AM, Dwek M, Earl HM, Eccles DM, Eliassen AH, Ellberg C, Evans DG, Fasching PA, Figueroa J, Flyger H, Gago-Dominguez M, Gapstur SM, García-Closas M, García-Sáenz JA, Gaudet MM, George A, Giles GG, Goldgar DE, González-Neira A, Grip M, Guénel P, Guo Q, Haiman CA, Håkansson N, Hamann U, Harrington PA, Hiller L, Hooning MJ, Hopper JL, Howell A, Huang CS, Huang G, Hunter DJ, Jakubowska A, John EM, Kaaks R, Kapoor PM, Keeman R, Kitahara CM, Koppert LB, Kraft P, Kristensen VN, Lambrechts D, Le Marchand L, Lejbkowicz F, Lindblom A, Lubiński J, Mannermaa A, Manoochehri M, Manoukian S, Margolin S, Martinez ME, Maurer T, Mavroudis D, Meindl A, Milne RL, Mulligan AM, Neuhausen SL, Nevanlinna H, Newman WG, Olshan AF, Olson JE, Olsson H, Orr N, Peterlongo P, Petridis C, Prentice RL, Presneau N, Punie K, Ramachandran D, Rennert G, Romero A, Sachchithananthan M, Saloustros E, Sawyer EJ, Schmutzler RK, Schwentner L, Scott C, Simard J, Sohn C, Southey MC, Swerdlow AJ, Tamimi RM, Tapper WJ, Teixeira MR, Terry MB, Thorne H, Tollenaar RAEM, Tomlinson I, Troester MA, Truong T, Turnbull C, Vachon CM, van der Kolk LE, Wang Q, Winqvist R, Wolk A, Yang XR, Ziogas A, Pharoah PDP, Hall P, Wessels LFA, Chenevix-Trench G, Bader GD, Dörk T, Easton DF, Canisius S, Schmidt MK. A network analysis to identify mediators of germline-driven differences in breast cancer prognosis. Nat Commun 2020; 11:312. [PMID: 31949161 PMCID: PMC6965101 DOI: 10.1038/s41467-019-14100-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 12/17/2019] [Indexed: 11/09/2022] Open
Abstract
Identifying the underlying genetic drivers of the heritability of breast cancer prognosis remains elusive. We adapt a network-based approach to handle underpowered complex datasets to provide new insights into the potential function of germline variants in breast cancer prognosis. This network-based analysis studies ~7.3 million variants in 84,457 breast cancer patients in relation to breast cancer survival and confirms the results on 12,381 independent patients. Aggregating the prognostic effects of genetic variants across multiple genes, we identify four gene modules associated with survival in estrogen receptor (ER)-negative and one in ER-positive disease. The modules show biological enrichment for cancer-related processes such as G-alpha signaling, circadian clock, angiogenesis, and Rho-GTPases in apoptosis.
Collapse
|
53
|
Fachal L, Aschard H, Beesley J, Barnes DR, Allen J, Kar S, Pooley KA, Dennis J, Michailidou K, Turman C, Soucy P, Lemaçon A, Lush M, Tyrer JP, Ghoussaini M, Moradi Marjaneh M, Jiang X, Agata S, Aittomäki K, Alonso MR, Andrulis IL, Anton-Culver H, Antonenkova NN, Arason A, Arndt V, Aronson KJ, Arun BK, Auber B, Auer PL, Azzollini J, Balmaña J, Barkardottir RB, Barrowdale D, Beeghly-Fadiel A, Benitez J, Bermisheva M, Białkowska K, Blanco AM, Blomqvist C, Blot W, Bogdanova NV, Bojesen SE, Bolla MK, Bonanni B, Borg A, Bosse K, Brauch H, Brenner H, Briceno I, Brock IW, Brooks-Wilson A, Brüning T, Burwinkel B, Buys SS, Cai Q, Caldés T, Caligo MA, Camp NJ, Campbell I, Canzian F, Carroll JS, Carter BD, Castelao JE, Chiquette J, Christiansen H, Chung WK, Claes KBM, Clarke CL, Collée JM, Cornelissen S, Couch FJ, Cox A, Cross SS, Cybulski C, Czene K, Daly MB, de la Hoya M, Devilee P, Diez O, Ding YC, Dite GS, Domchek SM, Dörk T, Dos-Santos-Silva I, Droit A, Dubois S, Dumont M, Duran M, Durcan L, Dwek M, Eccles DM, Engel C, Eriksson M, Evans DG, Fasching PA, Fletcher O, Floris G, Flyger H, Foretova L, Foulkes WD, Friedman E, Fritschi L, Frost D, Gabrielson M, Gago-Dominguez M, Gambino G, Ganz PA, Gapstur SM, Garber J, García-Sáenz JA, Gaudet MM, Georgoulias V, Giles GG, Glendon G, Godwin AK, Goldberg MS, Goldgar DE, González-Neira A, Tibiletti MG, Greene MH, Grip M, Gronwald J, Grundy A, Guénel P, Hahnen E, Haiman CA, Håkansson N, Hall P, Hamann U, Harrington PA, Hartikainen JM, Hartman M, He W, Healey CS, Heemskerk-Gerritsen BAM, Heyworth J, Hillemanns P, Hogervorst FBL, Hollestelle A, Hooning MJ, Hopper JL, Howell A, Huang G, Hulick PJ, Imyanitov EN, Isaacs C, Iwasaki M, Jager A, Jakimovska M, Jakubowska A, James PA, Janavicius R, Jankowitz RC, John EM, Johnson N, Jones ME, Jukkola-Vuorinen A, Jung A, Kaaks R, Kang D, Kapoor PM, Karlan BY, Keeman R, Kerin MJ, Khusnutdinova E, Kiiski JI, Kirk J, Kitahara CM, Ko YD, Konstantopoulou I, Kosma VM, Koutros S, Kubelka-Sabit K, Kwong A, Kyriacou K, Laitman Y, Lambrechts D, Lee E, Leslie G, Lester J, Lesueur F, Lindblom A, Lo WY, Long J, Lophatananon A, Loud JT, Lubiński J, MacInnis RJ, Maishman T, Makalic E, Mannermaa A, Manoochehri M, Manoukian S, Margolin S, Martinez ME, Matsuo K, Maurer T, Mavroudis D, Mayes R, McGuffog L, McLean C, Mebirouk N, Meindl A, Miller A, Miller N, Montagna M, Moreno F, Muir K, Mulligan AM, Muñoz-Garzon VM, Muranen TA, Narod SA, Nassir R, Nathanson KL, Neuhausen SL, Nevanlinna H, Neven P, Nielsen FC, Nikitina-Zake L, Norman A, Offit K, Olah E, Olopade OI, Olsson H, Orr N, Osorio A, Pankratz VS, Papp J, Park SK, Park-Simon TW, Parsons MT, Paul J, Pedersen IS, Peissel B, Peshkin B, Peterlongo P, Peto J, Plaseska-Karanfilska D, Prajzendanc K, Prentice R, Presneau N, Prokofyeva D, Pujana MA, Pylkäs K, Radice P, Ramus SJ, Rantala J, Rau-Murthy R, Rennert G, Risch HA, Robson M, Romero A, Rossing M, Saloustros E, Sánchez-Herrero E, Sandler DP, Santamariña M, Saunders C, Sawyer EJ, Scheuner MT, Schmidt DF, Schmutzler RK, Schneeweiss A, Schoemaker MJ, Schöttker B, Schürmann P, Scott C, Scott RJ, Senter L, Seynaeve CM, Shah M, Sharma P, Shen CY, Shu XO, Singer CF, Slavin TP, Smichkoska S, Southey MC, Spinelli JJ, Spurdle AB, Stone J, Stoppa-Lyonnet D, Sutter C, Swerdlow AJ, Tamimi RM, Tan YY, Tapper WJ, Taylor JA, Teixeira MR, Tengström M, Teo SH, Terry MB, Teulé A, Thomassen M, Thull DL, Tischkowitz M, Toland AE, Tollenaar RAEM, Tomlinson I, Torres D, Torres-Mejía G, Troester MA, Truong T, Tung N, Tzardi M, Ulmer HU, Vachon CM, van Asperen CJ, van der Kolk LE, van Rensburg EJ, Vega A, Viel A, Vijai J, Vogel MJ, Wang Q, Wappenschmidt B, Weinberg CR, Weitzel JN, Wendt C, Wildiers H, Winqvist R, Wolk A, Wu AH, Yannoukakos D, Zhang Y, Zheng W, Hunter D, Pharoah PDP, Chang-Claude J, García-Closas M, Schmidt MK, Milne RL, Kristensen VN, French JD, Edwards SL, Antoniou AC, Chenevix-Trench G, Simard J, Easton DF, Kraft P, Dunning AM. Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nat Genet 2020; 52:56-73. [PMID: 31911677 PMCID: PMC6974400 DOI: 10.1038/s41588-019-0537-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 10/24/2019] [Indexed: 02/08/2023]
Abstract
Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.
Collapse
|
54
|
Meagher NS, Wang L, Rambau PF, Intermaggio MP, Huntsman DG, Wilkens LR, El-Bahrawy MA, Ness RB, Odunsi K, Steed H, Herpel E, Anglesio MS, Zhang B, Lambie N, Swerdlow AJ, Lubiński J, Vierkant RA, Goode EL, Menon U, Toloczko-Grabarek A, Oszurek O, Bilic S, Talhouk A, García-Closas M, Wang Q, Tan A, Farrell R, Kennedy CJ, Jimenez-Linan M, Sundfeldt K, Etter JL, Menkiszak J, Goodman MT, Klonowski P, Leung Y, Winham SJ, Moysich KB, Behrens S, Kluz T, Edwards RP, Gronwald J, Modugno F, Hernandez BY, Chow C, Kelemen LE, Keeney GL, Carney ME, Natanzon Y, Robertson G, Sharma R, Gayther SA, Alsop J, Luk H, Karpinskyj C, Campbell I, Sinn P, Gentry-Maharaj A, Coulson P, Chang-Claude J, Shah M, Widschwendter M, Tang K, Schoemaker MJ, Koziak JM, Cook LS, Brenton JD, Daley F, Kristjansdottir B, Mateoiu C, Larson MC, Harnett PR, Jung A, deFazio A, Gorringe KL, Pharoah PDP, Minoo P, Stewart C, Bathe OF, Gui X, Cohen P, Ramus SJ, Köbel M. A combination of the immunohistochemical markers CK7 and SATB2 is highly sensitive and specific for distinguishing primary ovarian mucinous tumors from colorectal and appendiceal metastases. Mod Pathol 2019; 32:1834-1846. [PMID: 31239549 PMCID: PMC8207534 DOI: 10.1038/s41379-019-0302-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 11/08/2022]
Abstract
Primary ovarian mucinous tumors can be difficult to distinguish from metastatic gastrointestinal neoplasms by histology alone. The expected immunoprofile of a suspected metastatic lower gastrointestinal tumor is CK7-/CK20+/CDX2+/PAX8-. This study assesses the addition of a novel marker SATB2, to improve the diagnostic algorithm. A test cohort included 155 ovarian mucinous tumors (105 carcinomas and 50 borderline tumors) and 230 primary lower gastrointestinal neoplasms (123 colorectal adenocarcinomas and 107 appendiceal neoplasms). All cases were assessed for SATB2, PAX8 CK7, CK20, and CDX2 expression on tissue microarrays. Expression was scored in a 3-tier system as absent, focal (1-50% of tumor cells) and diffuse ( >50% of tumor cells) and then categorized into either absent/present or nondiffuse/diffuse. SATB2 and PAX8 expression was further evaluated in ovarian tumors from an international cohort of 2876 patients (expansion cohort, including 159 mucinous carcinomas and 46 borderline mucinous tumors). The highest accuracy of an individual marker in distinguishing lower gastrointestinal from ovarian mucinous tumors was CK7 (91.7%, nondiffuse/diffuse cut-off) followed by SATB2 (88.8%, present/absent cut-off). The most effective combination was CK7 and SATB2 with accuracy of 95.3% using the 3-tier interpretation, absent/focal/diffuse. This combination outperformed the standard clinical set of CK7, CK20 and CDX2 (87.5%). Re-evaluation of outlier cases confirmed ovarian origin for all but one case. The accuracy of SATB2 was confirmed in the expansion cohort (91.5%). SATB2 expression was also detected in 15% of ovarian endometrioid carcinoma but less than 5% of other ovarian histotypes. A simple two marker combination of CK7 and SATB2 can distinguish lower gastrointestinal from ovarian primary mucinous tumors with greater than 95% accuracy. PAX8 and CDX2 have value as second-line markers. The utility of CK20 in this setting is low and this warrants replacement of this marker with SATB2 in clinical practice.
Collapse
|
55
|
Figlioli G, Bogliolo M, Catucci I, Caleca L, Lasheras SV, Pujol R, Kiiski JI, Muranen TA, Barnes DR, Dennis J, Michailidou K, Bolla MK, Leslie G, Aalfs CM, Adank MA, Adlard J, Agata S, Cadoo K, Agnarsson BA, Ahearn T, Aittomäki K, Ambrosone CB, Andrews L, Anton-Culver H, Antonenkova NN, Arndt V, Arnold N, Aronson KJ, Arun BK, Asseryanis E, Auber B, Auvinen P, Azzollini J, Balmaña J, Barkardottir RB, Barrowdale D, Barwell J, Beane Freeman LE, Beauparlant CJ, Beckmann MW, Behrens S, Benitez J, Berger R, Bermisheva M, Blanco AM, Blomqvist C, Bogdanova NV, Bojesen A, Bojesen SE, Bonanni B, Borg A, Brady AF, Brauch H, Brenner H, Brüning T, Burwinkel B, Buys SS, Caldés T, Caliebe A, Caligo MA, Campa D, Campbell IG, Canzian F, Castelao JE, Chang-Claude J, Chanock SJ, Claes KBM, Clarke CL, Collavoli A, Conner TA, Cox DG, Cybulski C, Czene K, Daly MB, de la Hoya M, Devilee P, Diez O, Ding YC, Dite GS, Ditsch N, Domchek SM, Dorfling CM, dos-Santos-Silva I, Durda K, Dwek M, Eccles DM, Ekici AB, Eliassen AH, Ellberg C, Eriksson M, Evans DG, Fasching PA, Figueroa J, Flyger H, Foulkes WD, Friebel TM, Friedman E, Gabrielson M, Gaddam P, Gago-Dominguez M, Gao C, Gapstur SM, Garber J, García-Closas M, García-Sáenz JA, Gaudet MM, Gayther SA, Giles GG, Glendon G, Godwin AK, Goldberg MS, Goldgar DE, Guénel P, Gutierrez-Barrera AM, Haeberle L, Haiman CA, Håkansson N, Hall P, Hamann U, Harrington PA, Hein A, Heyworth J, Hillemanns P, Hollestelle A, Hopper JL, Hosgood HD, Howell A, Hu C, Hulick PJ, Hunter DJ, Imyanitov EN, Isaacs C, Jakimovska M, Jakubowska A, James P, Janavicius R, Janni W, John EM, Jones ME, Jung A, Kaaks R, Karlan BY, Khusnutdinova E, Kitahara CM, Konstantopoulou I, Koutros S, Kraft P, Lambrechts D, Lazaro C, Le Marchand L, Lester J, Lesueur F, Lilyquist J, Loud JT, Lu KH, Luben RN, Lubinski J, Mannermaa A, Manoochehri M, Manoukian S, Margolin S, Martens JWM, Maurer T, Mavroudis D, Mebirouk N, Meindl A, Menon U, Miller A, Montagna M, Nathanson KL, Neuhausen SL, Newman WG, Nguyen-Dumont T, Nielsen FC, Nielsen S, Nikitina-Zake L, Offit K, Olah E, Olopade OI, Olshan AF, Olson JE, Olsson H, Osorio A, Ottini L, Peissel B, Peixoto A, Peto J, Plaseska-Karanfilska D, Pocza T, Presneau N, Pujana MA, Punie K, Rack B, Rantala J, Rashid MU, Rau-Murthy R, Rennert G, Lejbkowicz F, Rhenius V, Romero A, Rookus MA, Ross EA, Rossing M, Rudaitis V, Ruebner M, Saloustros E, Sanden K, Santamariña M, Scheuner MT, Schmutzler RK, Schneider M, Scott C, Senter L, Shah M, Sharma P, Shu XO, Simard J, Singer CF, Sohn C, Soucy P, Southey MC, Spinelli JJ, Steele L, Stoppa-Lyonnet D, Tapper WJ, Teixeira MR, Terry MB, Thomassen M, Thompson J, Thull DL, Tischkowitz M, Tollenaar RA, Torres D, Troester MA, Truong T, Tung N, Untch M, Vachon CM, van Rensburg EJ, van Veen EM, Vega A, Viel A, Wappenschmidt B, Weitzel JN, Wendt C, Wieme G, Wolk A, Yang XR, Zheng W, Ziogas A, Zorn KK, Dunning AM, Lush M, Wang Q, McGuffog L, Parsons MT, Pharoah PDP, Fostira F, Toland AE, Andrulis IL, Ramus SJ, Swerdlow AJ, Greene MH, Chung WK, Milne RL, Chenevix-Trench G, Dörk T, Schmidt MK, Easton DF, Radice P, Hahnen E, Antoniou AC, Couch FJ, Nevanlinna H, Surrallés J, Peterlongo P. The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer. NPJ Breast Cancer 2019; 5:38. [PMID: 31700994 PMCID: PMC6825205 DOI: 10.1038/s41523-019-0127-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/30/2019] [Indexed: 01/12/2023] Open
Abstract
Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM -/- patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors.
Collapse
|
56
|
Jiang X, Finucane HK, Schumacher FR, Schmit SL, Tyrer JP, Han Y, Michailidou K, Lesseur C, Kuchenbaecker KB, Dennis J, Conti DV, Casey G, Gaudet MM, Huyghe JR, Albanes D, Aldrich MC, Andrew AS, Andrulis IL, Anton-Culver H, Antoniou AC, Antonenkova NN, Arnold SM, Aronson KJ, Arun BK, Bandera EV, Barkardottir RB, Barnes DR, Batra J, Beckmann MW, Benitez J, Benlloch S, Berchuck A, Berndt SI, Bickeböller H, Bien SA, Blomqvist C, Boccia S, Bogdanova NV, Bojesen SE, Bolla MK, Brauch H, Brenner H, Brenton JD, Brook MN, Brunet J, Brunnström H, Buchanan DD, Burwinkel B, Butzow R, Cadoni G, Caldés T, Caligo MA, Campbell I, Campbell PT, Cancel-Tassin G, Cannon-Albright L, Campa D, Caporaso N, Carvalho AL, Chan AT, Chang-Claude J, Chanock SJ, Chen C, Christiani DC, Claes KBM, Claessens F, Clements J, Collée JM, Correa MC, Couch FJ, Cox A, Cunningham JM, Cybulski C, Czene K, Daly MB, deFazio A, Devilee P, Diez O, Gago-Dominguez M, Donovan JL, Dörk T, Duell EJ, Dunning AM, Dwek M, Eccles DM, Edlund CK, Edwards DRV, Ellberg C, Evans DG, Fasching PA, Ferris RL, Liloglou T, Figueiredo JC, Fletcher O, Fortner RT, Fostira F, Franceschi S, Friedman E, Gallinger SJ, Ganz PA, Garber J, García-Sáenz JA, Gayther SA, Giles GG, Godwin AK, Goldberg MS, Goldgar DE, Goode EL, Goodman MT, Goodman G, Grankvist K, Greene MH, Gronberg H, Gronwald J, Guénel P, Håkansson N, Hall P, Hamann U, Hamdy FC, Hamilton RJ, Hampe J, Haugen A, Heitz F, Herrero R, Hillemanns P, Hoffmeister M, Høgdall E, Hong YC, Hopper JL, Houlston R, Hulick PJ, Hunter DJ, Huntsman DG, Idos G, Imyanitov EN, Ingles SA, Isaacs C, Jakubowska A, James P, Jenkins MA, Johansson M, Johansson M, John EM, Joshi AD, Kaneva R, Karlan BY, Kelemen LE, Kühl T, Khaw KT, Khusnutdinova E, Kibel AS, Kiemeney LA, Kim J, Kjaer SK, Knight JA, Kogevinas M, Kote-Jarai Z, Koutros S, Kristensen VN, Kupryjanczyk J, Lacko M, Lam S, Lambrechts D, Landi MT, Lazarus P, Le ND, Lee E, Lejbkowicz F, Lenz HJ, Leslie G, Lessel D, Lester J, Levine DA, Li L, Li CI, Lindblom A, Lindor NM, Liu G, Loupakis F, Lubiński J, Maehle L, Maier C, Mannermaa A, Marchand LL, Margolin S, May T, McGuffog L, Meindl A, Middha P, Miller A, Milne RL, MacInnis RJ, Modugno F, Montagna M, Moreno V, Moysich KB, Mucci L, Muir K, Mulligan AM, Nathanson KL, Neal DE, Ness AR, Neuhausen SL, Nevanlinna H, Newcomb PA, Newcomb LF, Nielsen FC, Nikitina-Zake L, Nordestgaard BG, Nussbaum RL, Offit K, Olah E, Olama AAA, Olopade OI, Olshan AF, Olsson H, Osorio A, Pandha H, Park JY, Pashayan N, Parsons MT, Pejovic T, Penney KL, Peters WHM, Phelan CM, Phipps AI, Plaseska-Karanfilska D, Pring M, Prokofyeva D, Radice P, Stefansson K, Ramus SJ, Raskin L, Rennert G, Rennert HS, van Rensburg EJ, Riggan MJ, Risch HA, Risch A, Roobol MJ, Rosenstein BS, Rossing MA, De Ruyck K, Saloustros E, Sandler DP, Sawyer EJ, Schabath MB, Schleutker J, Schmidt MK, Setiawan VW, Shen H, Siegel EM, Sieh W, Singer CF, Slattery ML, Sorensen KD, Southey MC, Spurdle AB, Stanford JL, Stevens VL, Stintzing S, Stone J, Sundfeldt K, Sutphen R, Swerdlow AJ, Tajara EH, Tangen CM, Tardon A, Taylor JA, Teare MD, Teixeira MR, Terry MB, Terry KL, Thibodeau SN, Thomassen M, Bjørge L, Tischkowitz M, Toland AE, Torres D, Townsend PA, Travis RC, Tung N, Tworoger SS, Ulrich CM, Usmani N, Vachon CM, Van Nieuwenhuysen E, Vega A, Aguado-Barrera ME, Wang Q, Webb PM, Weinberg CR, Weinstein S, Weissler MC, Weitzel JN, West CML, White E, Whittemore AS, Wichmann HE, Wiklund F, Winqvist R, Wolk A, Woll P, Woods M, Wu AH, Wu X, Yannoukakos D, Zheng W, Zienolddiny S, Ziogas A, Zorn KK, Lane JM, Saxena R, Thomas D, Hung RJ, Diergaarde B, McKay J, Peters U, Hsu L, García-Closas M, Eeles RA, Chenevix-Trench G, Brennan PJ, Haiman CA, Simard J, Easton DF, Gruber SB, Pharoah PDP, Price AL, Pasaniuc B, Amos CI, Kraft P, Lindström S. Publisher Correction: Shared heritability and functional enrichment across six solid cancers. Nat Commun 2019; 10:4386. [PMID: 31548585 PMCID: PMC6757065 DOI: 10.1038/s41467-019-12095-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Collapse
|
57
|
Dörk T, Peterlongo P, Mannermaa A, Bolla MK, Wang Q, Dennis J, Ahearn T, Andrulis IL, Anton-Culver H, Arndt V, Aronson KJ, Augustinsson A, Freeman LEB, Beckmann MW, Beeghly-Fadiel A, Behrens S, Bermisheva M, Blomqvist C, Bogdanova NV, Bojesen SE, Brauch H, Brenner H, Burwinkel B, Canzian F, Chan TL, Chang-Claude J, Chanock SJ, Choi JY, Christiansen H, Clarke CL, Couch FJ, Czene K, Daly MB, Dos-Santos-Silva I, Dwek M, Eccles DM, Ekici AB, Eriksson M, Evans DG, Fasching PA, Figueroa J, Flyger H, Fritschi L, Gabrielson M, Gago-Dominguez M, Gao C, Gapstur SM, García-Closas M, García-Sáenz JA, Gaudet MM, Giles GG, Goldberg MS, Goldgar DE, Guénel P, Haeberle L, Haiman CA, Håkansson N, Hall P, Hamann U, Hartman M, Hauke J, Hein A, Hillemanns P, Hogervorst FBL, Hooning MJ, Hopper JL, Howell T, Huo D, Ito H, Iwasaki M, Jakubowska A, Janni W, John EM, Jung A, Kaaks R, Kang D, Kapoor PM, Khusnutdinova E, Kim SW, Kitahara CM, Koutros S, Kraft P, Kristensen VN, Kwong A, Lambrechts D, Marchand LL, Li J, Lindström S, Linet M, Lo WY, Long J, Lophatananon A, Lubiński J, Manoochehri M, Manoukian S, Margolin S, Martinez E, Matsuo K, Mavroudis D, Meindl A, Menon U, Milne RL, Mohd Taib NA, Muir K, Mulligan AM, Neuhausen SL, Nevanlinna H, Neven P, Newman WG, Offit K, Olopade OI, Olshan AF, Olson JE, Olsson H, Park SK, Park-Simon TW, Peto J, Plaseska-Karanfilska D, Pohl-Rescigno E, Presneau N, Rack B, Radice P, Rashid MU, Rennert G, Rennert HS, Romero A, Ruebner M, Saloustros E, Schmidt MK, Schmutzler RK, Schneider MO, Schoemaker MJ, Scott C, Shen CY, Shu XO, Simard J, Slager S, Smichkoska S, Southey MC, Spinelli JJ, Stone J, Surowy H, Swerdlow AJ, Tamimi RM, Tapper WJ, Teo SH, Terry MB, Toland AE, Tollenaar RAEM, Torres D, Torres-Mejía G, Troester MA, Truong T, Tsugane S, Untch M, Vachon CM, Ouweland AMWVD, Veen EMV, Vijai J, Wendt C, Wolk A, Yu JC, Zheng W, Ziogas A, Ziv E, Dunning AM, Pharoah PDP, Schindler D, Devilee P, Easton DF. Two truncating variants in FANCC and breast cancer risk. Sci Rep 2019; 9:12524. [PMID: 31467304 PMCID: PMC6715680 DOI: 10.1038/s41598-019-48804-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95%CI 0.44-1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.
Collapse
|
58
|
Johansson A, Palli D, Masala G, Grioni S, Agnoli C, Tumino R, Giurdanella MC, Fasanelli F, Sacerdote C, Panico S, Mattiello A, Polidoro S, Jones ME, Schoemaker MJ, Orr N, Tomczyk K, Johnson N, Fletcher O, Perduca V, Baglietto L, Dugué PA, Southey MC, Giles GG, English DR, Milne RL, Severi G, Ambatipudi S, Cuenin C, Chajès V, Romieu I, Herceg Z, Swerdlow AJ, Vineis P, Flanagan JM. Epigenome-wide association study for lifetime estrogen exposure identifies an epigenetic signature associated with breast cancer risk. Clin Epigenetics 2019; 11:66. [PMID: 31039828 PMCID: PMC6492393 DOI: 10.1186/s13148-019-0664-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/09/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND It is well established that estrogens and other hormonal factors influence breast cancer susceptibility. We hypothesized that a woman's total lifetime estrogen exposure accumulates changes in DNA methylation, detectable in the blood, which could be used in risk assessment for breast cancer. METHODS An estimated lifetime estrogen exposure (ELEE) model was defined using epidemiological data from EPIC-Italy (n = 31,864). An epigenome-wide association study (EWAS) of ELEE was performed using existing Illumina HumanMethylation450K Beadchip (HM450K) methylation data obtained from EPIC-Italy blood DNA samples (n = 216). A methylation index (MI) of ELEE based on 31 CpG sites was developed using HM450K data from EPIC-Italy and the Generations Study and evaluated for association with breast cancer risk in an independent dataset from the Generations Study (n = 440 incident breast cancer cases matched to 440 healthy controls) using targeted bisulfite sequencing. Lastly, a meta-analysis was conducted including three additional cohorts, consisting of 1187 case-control pairs. RESULTS We observed an estimated 5% increase in breast cancer risk per 1-year longer ELEE (OR = 1.05, 95% CI 1.04-1.07, P = 3 × 10-12) in EPIC-Italy. The EWAS identified 694 CpG sites associated with ELEE (FDR Q < 0.05). We report a DNA methylation index (MI) associated with breast cancer risk that is validated in the Generations Study targeted bisulfite sequencing data (ORQ4_vs_Q1 = 1.77, 95% CI 1.07-2.93, P = 0.027) and in the meta-analysis (ORQ4_vs_Q1 = 1.43, 95% CI 1.05-2.00, P = 0.024); however, the correlation between the MI and ELEE was not validated across study cohorts. CONCLUSION We have identified a blood DNA methylation signature associated with breast cancer risk in this study. Further investigation is required to confirm the interaction between estrogen exposure and DNA methylation in the blood.
Collapse
|
59
|
Ferreira MA, Gamazon ER, Al-Ejeh F, Aittomäki K, Andrulis IL, Anton-Culver H, Arason A, Arndt V, Aronson KJ, Arun BK, Asseryanis E, Azzollini J, Balmaña J, Barnes DR, Barrowdale D, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Białkowska K, Blomqvist C, Bogdanova NV, Bojesen SE, Bolla MK, Borg A, Brauch H, Brenner H, Broeks A, Burwinkel B, Caldés T, Caligo MA, Campa D, Campbell I, Canzian F, Carter J, Carter BD, Castelao JE, Chang-Claude J, Chanock SJ, Christiansen H, Chung WK, Claes KBM, Clarke CL, Couch FJ, Cox A, Cross SS, Czene K, Daly MB, de la Hoya M, Dennis J, Devilee P, Diez O, Dörk T, Dunning AM, Dwek M, Eccles DM, Ejlertsen B, Ellberg C, Engel C, Eriksson M, Fasching PA, Fletcher O, Flyger H, Friedman E, Frost D, Gabrielson M, Gago-Dominguez M, Ganz PA, Gapstur SM, Garber J, García-Closas M, García-Sáenz JA, Gaudet MM, Giles GG, Glendon G, Godwin AK, Goldberg MS, Goldgar DE, González-Neira A, Greene MH, Gronwald J, Guénel P, Haiman CA, Hall P, Hamann U, He W, Heyworth J, Hogervorst FBL, Hollestelle A, Hoover RN, Hopper JL, Hulick PJ, Humphreys K, Imyanitov EN, Isaacs C, Jakimovska M, Jakubowska A, James PA, Janavicius R, Jankowitz RC, John EM, Johnson N, Joseph V, Karlan BY, Khusnutdinova E, Kiiski JI, Ko YD, Jones ME, Konstantopoulou I, Kristensen VN, Laitman Y, Lambrechts D, Lazaro C, Leslie G, Lester J, Lesueur F, Lindström S, Long J, Loud JT, Lubiński J, Makalic E, Mannermaa A, Manoochehri M, Margolin S, Maurer T, Mavroudis D, McGuffog L, Meindl A, Menon U, Michailidou K, Miller A, Montagna M, Moreno F, Moserle L, Mulligan AM, Nathanson KL, Neuhausen SL, Nevanlinna H, Nevelsteen I, Nielsen FC, Nikitina-Zake L, Nussbaum RL, Offit K, Olah E, Olopade OI, Olsson H, Osorio A, Papp J, Park-Simon TW, Parsons MT, Pedersen IS, Peixoto A, Peterlongo P, Pharoah PDP, Plaseska-Karanfilska D, Poppe B, Presneau N, Radice P, Rantala J, Rennert G, Risch HA, Saloustros E, Sanden K, Sawyer EJ, Schmidt MK, Schmutzler RK, Sharma P, Shu XO, Simard J, Singer CF, Soucy P, Southey MC, Spinelli JJ, Spurdle AB, Stone J, Swerdlow AJ, Tapper WJ, Taylor JA, Teixeira MR, Terry MB, Teulé A, Thomassen M, Thöne K, Thull DL, Tischkowitz M, Toland AE, Torres D, Truong T, Tung N, Vachon CM, van Asperen CJ, van den Ouweland AMW, van Rensburg EJ, Vega A, Viel A, Wang Q, Wappenschmidt B, Weitzel JN, Wendt C, Winqvist R, Yang XR, Yannoukakos D, Ziogas A, Kraft P, Antoniou AC, Zheng W, Easton DF, Milne RL, Beesley J, Chenevix-Trench G. Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nat Commun 2019; 10:1741. [PMID: 30988301 PMCID: PMC6465407 DOI: 10.1038/s41467-018-08053-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.
Collapse
|
60
|
Ruth KS, Soares ALG, Borges MC, Eliassen AH, Hankinson SE, Jones ME, Kraft P, Nichols HB, Sandler DP, Schoemaker MJ, Taylor JA, Zeleniuch-Jacquotte A, Lawlor DA, Swerdlow AJ, Murray A. Genome-wide association study of anti-Müllerian hormone levels in pre-menopausal women of late reproductive age and relationship with genetic determinants of reproductive lifespan. Hum Mol Genet 2019; 28:1392-1401. [PMID: 30649302 PMCID: PMC6452199 DOI: 10.1093/hmg/ddz015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/29/2022] Open
Abstract
Anti-Müllerian hormone (AMH) is required for sexual differentiation in the fetus, and in adult females AMH is produced by growing ovarian follicles. Consequently, AMH levels are correlated with ovarian reserve, declining towards menopause when the oocyte pool is exhausted. A previous genome-wide association study identified three genetic variants in and around the AMH gene that explained 25% of variation in AMH levels in adolescent males but did not identify any genetic associations reaching genome-wide significance in adolescent females. To explore the role of genetic variation in determining AMH levels in women of late reproductive age, we carried out a genome-wide meta-analysis in 3344 pre-menopausal women from five cohorts (median age 44-48 years at blood draw). A single genetic variant, rs16991615, previously associated with age at menopause, reached genome-wide significance at P = 3.48 × 10-10, with a per allele difference in age-adjusted inverse normal AMH of 0.26 standard deviations (SD) (95% confidence interval (CI) [0.18,0.34]). We investigated whether genetic determinants of female reproductive lifespan were more generally associated with pre-menopausal AMH levels. Genetically-predicted age at menarche had no robust association but genetically-predicted age at menopause was associated with lower AMH levels by 0.18 SD (95% CI [0.14,0.21]) in age-adjusted inverse normal AMH per one-year earlier age at menopause. Our findings provide genetic support for the well-established use of AMH as a marker of ovarian reserve.
Collapse
|
61
|
Clendenen TV, Ge W, Koenig KL, Afanasyeva Y, Agnoli C, Brinton LA, Darvishian F, Dorgan JF, Eliassen AH, Falk RT, Hallmans G, Hankinson SE, Hoffman-Bolton J, Key TJ, Krogh V, Nichols HB, Sandler DP, Schoemaker MJ, Sluss PM, Sund M, Swerdlow AJ, Visvanathan K, Zeleniuch-Jacquotte A, Liu M. Breast cancer risk prediction in women aged 35-50 years: impact of including sex hormone concentrations in the Gail model. Breast Cancer Res 2019; 21:42. [PMID: 30890167 PMCID: PMC6425605 DOI: 10.1186/s13058-019-1126-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/05/2019] [Indexed: 12/28/2022] Open
Abstract
Background Models that accurately predict risk of breast cancer are needed to help younger women make decisions about when to begin screening. Premenopausal concentrations of circulating anti-Müllerian hormone (AMH), a biomarker of ovarian reserve, and testosterone have been positively associated with breast cancer risk in prospective studies. We assessed whether adding AMH and/or testosterone to the Gail model improves its prediction performance for women aged 35–50. Methods In a nested case-control study including ten prospective cohorts (1762 invasive cases/1890 matched controls) with pre-diagnostic serum/plasma samples, we estimated relative risks (RR) for the biomarkers and Gail risk factors using conditional logistic regression and random-effects meta-analysis. Absolute risk models were developed using these RR estimates, attributable risk fractions calculated using the distributions of the risk factors in the cases from the consortium, and population-based incidence and mortality rates. The area under the receiver operating characteristic curve (AUC) was used to compare the discriminatory accuracy of the models with and without biomarkers. Results The AUC for invasive breast cancer including only the Gail risk factor variables was 55.3 (95% CI 53.4, 57.1). The AUC increased moderately with the addition of AMH (AUC 57.6, 95% CI 55.7, 59.5), testosterone (AUC 56.2, 95% CI 54.4, 58.1), or both (AUC 58.1, 95% CI 56.2, 59.9). The largest AUC improvement (4.0) was among women without a family history of breast cancer. Conclusions AMH and testosterone moderately increase the discriminatory accuracy of the Gail model among women aged 35–50. We observed the largest AUC increase for women without a family history of breast cancer, the group that would benefit most from improved risk prediction because early screening is already recommended for women with a family history. Electronic supplementary material The online version of this article (10.1186/s13058-019-1126-z) contains supplementary material, which is available to authorized users.
Collapse
|
62
|
Opstal-van Winden AWJ, de Haan HG, Hauptmann M, Schmidt MK, Broeks A, Russell NS, Janus CPM, Krol ADG, van der Baan FH, De Bruin ML, van Eggermond AM, Dennis J, Anton-Culver H, Haiman CA, Sawyer EJ, Cox A, Devilee P, Hooning MJ, Peto J, Couch FJ, Pharoah P, Orr N, Easton DF, Aleman BMP, Strong LC, Bhatia S, Cooke R, Robison LL, Swerdlow AJ, van Leeuwen FE. Genetic susceptibility to radiation-induced breast cancer after Hodgkin lymphoma. Blood 2019; 133:1130-1139. [PMID: 30573632 PMCID: PMC6405334 DOI: 10.1182/blood-2018-07-862607] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022] Open
Abstract
Female Hodgkin lymphoma (HL) patients treated with chest radiotherapy (RT) have a very high risk of breast cancer. The contribution of genetic factors to this risk is unclear. We therefore examined 211 155 germline single-nucleotide polymorphisms (SNPs) for gene-radiation interaction on breast cancer risk in a case-only analysis including 327 breast cancer patients after chest RT for HL and 4671 first primary breast cancer patients. Nine SNPs showed statistically significant interaction with RT on breast cancer risk (false discovery rate, <20%), of which 1 SNP in the PVT1 oncogene attained the Bonferroni threshold for statistical significance. A polygenic risk score (PRS) composed of these SNPs (RT-interaction-PRS) and a previously published breast cancer PRS (BC-PRS) derived in the general population were evaluated in a case-control analysis comprising the 327 chest-irradiated HL patients with breast cancer and 491 chest-irradiated HL patients without breast cancer. Patients in the highest tertile of the RT-interaction-PRS had a 1.6-fold higher breast cancer risk than those in the lowest tertile. Remarkably, we observed a fourfold increased RT-induced breast cancer risk in the highest compared with the lowest decile of the BC-PRS. On a continuous scale, breast cancer risk increased 1.4-fold per standard deviation of the BC-PRS, similar to the effect size found in the general population. This study demonstrates that genetic factors influence breast cancer risk after chest RT for HL. Given the high absolute breast cancer risk in radiation-exposed women, these results can have important implications for the management of current HL survivors and future patients.
Collapse
|
63
|
Deltour I, Schlehofer B, Massardier-Pilonchéry A, Schlaefer K, Armstrong B, Giles GG, Siemiatycki J, Parent ME, Krewski D, McBride M, Johansen C, Auvinen A, Salminen T, Hours M, Montestrucq L, Blettner M, Berg-Beckhoff G, Sadetzki S, Chetrit A, Lagorio S, Iavarone I, Yamaguchi N, Takebayashi T, Woodward A, Cook A, Tynes T, Klaeboe L, Feychting M, Lönn S, Fleming S, Swerdlow AJ, Schoemaker MJ, Moissonnier M, Kesminiene A, Cardis E, Schüz J. Exposure to loud noise and risk of vestibular schwannoma: results from the INTERPHONE international case‒control study. Scand J Work Environ Health 2019; 45:183-193. [PMID: 30614502 DOI: 10.5271/sjweh.3781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Objective Studies of loud noise exposure and vestibular schwannomas (VS) have shown conflicting results. The population-based INTERPHONE case‒control study was conducted in 13 countries during 2000-2004. In this paper, we report the results of analyses on the association between VS and self-reported loud noise exposure. Methods Self-reported noise exposure was analyzed in 1024 VS cases and 1984 matched controls. Life-long noise exposure was estimated through detailed questions. Odds ratios (OR) and 95% confidence intervals (CI) were estimated using adjusted conditional logistic regression for matched sets. Results The OR for total work and leisure noise exposure was 1.6 (95% CI 1.4-1.9). OR were 1.5 (95% CI 1.3-1.9) for only occupational noise, 1.9 (95% CI 1.4-2.6) for only leisure noise and 1.7 (95% CI 1.2-2.2) for exposure in both contexts. OR increased slightly with increasing lag-time. For occupational exposures, duration, time since exposure start and a metric combining lifetime duration and weekly exposure showed significant trends of increasing risk with increasing exposure. OR did not differ markedly by source or other characteristics of noise. Conclusion The consistent associations seen are likely to reflect either recall bias or a causal association, or potentially indicate a mixture of both.
Collapse
|
64
|
Schoemaker MJ, Jones ME, Higgins CD, Wright AF, Swerdlow AJ. Mortality and Cancer Incidence in Carriers of Balanced Robertsonian Translocations: A National Cohort Study. Am J Epidemiol 2019; 188:500-508. [PMID: 30535276 PMCID: PMC6395160 DOI: 10.1093/aje/kwy266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 03/12/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022] Open
Abstract
A balanced robertsonian translocation (rob) results from fusion of 2 acrocentric chromosomes. Carriers are phenotypically normal and are often diagnosed because of recurrent miscarriages, infertility, or aneuploid offspring. Mortality and site-specific cancer risks in carriers have not been prospectively investigated. We followed 1,987 carriers diagnosed in Great Britain for deaths and cancer risk, over an average of 24.1 years. Standardized mortality and incidence ratios were calculated comparing the number of observed events against population rates. Overall mortality was higher for carriers diagnosed before age 15 years (standardized mortality ratio (SMR) = 2.00, 95% confidence interval (CI): 1.09, 3.35), similar for those diagnosed aged 15–44 years (SMR = 1.06, 95% CI: 0.86–1.28), and lower for those diagnosed aged 45–84 years (SMR = 0.81, 95% CI: 0.68, 0.95). Cancer incidence was higher for non-Hodgkin lymphoma (standardized incidence ratio (SIR) = 1.90, 95% CI: 1.01, 3.24) and childhood leukemia (SIR = 14.5, 95% CI: 1.75, 52.2), the latter particularly in rob(15;21) carriers (SIR = 447.8, 95% CI: 11.3, 2,495). Rob(13;14) carriers had a higher breast cancer risk (SIR = 1.58, 95% CI: 1.12, 2.15). Mortality risks relative to the population in diagnosed carriers depend on age at cytogenetic diagnosis, possibly reflecting age-specific cytogenetic referral reasons. Carriers might be at greater risk of childhood leukemia and non-Hodgkin lymphoma and those diagnosed with rob(13;14) of breast cancer.
Collapse
|
65
|
Escala-Garcia M, Guo Q, Dörk T, Canisius S, Keeman R, Dennis J, Beesley J, Lecarpentier J, Bolla MK, Wang Q, Abraham J, Andrulis IL, Anton-Culver H, Arndt V, Auer PL, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Bernstein L, Blomqvist C, Boeckx B, Bojesen SE, Bonanni B, Børresen-Dale AL, Brauch H, Brenner H, Brentnall A, Brinton L, Broberg P, Brock IW, Brucker SY, Burwinkel B, Caldas C, Caldés T, Campa D, Canzian F, Carracedo A, Carter BD, Castelao JE, Chang-Claude J, Chanock SJ, Chenevix-Trench G, Cheng TYD, Chin SF, Clarke CL, Cordina-Duverger E, Couch FJ, Cox DG, Cox A, Cross SS, Czene K, Daly MB, Devilee P, Dunn JA, Dunning AM, Durcan L, Dwek M, Earl HM, Ekici AB, Eliassen AH, Ellberg C, Engel C, Eriksson M, Evans DG, Figueroa J, Flesch-Janys D, Flyger H, Gabrielson M, Gago-Dominguez M, Galle E, Gapstur SM, García-Closas M, García-Sáenz JA, Gaudet MM, George A, Georgoulias V, Giles GG, Glendon G, Goldgar DE, González-Neira A, Alnæs GIG, Grip M, Guénel P, Haeberle L, Hahnen E, Haiman CA, Håkansson N, Hall P, Hamann U, Hankinson S, Harkness EF, Harrington PA, Hart SN, Hartikainen JM, Hein A, Hillemanns P, Hiller L, Holleczek B, Hollestelle A, Hooning MJ, Hoover RN, Hopper JL, Howell A, Huang G, Humphreys K, Hunter DJ, Janni W, John EM, Jones ME, Jukkola-Vuorinen A, Jung A, Kaaks R, Kabisch M, Kaczmarek K, Kerin MJ, Khan S, Khusnutdinova E, Kiiski JI, Kitahara CM, Knight JA, Ko YD, Koppert LB, Kosma VM, Kraft P, Kristensen VN, Krüger U, Kühl T, Lambrechts D, Le Marchand L, Lee E, Lejbkowicz F, Li L, Lindblom A, Lindström S, Linet M, Lissowska J, Lo WY, Loibl S, Lubiński J, Lux MP, MacInnis RJ, Maierthaler M, Maishman T, Makalic E, Mannermaa A, Manoochehri M, Manoukian S, Margolin S, Martinez ME, Mavroudis D, McLean C, Meindl A, Middha P, Miller N, Milne RL, Moreno F, Mulligan AM, Mulot C, Nassir R, Neuhausen SL, Newman WT, Nielsen SF, Nordestgaard BG, Norman A, Olsson H, Orr N, Pankratz VS, Park-Simon TW, Perez JIA, Pérez-Barrios C, Peterlongo P, Petridis C, Pinchev M, Prajzendanc K, Prentice R, Presneau N, Prokofieva D, Pylkäs K, Rack B, Radice P, Ramachandran D, Rennert G, Rennert HS, Rhenius V, Romero A, Roylance R, Saloustros E, Sawyer EJ, Schmidt DF, Schmutzler RK, Schneeweiss A, Schoemaker MJ, Schumacher F, Schwentner L, Scott RJ, Scott C, Seynaeve C, Shah M, Simard J, Smeets A, Sohn C, Southey MC, Swerdlow AJ, Talhouk A, Tamimi RM, Tapper WJ, Teixeira MR, Tengström M, Terry MB, Thöne K, Tollenaar RAEM, Tomlinson I, Torres D, Truong T, Turman C, Turnbull C, Ulmer HU, Untch M, Vachon C, van Asperen CJ, van den Ouweland AMW, van Veen EM, Wendt C, Whittemore AS, Willett W, Winqvist R, Wolk A, Yang XR, Zhang Y, Easton DF, Fasching PA, Nevanlinna H, Eccles DM, Pharoah PDP, Schmidt MK. Genome-wide association study of germline variants and breast cancer-specific mortality. Br J Cancer 2019; 120:647-657. [PMID: 30787463 PMCID: PMC6461853 DOI: 10.1038/s41416-019-0393-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/02/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND We examined the associations between germline variants and breast cancer mortality using a large meta-analysis of women of European ancestry. METHODS Meta-analyses included summary estimates based on Cox models of twelve datasets using ~10.4 million variants for 96,661 women with breast cancer and 7697 events (breast cancer-specific deaths). Oestrogen receptor (ER)-specific analyses were based on 64,171 ER-positive (4116) and 16,172 ER-negative (2125) patients. We evaluated the probability of a signal to be a true positive using the Bayesian false discovery probability (BFDP). RESULTS We did not find any variant associated with breast cancer-specific mortality at P < 5 × 10-8. For ER-positive disease, the most significantly associated variant was chr7:rs4717568 (BFDP = 7%, P = 1.28 × 10-7, hazard ratio [HR] = 0.88, 95% confidence interval [CI] = 0.84-0.92); the closest gene is AUTS2. For ER-negative disease, the most significant variant was chr7:rs67918676 (BFDP = 11%, P = 1.38 × 10-7, HR = 1.27, 95% CI = 1.16-1.39); located within a long intergenic non-coding RNA gene (AC004009.3), close to the HOXA gene cluster. CONCLUSIONS We uncovered germline variants on chromosome 7 at BFDP < 15% close to genes for which there is biological evidence related to breast cancer outcome. However, the paucity of variants associated with mortality at genome-wide significance underpins the challenge in providing genetic-based individualised prognostic information for breast cancer patients.
Collapse
|
66
|
Swerdlow AJ, Cooke R, Beckers D, Butler G, Carel JC, Cianfarani S, Clayton P, Coste J, Deodati A, Ecosse E, Hokken-Koelega ACS, Khan AJ, Kiess W, Kuehni CE, Flück CE, Pfaffle R, Sävendahl L, Sommer G, Thomas M, Tidblad A, Tollerfield S, Zandwijken GRJ. Risk of Meningioma in European Patients Treated With Growth Hormone in Childhood: Results From the SAGhE Cohort. J Clin Endocrinol Metab 2019; 104:658-664. [PMID: 30137467 PMCID: PMC6334265 DOI: 10.1210/jc.2018-01133] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/14/2018] [Indexed: 11/26/2022]
Abstract
CONTEXT There has been concern that GH treatment of children might increase meningioma risk. Results of published studies have been inconsistent and limited. OBJECTIVE To examine meningioma risks in relation to GH treatment. DESIGN Cohort study with follow-up via cancer registries and other registers. SETTING Population-based. PATIENTS A cohort of 10,403 patients treated in childhood with recombinant GH in five European countries since this treatment was first used in 1984. Expected rates from national cancer registration statistics. MAIN OUTCOME MEASURES Risk of meningioma incidence. RESULTS During follow-up, 38 meningiomas occurred. Meningioma risk was greatly raised in the cohort overall [standardized incidence ratio (SIR) = 75.4; 95% CI: 54.9 to 103.6], as a consequence of high risk in subjects who had received radiotherapy for underlying malignancy (SIR = 658.4; 95% CI: 460.4 to 941.7). Risk was not significantly raised in patients who did not receive radiotherapy. Risk in radiotherapy-treated patients was not significantly related to mean daily dose of GH, duration of GH treatment, or cumulative dose of GH. CONCLUSIONS Our data add to evidence of very high risk of meningioma in patients treated in childhood with GH after cranial radiotherapy, but suggest that GH may not affect radiotherapy-related risk, and that there is no material raised risk of meningioma in GH-treated patients who did not receive radiotherapy.
Collapse
|
67
|
Schoemaker MJ, Nichols HB, Wright LB, Brook MN, Jones ME, O'Brien KM, Adami HO, Baglietto L, Bernstein L, Bertrand KA, Boutron-Ruault MC, Chen Y, Connor AE, Dorronsoro M, Dossus L, Eliassen AH, Giles GG, Gram IT, Hankinson SE, Kaaks R, Key TJ, Kirsh VA, Kitahara CM, Koh WP, Larsson SC, Linet MS, Ma H, Masala G, Merritt MA, Milne RL, Overvad K, Ozasa K, Palmer JR, Riboli E, Rohan TE, Sadakane A, Sund M, Tamimi RM, Trichopoulou A, Ursin G, Van Gils CH, Visvanathan K, Weiderpass E, Willett WC, Wolk A, Yuan JM, Zeleniuch-Jacquotte A, Sandler DP, Swerdlow AJ. Abstract P1-08-01: Withdrawn. Cancer Res 2019. [DOI: 10.1158/1538-7445.sabcs18-p1-08-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
This abstract was withdrawn by the authors.
Citation Format: Schoemaker MJ, Nichols HB, Wright LB, Brook MN, Jones ME, O'Brien KM, Adami H-O, Baglietto L, Bernstein L, Bertrand KA, Boutron-Ruault M-C, Chen Y, Connor AE, Dorronsoro M, Dossus L, Eliassen AH, Giles GG, Gram IT, Hankinson SE, Kaaks R, Key TJ, Kirsh VA, Kitahara CM, Koh W-P, Larsson SC, Linet MS, Ma H, Masala G, Merritt MA, Milne RL, Overvad K, Ozasa K, Palmer JR, Riboli E, Rohan TE, Sadakane A, Sund M, Tamimi RM, Trichopoulou A, Ursin G, Van Gils CH, Visvanathan K, Weiderpass E, Willett WC, Wolk A, Yuan J-M, Zeleniuch-Jacquotte A, Sandler DP, Swerdlow AJ. Withdrawn [abstract]. In: Proceedings of the 2018 San Antonio Breast Cancer Symposium; 2018 Dec 4-8; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2019;79(4 Suppl):Abstract nr P1-08-01.
Collapse
|
68
|
Yang Y, Wu L, Shu X, Lu Y, Shu XO, Cai Q, Beeghly-Fadiel A, Li B, Ye F, Berchuck A, Anton-Culver H, Banerjee S, Benitez J, Bjørge L, Brenton JD, Butzow R, Campbell IG, Chang-Claude J, Chen K, Cook LS, Cramer DW, deFazio A, Dennis J, Doherty JA, Dörk T, Eccles DM, Edwards DV, Fasching PA, Fortner RT, Gayther SA, Giles GG, Glasspool RM, Goode EL, Goodman MT, Gronwald J, Harris HR, Heitz F, Hildebrandt MA, Høgdall E, Høgdall CK, Huntsman DG, Kar SP, Karlan BY, Kelemen LE, Kiemeney LA, Kjaer SK, Koushik A, Lambrechts D, Le ND, Levine DA, Massuger LF, Matsuo K, May T, McNeish IA, Menon U, Modugno F, Monteiro AN, Moorman PG, Moysich KB, Ness RB, Nevanlinna H, Olsson H, Onland-Moret NC, Park SK, Paul J, Pearce CL, Pejovic T, Phelan CM, Pike MC, Ramus SJ, Riboli E, Rodriguez-Antona C, Romieu I, Sandler DP, Schildkraut JM, Setiawan VW, Shan K, Siddiqui N, Sieh W, Stampfer MJ, Sutphen R, Swerdlow AJ, Szafron LM, Teo SH, Tworoger SS, Tyrer JP, Webb PM, Wentzensen N, White E, Willett WC, Wolk A, Woo YL, Wu AH, Yan L, Yannoukakos D, Chenevix-Trench G, Sellers TA, Pharoah PDP, Zheng W, Long J. Genetic Data from Nearly 63,000 Women of European Descent Predicts DNA Methylation Biomarkers and Epithelial Ovarian Cancer Risk. Cancer Res 2019; 79:505-517. [PMID: 30559148 PMCID: PMC6359948 DOI: 10.1158/0008-5472.can-18-2726] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/16/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022]
Abstract
DNA methylation is instrumental for gene regulation. Global changes in the epigenetic landscape have been recognized as a hallmark of cancer. However, the role of DNA methylation in epithelial ovarian cancer (EOC) remains unclear. In this study, high-density genetic and DNA methylation data in white blood cells from the Framingham Heart Study (N = 1,595) were used to build genetic models to predict DNA methylation levels. These prediction models were then applied to the summary statistics of a genome-wide association study (GWAS) of ovarian cancer including 22,406 EOC cases and 40,941 controls to investigate genetically predicted DNA methylation levels in association with EOC risk. Among 62,938 CpG sites investigated, genetically predicted methylation levels at 89 CpG were significantly associated with EOC risk at a Bonferroni-corrected threshold of P < 7.94 × 10-7. Of them, 87 were located at GWAS-identified EOC susceptibility regions and two resided in a genomic region not previously reported to be associated with EOC risk. Integrative analyses of genetic, methylation, and gene expression data identified consistent directions of associations across 12 CpG, five genes, and EOC risk, suggesting that methylation at these 12 CpG may influence EOC risk by regulating expression of these five genes, namely MAPT, HOXB3, ABHD8, ARHGAP27, and SKAP1. We identified novel DNA methylation markers associated with EOC risk and propose that methylation at multiple CpG may affect EOC risk via regulation of gene expression. SIGNIFICANCE: Identification of novel DNA methylation markers associated with EOC risk suggests that methylation at multiple CpG may affect EOC risk through regulation of gene expression.
Collapse
|
69
|
Atkins I, Kinnersley B, Ostrom QT, Labreche K, Il'yasova D, Armstrong GN, Eckel-Passow JE, Schoemaker MJ, Nöthen MM, Barnholtz-Sloan JS, Swerdlow AJ, Simon M, Rajaraman P, Chanock SJ, Shildkraut J, Bernstein JL, Hoffmann P, Jöckel KH, Lai RK, Claus EB, Olson SH, Johansen C, Wrensch MR, Melin B, Jenkins RB, Sanson M, Bondy ML, Houlston RS. Transcriptome-Wide Association Study Identifies New Candidate Susceptibility Genes for Glioma. Cancer Res 2019; 79:2065-2071. [PMID: 30709929 DOI: 10.1158/0008-5472.can-18-2888] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/20/2018] [Accepted: 01/24/2019] [Indexed: 11/16/2022]
Abstract
Genome-wide association studies (GWAS) have so far identified 25 loci associated with glioma risk, with most showing specificity for either glioblastoma (GBM) or non-GBM tumors. The majority of these GWAS susceptibility variants reside in noncoding regions and the causal genes underlying the associations are largely unknown. Here we performed a transcriptome-wide association study to search for novel risk loci and candidate causal genes at known GWAS loci using Genotype-Tissue Expression Project (GTEx) data to predict cis-predicted gene expression in relation to GBM and non-GBM risk in conjunction with GWAS summary statistics on 12,488 glioma cases (6,183 GBM and 5,820 non-GBM) and 18,169 controls. Imposing a Bonferroni-corrected significance level of P < 5.69 × 10-6, we identified 31 genes, including GALNT6 at 12q13.33, as a candidate novel risk locus for GBM (mean Z = 4.43; P = 5.68 × 10-6). GALNT6 resides at least 55 Mb away from any previously identified glioma risk variant, while all other 30 significantly associated genes were located within 1 Mb of known GWAS-identified loci and were not significant after conditioning on the known GWAS-identified variants. These data identify a novel locus (GALNT6 at 12q13.33) and 30 genes at 12 known glioma risk loci associated with glioma risk, providing further insights into glioma tumorigenesis. SIGNIFICANCE: This study identifies new genes associated with glioma risk, increasing understanding of how these tumors develop.
Collapse
|
70
|
McCullough ML, Zoltick ES, Weinstein SJ, Fedirko V, Wang M, Cook NR, Eliassen AH, Zeleniuch-Jacquotte A, Agnoli C, Albanes D, Barnett MJ, Buring JE, Campbell PT, Clendenen TV, Freedman ND, Gapstur SM, Giovannucci EL, Goodman GG, Haiman CA, Ho GYF, Horst RL, Hou T, Huang WY, Jenab M, Jones ME, Joshu CE, Krogh V, Lee IM, Lee JE, Männistö S, Le Marchand L, Mondul AM, Neuhouser ML, Platz EA, Purdue MP, Riboli E, Robsahm TE, Rohan TE, Sasazuki S, Schoemaker MJ, Sieri S, Stampfer MJ, Swerdlow AJ, Thomson CA, Tretli S, Tsugane S, Ursin G, Visvanathan K, White KK, Wu K, Yaun SS, Zhang X, Willett WC, Gail MH, Ziegler RG, Smith-Warner SA. Circulating Vitamin D and Colorectal Cancer Risk: An International Pooling Project of 17 Cohorts. J Natl Cancer Inst 2019; 111:158-169. [PMID: 29912394 PMCID: PMC6376911 DOI: 10.1093/jnci/djy087] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/26/2018] [Accepted: 04/16/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Experimental and epidemiological studies suggest a protective role for vitamin D in colorectal carcinogenesis, but evidence is inconclusive. Circulating 25-hydroxyvitamin D (25(OH)D) concentrations that minimize risk are unknown. Current Institute of Medicine (IOM) vitamin D guidance is based solely on bone health. METHODS We pooled participant-level data from 17 cohorts, comprising 5706 colorectal cancer case participants and 7107 control participants with a wide range of circulating 25(OH)D concentrations. For 30.1% of participants, 25(OH)D was newly measured. Previously measured 25(OH)D was calibrated to the same assay to permit estimating risk by absolute concentrations. Study-specific relative risks (RRs) for prediagnostic season-standardized 25(OH)D concentrations were calculated using conditional logistic regression and pooled using random effects models. RESULTS Compared with the lower range of sufficiency for bone health (50-<62.5 nmol/L), deficient 25(OH)D (<30 nmol/L) was associated with 31% higher colorectal cancer risk (RR = 1.31, 95% confidence interval [CI] = 1.05 to 1.62); 25(OH)D above sufficiency (75-<87.5 and 87.5-<100 nmol/L) was associated with 19% (RR = 0.81, 95% CI = 0.67 to 0.99) and 27% (RR = 0.73, 95% CI = 0.59 to 0.91) lower risk, respectively. At 25(OH)D of 100 nmol/L or greater, risk did not continue to decline and was not statistically significantly reduced (RR = 0.91, 95% CI = 0.67 to 1.24, 3.5% of control participants). Associations were minimally affected when adjusting for body mass index, physical activity, or other risk factors. For each 25 nmol/L increment in circulating 25(OH)D, colorectal cancer risk was 19% lower in women (RR = 0.81, 95% CI = 0.75 to 0.87) and 7% lower in men (RR = 0.93, 95% CI = 0.86 to 1.00) (two-sided Pheterogeneity by sex = .008). Associations were inverse in all subgroups, including colorectal subsite, geographic region, and season of blood collection. CONCLUSIONS Higher circulating 25(OH)D was related to a statistically significant, substantially lower colorectal cancer risk in women and non-statistically significant lower risk in men. Optimal 25(OH)D concentrations for colorectal cancer risk reduction, 75-100 nmol/L, appear higher than current IOM recommendations.
Collapse
|
71
|
Jiang X, Finucane HK, Schumacher FR, Schmit SL, Tyrer JP, Han Y, Michailidou K, Lesseur C, Kuchenbaecker KB, Dennis J, Conti DV, Casey G, Gaudet MM, Huyghe JR, Albanes D, Aldrich MC, Andrew AS, Andrulis IL, Anton-Culver H, Antoniou AC, Antonenkova NN, Arnold SM, Aronson KJ, Arun BK, Bandera EV, Barkardottir RB, Barnes DR, Batra J, Beckmann MW, Benitez J, Benlloch S, Berchuck A, Berndt SI, Bickeböller H, Bien SA, Blomqvist C, Boccia S, Bogdanova NV, Bojesen SE, Bolla MK, Brauch H, Brenner H, Brenton JD, Brook MN, Brunet J, Brunnström H, Buchanan DD, Burwinkel B, Butzow R, Cadoni G, Caldés T, Caligo MA, Campbell I, Campbell PT, Cancel-Tassin G, Cannon-Albright L, Campa D, Caporaso N, Carvalho AL, Chan AT, Chang-Claude J, Chanock SJ, Chen C, Christiani DC, Claes KBM, Claessens F, Clements J, Collée JM, Correa MC, Couch FJ, Cox A, Cunningham JM, Cybulski C, Czene K, Daly MB, deFazio A, Devilee P, Diez O, Gago-Dominguez M, Donovan JL, Dörk T, Duell EJ, Dunning AM, Dwek M, Eccles DM, Edlund CK, Edwards DRV, Ellberg C, Evans DG, Fasching PA, Ferris RL, Liloglou T, Figueiredo JC, Fletcher O, Fortner RT, Fostira F, Franceschi S, Friedman E, Gallinger SJ, Ganz PA, Garber J, García-Sáenz JA, Gayther SA, Giles GG, Godwin AK, Goldberg MS, Goldgar DE, Goode EL, Goodman MT, Goodman G, Grankvist K, Greene MH, Gronberg H, Gronwald J, Guénel P, Håkansson N, Hall P, Hamann U, Hamdy FC, Hamilton RJ, Hampe J, Haugen A, Heitz F, Herrero R, Hillemanns P, Hoffmeister M, Høgdall E, Hong YC, Hopper JL, Houlston R, Hulick PJ, Hunter DJ, Huntsman DG, Idos G, Imyanitov EN, Ingles SA, Isaacs C, Jakubowska A, James P, Jenkins MA, Johansson M, Johansson M, John EM, Joshi AD, Kaneva R, Karlan BY, Kelemen LE, Kühl T, Khaw KT, Khusnutdinova E, Kibel AS, Kiemeney LA, Kim J, Kjaer SK, Knight JA, Kogevinas M, Kote-Jarai Z, Koutros S, Kristensen VN, Kupryjanczyk J, Lacko M, Lam S, Lambrechts D, Landi MT, Lazarus P, Le ND, Lee E, Lejbkowicz F, Lenz HJ, Leslie G, Lessel D, Lester J, Levine DA, Li L, Li CI, Lindblom A, Lindor NM, Liu G, Loupakis F, Lubiński J, Maehle L, Maier C, Mannermaa A, Marchand LL, Margolin S, May T, McGuffog L, Meindl A, Middha P, Miller A, Milne RL, MacInnis RJ, Modugno F, Montagna M, Moreno V, Moysich KB, Mucci L, Muir K, Mulligan AM, Nathanson KL, Neal DE, Ness AR, Neuhausen SL, Nevanlinna H, Newcomb PA, Newcomb LF, Nielsen FC, Nikitina-Zake L, Nordestgaard BG, Nussbaum RL, Offit K, Olah E, Olama AAA, Olopade OI, Olshan AF, Olsson H, Osorio A, Pandha H, Park JY, Pashayan N, Parsons MT, Pejovic T, Penney KL, Peters WHM, Phelan CM, Phipps AI, Plaseska-Karanfilska D, Pring M, Prokofyeva D, Radice P, Stefansson K, Ramus SJ, Raskin L, Rennert G, Rennert HS, van Rensburg EJ, Riggan MJ, Risch HA, Risch A, Roobol MJ, Rosenstein BS, Rossing MA, De Ruyck K, Saloustros E, Sandler DP, Sawyer EJ, Schabath MB, Schleutker J, Schmidt MK, Setiawan VW, Shen H, Siegel EM, Sieh W, Singer CF, Slattery ML, Sorensen KD, Southey MC, Spurdle AB, Stanford JL, Stevens VL, Stintzing S, Stone J, Sundfeldt K, Sutphen R, Swerdlow AJ, Tajara EH, Tangen CM, Tardon A, Taylor JA, Teare MD, Teixeira MR, Terry MB, Terry KL, Thibodeau SN, Thomassen M, Bjørge L, Tischkowitz M, Toland AE, Torres D, Townsend PA, Travis RC, Tung N, Tworoger SS, Ulrich CM, Usmani N, Vachon CM, Van Nieuwenhuysen E, Vega A, Aguado-Barrera ME, Wang Q, Webb PM, Weinberg CR, Weinstein S, Weissler MC, Weitzel JN, West CML, White E, Whittemore AS, Wichmann HE, Wiklund F, Winqvist R, Wolk A, Woll P, Woods M, Wu AH, Wu X, Yannoukakos D, Zheng W, Zienolddiny S, Ziogas A, Zorn KK, Lane JM, Saxena R, Thomas D, Hung RJ, Diergaarde B, McKay J, Peters U, Hsu L, García-Closas M, Eeles RA, Chenevix-Trench G, Brennan PJ, Haiman CA, Simard J, Easton DF, Gruber SB, Pharoah PDP, Price AL, Pasaniuc B, Amos CI, Kraft P, Lindström S. Shared heritability and functional enrichment across six solid cancers. Nat Commun 2019; 10:431. [PMID: 30683880 PMCID: PMC6347624 DOI: 10.1038/s41467-018-08054-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/10/2018] [Indexed: 01/07/2023] Open
Abstract
Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (rg = 0.57, p = 4.6 × 10-8), breast and ovarian cancer (rg = 0.24, p = 7 × 10-5), breast and lung cancer (rg = 0.18, p =1.5 × 10-6) and breast and colorectal cancer (rg = 0.15, p = 1.1 × 10-4). We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a common germline genetic basis.
Collapse
|
72
|
Schoemaker MJ, Jones ME, Higgins CD, Wright AF, Swerdlow AJ. Mortality and cancer incidence in carriers of constitutional t(11;22)(q23;q11) translocations: A prospective study. Int J Cancer 2019; 145:1493-1498. [PMID: 30496607 PMCID: PMC6767470 DOI: 10.1002/ijc.32031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022]
Abstract
The constitutional t(11;22)(q23;q11) translocation is the only recurrent non‐Robertsonian translocation known in humans. Carriers are phenotypically normal and are usually referred for cytogenetic testing because of multiple miscarriages, infertility, or having aneuploidy in offspring. A breast cancer predisposition has been suggested, but previous studies have been small and had methodological shortcomings. We therefore conducted a long‐term prospective study of cancer and mortality risk in carriers. We followed 65 male and 101 female carriers of t(11;22)(q23;q11) diagnosed in cytogenetic laboratories in Britain during 1976–2005 for cancer and deaths for an average of 21.4 years per subject. Standardised mortality (SMR) and incidence (SIR) ratios were calculated comparing the numbers of observed events with those expected from national age‐, sex‐, country‐ and calendar‐period‐specific population rates. Cancer incidence was borderline significantly raised for cancer overall (SIR = 1.56, 95% CI: 0.98–2.36, n = 22), and significantly raised for invasive breast cancer (SIR = 2.74, 95% CI: 1.18–5.40, n = 8) and in situ breast cancer (SIR = 13.0, 95% CI: 3.55–33.4, n = 4). Breast cancer risks were particularly increased at ages <50 (SIR = 4.37, 95% CI: 1.42–10.2 for invasive, SIR = 22.8, 95% CI: 2.76–82.5 for in situ). Mortality was borderline significantly raised for breast cancer (SMR = 4.82, 95% CI: 0.99–14.1) but not significantly raised for other cancers or causes. Individuals diagnosed with t(11;22)(q23;q11) appear to be at several‐fold increased breast cancer risk, with the greatest risks at premenopausal ages. Further research is required to understand the genetic mechanism involving 11q23 and 22q11 and there may be a need for enhanced breast cancer surveillance among female carriers. What's new? The constitutional translocation between chromosome bands 11q23 and 22q11 is recurrent in human populations, with highly consistent breakpoints. A breast cancer predisposition among carriers has been suggested, but previous studies have been small and had methodological shortcomings. In this first long‐term follow‐up study of site‐specific cancer and mortality risks among carriers, an increased risk of breast cancer was observed compared to the general population, with greatest risks in younger women. The results suggest that carriers of t(11;22)(q23;q11) may require enhanced surveillance for breast cancer and point to the importance of the chromosomal regions 11q23 and 22q11 in breast cancer development.
Collapse
|
73
|
Sud A, Thomsen H, Law PJ, Försti A, da Silva Filho MI, Holroyd A, Broderick P, Orlando G, Lenive O, Wright L, Cooke R, Easton D, Pharoah P, Dunning A, Peto J, Canzian F, Eeles R, Kote-Jarai Z, Muir K, Pashayan N, Hoffmann P, Nöthen MM, Jöckel KH, von Strandmann EP, Lightfoot T, Kane E, Roman E, Lake A, Montgomery D, Jarrett RF, Swerdlow AJ, Engert A, Orr N, Hemminki K, Houlston RS. Author Correction: Genome-wide association study of classical Hodgkin lymphoma identifies key regulators of disease susceptibility. Nat Commun 2019; 10:157. [PMID: 30622283 PMCID: PMC6325156 DOI: 10.1038/s41467-018-08105-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The original version of this Article contained an error in the spelling of a member of the PRACTICAL Consortium, Manuela Gago-Dominguez, which was incorrectly given as Manuela Gago Dominguez. This has now been corrected in both the PDF and HTML versions of the Article.
Collapse
|
74
|
Mavaddat N, Michailidou K, Dennis J, Lush M, Fachal L, Lee A, Tyrer JP, Chen TH, Wang Q, Bolla MK, Yang X, Adank MA, Ahearn T, Aittomäki K, Allen J, Andrulis IL, Anton-Culver H, Antonenkova NN, Arndt V, Aronson KJ, Auer PL, Auvinen P, Barrdahl M, Beane Freeman LE, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Bernstein L, Blomqvist C, Bogdanova NV, Bojesen SE, Bonanni B, Børresen-Dale AL, Brauch H, Bremer M, Brenner H, Brentnall A, Brock IW, Brooks-Wilson A, Brucker SY, Brüning T, Burwinkel B, Campa D, Carter BD, Castelao JE, Chanock SJ, Chlebowski R, Christiansen H, Clarke CL, Collée JM, Cordina-Duverger E, Cornelissen S, Couch FJ, Cox A, Cross SS, Czene K, Daly MB, Devilee P, Dörk T, Dos-Santos-Silva I, Dumont M, Durcan L, Dwek M, Eccles DM, Ekici AB, Eliassen AH, Ellberg C, Engel C, Eriksson M, Evans DG, Fasching PA, Figueroa J, Fletcher O, Flyger H, Försti A, Fritschi L, Gabrielson M, Gago-Dominguez M, Gapstur SM, García-Sáenz JA, Gaudet MM, Georgoulias V, Giles GG, Gilyazova IR, Glendon G, Goldberg MS, Goldgar DE, González-Neira A, Grenaker Alnæs GI, Grip M, Gronwald J, Grundy A, Guénel P, Haeberle L, Hahnen E, Haiman CA, Håkansson N, Hamann U, Hankinson SE, Harkness EF, Hart SN, He W, Hein A, Heyworth J, Hillemanns P, Hollestelle A, Hooning MJ, Hoover RN, Hopper JL, Howell A, Huang G, Humphreys K, Hunter DJ, Jakimovska M, Jakubowska A, Janni W, John EM, Johnson N, Jones ME, Jukkola-Vuorinen A, Jung A, Kaaks R, Kaczmarek K, Kataja V, Keeman R, Kerin MJ, Khusnutdinova E, Kiiski JI, Knight JA, Ko YD, Kosma VM, Koutros S, Kristensen VN, Krüger U, Kühl T, Lambrechts D, Le Marchand L, Lee E, Lejbkowicz F, Lilyquist J, Lindblom A, Lindström S, Lissowska J, Lo WY, Loibl S, Long J, Lubiński J, Lux MP, MacInnis RJ, Maishman T, Makalic E, Maleva Kostovska I, Mannermaa A, Manoukian S, Margolin S, Martens JWM, Martinez ME, Mavroudis D, McLean C, Meindl A, Menon U, Middha P, Miller N, Moreno F, Mulligan AM, Mulot C, Muñoz-Garzon VM, Neuhausen SL, Nevanlinna H, Neven P, Newman WG, Nielsen SF, Nordestgaard BG, Norman A, Offit K, Olson JE, Olsson H, Orr N, Pankratz VS, Park-Simon TW, Perez JIA, Pérez-Barrios C, Peterlongo P, Peto J, Pinchev M, Plaseska-Karanfilska D, Polley EC, Prentice R, Presneau N, Prokofyeva D, Purrington K, Pylkäs K, Rack B, Radice P, Rau-Murthy R, Rennert G, Rennert HS, Rhenius V, Robson M, Romero A, Ruddy KJ, Ruebner M, Saloustros E, Sandler DP, Sawyer EJ, Schmidt DF, Schmutzler RK, Schneeweiss A, Schoemaker MJ, Schumacher F, Schürmann P, Schwentner L, Scott C, Scott RJ, Seynaeve C, Shah M, Sherman ME, Shrubsole MJ, Shu XO, Slager S, Smeets A, Sohn C, Soucy P, Southey MC, Spinelli JJ, Stegmaier C, Stone J, Swerdlow AJ, Tamimi RM, Tapper WJ, Taylor JA, Terry MB, Thöne K, Tollenaar RAEM, Tomlinson I, Truong T, Tzardi M, Ulmer HU, Untch M, Vachon CM, van Veen EM, Vijai J, Weinberg CR, Wendt C, Whittemore AS, Wildiers H, Willett W, Winqvist R, Wolk A, Yang XR, Yannoukakos D, Zhang Y, Zheng W, Ziogas A, Dunning AM, Thompson DJ, Chenevix-Trench G, Chang-Claude J, Schmidt MK, Hall P, Milne RL, Pharoah PDP, Antoniou AC, Chatterjee N, Kraft P, García-Closas M, Simard J, Easton DF. Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. Am J Hum Genet 2019; 104:21-34. [PMID: 30554720 PMCID: PMC6323553 DOI: 10.1016/j.ajhg.2018.11.002] [Citation(s) in RCA: 597] [Impact Index Per Article: 119.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/03/2018] [Indexed: 12/29/2022] Open
Abstract
Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57-1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628-0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs.
Collapse
|
75
|
Nichols HB, Schoemaker MJ, Cai J, Xu J, Wright LB, Brook MN, Jones ME, Adami HO, Baglietto L, Bertrand KA, Blot WJ, Boutron-Ruault MC, Dorronsoro M, Dossus L, Eliassen AH, Giles GG, Gram IT, Hankinson SE, Hoffman-Bolton J, Kaaks R, Key TJ, Kitahara CM, Larsson SC, Linet M, Merritt MA, Milne RL, Pala V, Palmer JR, Peeters PH, Riboli E, Sund M, Tamimi RM, Tjønneland A, Trichopoulou A, Ursin G, Vatten L, Visvanathan K, Weiderpass E, Wolk A, Zheng W, Weinberg CR, Swerdlow AJ, Sandler DP. Breast Cancer Risk After Recent Childbirth: A Pooled Analysis of 15 Prospective Studies. Ann Intern Med 2019; 170:22-30. [PMID: 30534999 PMCID: PMC6760671 DOI: 10.7326/m18-1323] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Parity is widely recognized as protective for breast cancer, but breast cancer risk may be increased shortly after childbirth. Whether this risk varies with breastfeeding, family history of breast cancer, or specific tumor subtype has rarely been evaluated. Objective To characterize breast cancer risk in relation to recent childbirth. Design Pooled analysis of individual-level data from 15 prospective cohort studies. Setting The international Premenopausal Breast Cancer Collaborative Group. Participants Women younger than 55 years. Measurements During 9.6 million person-years of follow-up, 18 826 incident cases of breast cancer were diagnosed. Hazard ratios (HRs) and 95% CIs for breast cancer were calculated using Cox proportional hazards regression. Results Compared with nulliparous women, parous women had an HR for breast cancer that peaked about 5 years after birth (HR, 1.80 [95% CI, 1.63 to 1.99]) before decreasing to 0.77 (CI, 0.67 to 0.88) after 34 years. The association crossed over from positive to negative about 24 years after birth. The overall pattern was driven by estrogen receptor (ER)-positive breast cancer; no crossover was seen for ER-negative cancer. Increases in breast cancer risk after childbirth were pronounced when combined with a family history of breast cancer and were greater for women who were older at first birth or who had more births. Breastfeeding did not modify overall risk patterns. Limitations Breast cancer diagnoses during pregnancy were not uniformly distinguishable from early postpartum diagnoses. Data on human epidermal growth factor receptor 2 (HER2) oncogene overexpression were limited. Conclusion Compared with nulliparous women, parous women have an increased risk for breast cancer for more than 20 years after childbirth. Health care providers should consider recent childbirth a risk factor for breast cancer in young women. Primary Funding Source The Avon Foundation, the National Institute of Environmental Health Sciences, Breast Cancer Now and the UK National Health Service, and the Institute of Cancer Research.
Collapse
|